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Abstract 

    This paper presents CSGM2, a text preprocessing technique for compression 

purposes. It converts the original text into a word net (graph representation) and can 

retain the detailed contextual information such as word proximity. Specific directed graph 

is proposed to model this word net where words are stored in vertices and edges 

represent word transitions. The word net is fully capable of holding the natural word 

order in the original text and hence can be used directly for encoding purposes. 
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1. Introduction 

Data compression has immense importance in the areas of data storage and data 

transmission despite of the high speed data networks and large capacity storage devices 

are available these days. The general theory of data compression techniques on text files 

is to transform a string of characters into a new string which contains the same 

information but with new length as small as possible [1]. 

Thus, compressed data occupies less storage space and takes a lesser amount of time to 

be read from disk or transmitted over a communication link [2]. The cost of data 

compression is basically the time needed to encode and decode the data. However, now a 

days this is becoming less significant as the speed of processor is increasing much faster 

than data transmission or disk transfer speeds. 

Natural language texts have information meant for general-purpose person to person 

conversation. Hence, its structure follows the syntactic rules used to create these 

conversations. We generally do not consider natural language text as character sequences. 

We consider them as a sequence of groups of alphabetic symbols forming words. Hence 

the character-based compression techniques are barely able to capture and use long-range 

correlations existing between words. However, if text compression techniques were to use 

bigger units than single characters as the basic storage element, they would be able to 

capture and use long-range correlations [3]. Thus, a word-based algorithm is a batter 

choice when a natural text is compressed as words are the true reflector of text entropy 

[4]. 
The goal of Text compression is to identify and eliminate redundant information to 

achieve a more compact text representation. Statistical and dictionary-based techniques 

are generally applied for text compression. However there is a third category of approach 

based on the combination of text preprocessing and universal compression. In this 

category of approach, also known as preprocessing based compression, the preprocessing 

algorithms are performed before the actual compression process. Preprocessing routines 

are not compression algorithms, but they output less redundant text representations. The 

well formatted text representations are then compressed with common techniques. Thus, 

preprocessing-based compressors can be segregated into two independent parts: 

preprocessing and standard compression algorithms. 
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The CSGM2 technique, explained in this paper, was originally defined as CSGM 

(Context Sensitive Graph Model), a graph model for representing large text portion of 

web documents[5]. It transforms the original text into a word net by considering that the 

information contained in the text does not only depend on single words but also on the 

different relationships between them. For example, let us focus our attention on a set of 

nine words (‘only’, ‘he’, ‘told’, ‘me’, ‘that’, ‘he’, ‘will’, ‘accompany’, ‘us’) used in a text. 

If we find a phrase such as “...ONLY he told me that he will accompany us...”, we 

perceive that he is the only one. But if the phrase is “...He ONLY told me that he will 

accompany us...”, we perceive that he told ‘me’ nothing more. Again if the phase is “...He 

told ONLY me that he will accompany us...”, we perceive that he told no one else. 

Although these phrases transmit different information, they are similarly represented if 

correlation between them is not taken into account. Thus, CSGM2 regards a text as a 

sequence of transitions between adjoining words and outputs an intermediate graphical 

representation which can be obviously compressed with universal techniques. The 

original work [5] shows how CSGM effectively performs in conjunction with web 

documents. 

 

2. Related Work 

So many known methods of data compression are there. Although the compression 

techniques are based on different ideas, are suitable for different types of data, and 

produce different results, but they are all based on the same principle. They compress data 

by removing redundancy from the source file. Any nonrandom collection of data must 

have some structure, and this structure can be exploited to achieve a smaller 

representation of the data where no structure is discernible. Thus, redundancy 

significantly matters in any discussion related to data compression [4]. 

Statistical and dictionary-based techniques are traditionally considered for text 

compression. Both the methods are briefly stated below together with a third approach 

based on preprocessing.  

 

2.1 Statistical Compression 

In general, statistical compression techniques apply two complementary phases of 

modeling and coding. The modeling phase obtains a probability distribution of the 

concerned text, which is then used as the basis for codification. The probability of each 

symbol is calculated on the basis of global text statistics or depends on a context of n 

preceding symbols, where n is a user defined parameter. After the first phase the coding 

phase assigns code-words to each symbol following the probability distribution obtained 

in the first phase and uses them to get the compressed text representation.  

Finding the Probability Distribution of Text. At first, this phase requires a definition of 

a symbol whether it is considered to be a character, a fixed number of characters or a 

word, defined as a maximal sequence of alphanumeric/nonalphanumeric characters. The 

set of all different symbols in the text is known as alphabet. In natural language text 

compression we generally have two alternatives: word and character based alphabet. The 

compression effectiveness is subject to the alphabet choice. For example, in natural 

language texts, more skewness is observed in a word-based distribution than a character-

based one [6]. Hence, better effectiveness can be achieved if a word alphabet is used 

rather than a character one.  

Structured, Semi structured and unstructured methods can be applied to implement the 

first phase. The decession is influencel to the next phase because each of the method has 

its own set of operational procedures to follow. In structured techniques the coder and the 

decoder shares in advance an expected statistical distribution. This technique does not 

work well when there is a significant deviation from the expected standard. Instead of 

following a predetermined or expected statistical distribution, the Semi-structured 
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techniques learn it during a first pass. In accordance with the knowledge acquired in the 

first pass the required statistic to model the text is determined in the second pass. The 

unstructured method also learns about the text or data along with the run, but in this case 

only one run is there. The method must perform the essentialities of the modeling task for 

the given text or data in a single pass only. Unstructured compression method usually 

works without any external information which makes such type of compression methods 

more general then that of other methods [4]. 

Coding. In this phase, based on the statistic calculated in the first phase the text 

symbols are assigned specific code words according to some criteria. The symbols with 

relatively high frequency are encoded with short code-words, whereas the symbols 

occurring with relatively low frequency are encoded with longer code-words. This 

conversion is performed to reduce the average lengths of the code words to some 

standard. 

The Huffman algorithm [7] is one of the best known compression algorithm in general. 

It is a method supporting minimum redundancy in which symbols are assigned variable-

bit code-words. Here also the text symbols with relatively high frequency are encoded 

with shortest code-words and vice versa.  

Two different strategies can be adopted to compute the statistical distribution of the 

text symbols [4]. In one strategy the statistical distribution of the text symbols is 

calculated based on the entire text i.e. based on the total number of symbols and the 

frequency of a particular symbol appearing within the text. This type of model is known 

as 0 order model. On the other hand, in k order models the distribution is determined on 

the basis of some prefixed number of preceding symbols. Both the strategies have their 

own characteristics based on different parameters.  

 

2.2. Dictionary-based Compression 

In A dictionary-based compression method the input text symbols are replaced by bit 

strings. In this method we have a dictionary of words and the corresponding bit strings. 

The dictionary plays the role of a mapping function in between the original text and the 

file containing bit strings. The dictionary method converts the original file containing text 

symbols into bit strings, and thereby reducing the text size according to the performed 

word-codeword mapping. As opposed to the statistical compression, in dictionary based 

compression, we do not experience two different phases of modeling and coding. 

Moreover no statistical probability distribution is assigned to the textual symbols [8]. 

These methods also comprise two relatively independent phases. In the first phase, a 

dictionary is constructed and unique bit strings are assigned to various symbols 

comprising the text. In the second phase a compressed text representation is obtained by 

compressing the resultant text file obtained by substituting the text symbols with bit 

strings. 

LZ77 [9] and LZ78 [10], are the well-known dictionary-based compressors. These 

methods implement an adaptive policy to construct their dictionary. LZ is a well known 

family of compression algorithms as these algorithms are capable of deriving more 

compressed text file using limited resources such as memory and also with reasonably 

good speed of compression and decompression. Different popular compressors are 

designed on the LZ platform such as gzip and p7zip [12]. 

 

2.3. Preprocessing-based Compression 

With a view to attain high compression ratio, Preprocessing based compression 

algorithms are proposed comprising a preprocessing step significantly different than that 

of compression algorithms. This preprocessing step generally converts the original text 

into a different but reversible form with lesser amount of space, reducing redundancy, if 

any. The Preprocessing based compression algorithms consist of two independent parts, 
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first one being the preprocessing procedures. The output from the first phase is used as an 

input to the second part containing compression procedures. Different commercial 

preprocessing based compression software are available in the market among which bzip2 

is one of the popular compressor. This compressor is based on the Burrows-Wheeler 

Transform (BWT) [11] which is one of the best known preprocessing algorithm for 

compression.  

 

3. Natural Language Text Modeling and Compression 

Natural language texts contain information used by humans for general-purpose 

communication. Although the text intended for general purpose communication is 

extremely rich and varied, it is also predictable. This is mainly based on the fact that all 

natural languages have a predefined set of words and are the basic units used in human 

communications. A natural language text file consists of an alternation of words and 

separators (e.g. punctuation, space or other spatial characters). It was found that about 

70%-80% of the separators are single spaces [12].  

In natural language texts the word distributions are much skewed: there are few words 

that have extreme frequencies and many words which have low frequencies. This feature 

is approximated in Zipf ’s Law [12]. Zipf’s Law attempts to capture the distribution of 

word frequencies in the text. That is, the relative frequency of the i
th
 most frequent word 

is1/ i , for some 1 <    < 2 (in English texts). On the other hand, the number of distinct 

words in a document (referred to as vocabulary) is an important feature in natural 

language modeling. Heaps’ law [6] helps to predict the growth of the vocabulary size in 

natural language texts. It establishes that the number of different words in a text of n 

words is O( n
), for some β between 0.4 and 0.6. Thus, the vocabulary grows sublinearly 

with the collection size.  

Based on Word and separator distributions in natural language it is possible to find 

some ways to model texts. One such possibility is to An apparent possibility is to consider 

the different inter-word separators as symbols and make a single alphabet for words and 

separators. This idea does not support the fundamental alternation property stated above 

[13]. Another idea is to use two different alphabets: one for words and one for separators. 

Once it is confirmed that the text begins with a word or a separator, we can proceed with 

the idea without any confusion about which alphabet to use. This model is called separate 

alphabets. As stated above, this model is heavily influenced by the high frequency of 

single spaces distribution. As previously cited, about 70 − 80% of separators are single 

spaces. Therefore we can consider the single spaces as default separators, which is the 

idea behind the spaceless words transformation. According to this idea, if a word is 

followed by a single space, only the word will be encoded. If not, both the word and the 

separator will be encoded. Here the alternation property does not hold any more. The 

single space is excluded and we have a single alphabet for words and separators. This 

spaceless word transformation achieves better compression ratios and can be considered 

as the de facto standard in word-based modeling for English text [14].  

Some traditional compressors like Huffman have been reengineered to perform on 

word vocabularies. This new form of Huffman algorithm is a popular word based 

compression algorithm. It retains the original Huffman algorithm features, but process the 

text as a sequence of words and replaces the original words with variable-bit code-words 

to represent them. This word-based Huffman largely outperforms the traditional 

character-based one by achieving near about 25% compression ratio instead of 65%, 

achieved by the character-based Huffman [12].  
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3.1. Graph-based Modeling for Natural Language Texts 

The Graph-theoretical objects can be treated as a natural way of modeling one’s 

impressions of a text. As the graphical objects are able to preserve the connections or 

relationship between its constituents of varying granularity [15]. With the help of the two 

fundamental components of graph structures namely vertices and edges, we can represent 

a text, hardly losing any information.  Depending on the application at hand, text units of 

various sizes and characteristics like a single word, a word sequence or others. Graph 

theory is the only such mathematical tool that dictates the type of relations used to draw 

connections between any two vertices.  

In different sub areas of natural Language processing, the graph-based modeling is 

widely used. These approaches represent the text by means of a graph, in which words or 

other text entities with meaningful relations are interconnected through vertices and 

edges. The information provided by the word order in a text is enough to construct a 

connected directed graph [15]. 

 

4. The CSGM2 Transformation 
 

4.1. Basic Concepts of Graph Theory 

This section covers a brief revision of the basic concepts of graph theory [16].  

 

Definition 1 (Graph). A graph G is a 4-tuple: G= (V, E,α,β), where V is a set of nodes 

(vertices), E ⊆ V× V is a set of edges connecting the nodes, α : V → Σv is a function 

labeling the nodes, and β : V× V → Σe is a function labeling the edges (Σv and Σe being 

the sets of labels that can appear on the nodes and edges, respectively). For brevity, we 

may refer to G as G= (V, E) by omitting the labeling functions. 

 

Definition 2 (Ordered Pair). An ordered pair is a collection of two objects such that one 

can be distinguished as the first element and the other as the second element. An ordered 

pair with first element x and second element y is written as (x, y).  

 

Definition 3 (Digraph). Let V be a set of vertices and E a set of ordered pairs, i.e. a subset 

of V × V, called arcs or directed edges. Then, a directed graph or digraph G is an ordered 

pair G = (V, E) where V is the set that contains all the vertices of G and E ⊆ V × V is the 

set which groups all the edges form G. Therefore, ordering is significant in an ordered 

pair and consequently a pair of objects (x, y) is considered distinct from (y, x), for x   y. 

In graph theory, the first vertex in a directed edge is called the source and the second 

vertex is called the destination. In this paper, we shall refer to a directed edge as edge.  

 

Definition 4 (Degree). The degree of a vertex in a graph is the number of edges connected 

to it. If the graph is a directed graph, the in-degree of v   V is the number of edges where 

v is the destination and the out-degree of v   V is the number of edges where v is the 

source, so the degree is the sum of the in-degree with the out-degree. Hence the in-degree 

of v   V is defined by deg
+
(v) = |D

+
(v)| and the out-degree of v   V is defined by 

deg
−
(v) = |D

−
(v)|. 

 

4.2. Word Net Building 

The CSGM2 technique transforms the original text into a word net (graph) in which all 

relationships between adjoining words are retained. For all kinds of natural language 

natural, all words in a sentence have some relationship to all other words in it. The closer 

two words are to each other; the stronger their connection tends to be [12] and graphs are 

the right scientific structures to represent such relationship. In the rest of the paper we are 
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going to present how the CSGM2 technique performs on a text T of length n words, drawn 

from a vocabulary ∑ containing    different words. 

 

To implement the word net A digraph G := (V, E) is considered in accordance with the 

following features: 

 

• Each unique term appearing in the document becomes a node in the graph representing 

that document. Each node is labeled with the term it represents and a global identifier, 

which is a non negative integer value x  1,  where   is the total word count in T. 

The node labels in a document graph are unique, since a single node is created for each 

keyword even if a term appears more than once in the text. 

 

• Second, if word a immediately precedes word b somewhere in the document, then there 

is a directed edge from the node corresponding to term a to the node corresponding to 

term b with an edge labeled as (n:b), where n is  a user specified parameter representing 

the distance between the two words and b is the is the number of times that the edge has 

been traversed.  

In this model , instead of considering only terms immediately following a given term in 

a  document, we look up to n terms (here we are considering n=2) ahead and connect the 

succeeding terms with an edge labeled as (n:b). 

 

• There are no multiple edges in G. If there is more than one transition between two 

consecutive words x and y  (represented in x and y vertices respectively) only a single 

edge, (x, y), is modeled. 

 

This representation can be used in conjunction with all modeling ways considered to 

symbolize natural language texts. Even so, how separators are modeled is an important 

issue which directly affects the space/time tradeoff of the CSGM2 technique. 

 

Single Alphabet. In this technique a unique graph is used to model T over a single 

alphabet, which comprises words and separators. This modeling policy does not support 

the alternation property between words and separators. This choice is dominated by the 

vertex which represents the single space. It overloads the model as it has higher out-

degrees. In addition, two adjoining words are never connected by considering that these 

are related with separators. Thus, a CSGM2 modeling, based on the single alphabet, 

appears to be poor in text representation because it is not able to directly identify 

correlations between words. 

 

Separate Alphabets. These modeling technique two different alphabets are used for words 

and separators to deal the alternation property. Two independent graphs are used to 

implement the idea for each class of symbols, taking into consideration the word and 

separator alternation. Thus, T is divided into two parts of the same size that are 

represented in each graph. On one part, correlations between words are identified and 

modeled achieving a good text representation. On the other part, the separator 

representation is totally dominated by the single space symbol. A very frequent edge 

describes a self-loop in the vertex in which it is represented. This fact will affect CSGM2 

effectiveness due to inclusion of dispensable information. 

 

Spaceless Words. This is based on a single alphabet in which the single space is not 

counted separately. Thus a single graph is required to model T. Spaceless words is able to 

take advantage of the positive features of both the previous modeling methods. In 

addition, it is not influenced by the single space effect. Thus, a rich text representation is 



International Journal of Multimedia and Ubiquitous Engineering 

Vol.10, No.5 (2015) 

 

 

Copyright ⓒ 2015 SERSC   269 

achieved in which word relationships are also identified and modeled in order to improve 

the CSGM2 coding task. 

    We choose spaceless words to model T on CSGM2. This decision is made by 

considering the experimental outcomes of other researchers, which report that the 

spaceless words choice allows more compact word net representations to be achieved 

with respect to separate alphabets (its size is reduced by between 30% and 40%). 

Considering this fact, the term word is used to refer to both text words and separators in 

the discussions below. 

 

4.3 Transforming Natural Language Text through a Word Net 

A word net, implemented through a graph G := (V, E), is adaptively built as T is 

processed. Thus, graph and text representations are coordinated at the same time as the 

word net is incrementally built and updated. This can be illustrated with a simple 

example. We keep c   V as the current vertex (c stores the word say  c   ) and 

suppose that the word  is reached. The three following situations can happen: 

 

• If   is reached for the first time a vertex v is appended to V for storing this new word, 

and a new edge (c, v), from the current vertex, is inserted in E. This edge represents the 

word transition followed from 
c to  .  

 

• If   is previously appeared (it is stored in v   V), but it was never preceded by c . 

Then a is new edge (c, v) must be appended to E to represent this new word transition.  

 

• If   previously appeared and, at some time, was preceded by the word represented in c 

then it implies that the edge (c, v)   E, and it is locally identified in c with a non-negative 

value x. The statistical information of (c, v) is updated.  

 

The following algorithm formalizes the CSGM2 transformation process. 

 

Algorithm 1 
 

 

1: V    

2: E    

3: current    StartVertex; 

4: previous null 

5: while there are more words in T do 

6:  word    T.ParseWord(); 

7:  if word    V then 

8:      V    V  word; 

9:      destination    V.retrieveID(word); 

10:      If  current  destination 

11:             edge    (current, destination); 

12            If  prev current 

13                edge  (prev,destination) 

14            else  goto step 17 

15            end if   

16:            E    E edge; 

17:            Gtext.encode(V); 

18:            Gvertex.encode(word); 
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19:  Gedge.encode(edge) 

20:       else  previous   current 

21:                current   destination; 

22:       end if 

23:     else 

24:         destination    V.retrieveID(word); 

25:         edge     (current, destination); 

26:         if   edge   E then 

27:                   E    E  edge; 

28:                    

29:                    Gedge.encode(edge); 

30:             else id    E.retrieveID(edge); 

31:                    E.update(edge); 

32:              end if 

33:    end if 

34         previous   current 

35:    current    destination; 

36: end while 

 

5. Example  

An example of how algorithm 1 models and encodes T = “Democracy means a 

Government of the people, by the people, for the people” is shown in figure 1. The 

function performed in each step is shown under the graph model which represents the 

current word net state. A single word is processed in each step, so a specific edge is 

followed for encoding purposes. Each vertex contains the word that it stores and its global 

identifier in the word net. In turn, each edge shows two values (n:b): n represents the 

distance between the two words (we are considering the maximum value of n i.e. nmax=2 ) 

and b is the is the number of times that the edge has been traversed. Additionally, the state 

of the streams Gtext, Gvertex, and Gedge is progressively updated. The process begins when 

the first word, “Democracy”, is processed. The word net is currently empty, so a new 

vertex (identified as 1) is appended to store “Democracy”. The word “Democracy” is 

appended in Gtext. No edges are appended because this is the first word in T. This new 

vertex plays the current role for the next step. The single space is omitted because this 

modeling is performed in conjunction with the spaceless words transformation. The word 

“means” is next processed (step 2). This is its first occurrence, so a new vertex (identified 

as 2) and a new edge (identified as 1:1) are appended. This edge represents the word 

transition currently traversed (from “Democracy” to “means”). It is identified in the 

source vertex as 2, and is initialized with single occurrence (this information is 

represented by the pair 1:1 over the edge). The word “means” is appended in Gtext. 2 is the 

current vertex for the next step. Similar functions are performed for the following words 

“a” ,“Government”, “of ” , ‘the’, ‘people’ , ‘,’ and ‘by’ (Steps 3 to 9).  

 
Step 1:  Step 2: 

 

 

 

 

 

Graphical representation( in sparse matrix form) 
N/A 

 

 

Gtext Democracy 

Gvertex 1 

Gedge N/A 

             

 

 

 
  Graphical representation( in sparse matrix form) 
 

Gtext Democracy means 

Gvertex 1 2 

Gedge N/A 1.1 

0 1.1 

0 0 

Step 3: Step 4: 
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Graphical representation( in sparse matrix form) 

 

 

 

 

 

 

 

Gtext Democracy means a 

Gvertex 1 2 3 

Gedge N/A 1.1 1.1, 2.1 

0 1.1 2.1 

0 0 1.1 

0 0 0 

 
Graphical representation( in sparse matrix form) 

Gtext Democracy means a govornment 

Gvertex 1 2 3 4 

Gedge N/A 1.1 1.1, 

2.1 

1.1, 2.1 

0 1.1 2.1 0 

0 0 1.1 2.1 

0 0 0 1.1 

0 0 0 0 

Step 5: 
         Graphical representation( in sparse matrix form) 

 

 

 

 

 

Gtext Democracy means a govornment of 

Gvertex 1 2 3 4 5 

Gedge N/A 1.1 1.1, 
2.1 

1.1,2.1 1.1, 
2.1 

0 1.1 2.1 0 0 

0 0 1.1 2.1 0 

0 0 0 1.1 2.1 

0 0 0 0 1.1 

0 0 0 0 0 

Step 6:  

   Graphical representation(in sparse matrix form) 
 

 
 

 

 
 

 

 

 

Gtext Democracy means a govornment of the 

Gvertex 1 2 3 4 5 6 

Gedge N/A 1.1 1.1, 

2.1 

1.1,2.1 1.1,2.

1 

1.1, 2.1 

0 1.1 2.1 0 0 0 

0 0 1.1 2.1 0 0 

0 0 0 1.1 2.1 0 

0 0 0 0 1.1 1.2 

0 0 0 0 0 1.1 

0 0 0 0 0 0 

Step 7:  

Sparse matrix omitted  
 

 

 
 

 
 

 

 

Gtext Democracy means a govornment of the people 

Gvertex 1 2 3 4 5 6 7 

Gedge N/A 1.1 1.1, 
2.1 

1.1,2.1 1.1, 
2.1 

1.1,2.1 1.1, 2.1 

 

Step 8:  

Sparse 
matrix 

omitted 

 
 

 

 
 

 

Gtext Democracy means a govornment of the people , 

Gvertex 1 2 3 4 5 6 7 8 

Gedge N/A 1.1 1.1, 

2.1 

1.1,2.1 1.1,2.1 1.1,2.1 1.1,2.1 1.1, 

2.1 

Step 9:  

Sparse matrix omitted 

 
 

 

 
 

 

Gtext Democracy means a govornment of the people , by 

Gvertex 1 2 3 4 5 6 7 8 9 

Gedge N/A 1.1 1.1, 

2.1 

1.1,2.1 1.1,2.1 1.1,2.1 

 

1.1,2.1 1.1, 

2.1 

1.1, 

2.1 
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At this moment, 9 (Step 10) is the current vertex and the word “the” is now processed. 

This is not its first occurrence. It is represented in the vertex 6. However, the edge (9, 6) 

not belongs to E, so a New Edge must be appended. As can be seen in Step 10, this new 

edge (9, 6) is appended to represent the new word transition from “by” to “the”. 6 evolve 

to the current vertex. 

 

The word “people” is next processed (Step 11).The edge (6,7) E . Therefore only the 

statistical data will be updated. 7 evolves to the current vertex. The punctuation mark “,” 

is next processed (step12). The edge (7,8) E and only the statistical data will be 

updated. 8 evolves to the current vertex. 

 

The process continues with the processing of a new word, “for”, (step 13) and a new 

transition between “,” and “for(10)” .  At this moment ‘10’ is the current vertex and the 

word the is now processed. This is not its first occurrence. It is represented in the vertex 6. 

However, the edge (10, 6) not belongs to E, so a New Edge must be appended. 6 evolves 

to the current vertex. The word “people” is next processed(Step 15). The edge (6,7) E . 

Therefore only the statistical data will be updated. 7 evolves to the current vertex. The 

punctuation mark “.” is next processed ( step16). Finally The process ends with the 

processing of a new word, “.”, (step 16) and a new transition between “people” and “(11)” 

. It is to be noted that the above discussion is limited to only first order (n=1) edges. 
  
Step 10:  

 

 

 

 
Graphical representation(in sparse matrix form) 

 
 

 

 
 

 

 
 

 

 
 

 

Gtext Democracy means a govornment of the people , by 

Gvertex 1 2 3 4 5 6 7 8 9 

Gedge N/A 1.1 1.1, 
2.1 

1.1,2.1 1.1,2.1 1.1,2.1 
1.1,2.1 

1.1,2.1 1.1,2.1 1.1, 
2.1 

0 1.1 2.1 0 0 0 0 0 0 

0 0 1.1 2.1 0 0 0 0 0 

0 0 0 1.1 2.1 0 0 0 0 

0 0 0 0 1.1 2.1 0 0 0 

0 0 0 0 0 1.1 2.1 0 0 

0 0 0 0 0 0 1.1 2.1 0 

0 0 0 0 0 0 0 1.1 2.1 

0 0 0 0 0 2.1 0 0 1.1 

0 0 0 0 0 1.1 0 0 0 

Step 11:  

 

 

 

 

 

 

 

Sparse matrix omitted 

 

Gtext Democracy means a govornment of the people , by 

Gvertex 1 2 3 4 5 6 7 8 9 

Gedge N/A 1.1 1.1, 

2.1 

1.1,2.1 1.1,2.1 1.1,2.1 

1.1,2.1 

1.2,2.1 

2.1 

1.1,2.1 1.1, 

2.1 

 

 

Step 12:  
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Sparse matrix omitted 

Gtext Democracy means a govornment of the people , by 

Gvertex 1 2 3 4 5 6 7 8 9 

Gedge N/A 1.1 1.1, 

2.1 

1.1,2.1 1.1,2.1 1.1,2.1 

1.1,2.1 

1.2,2.1 

2.1 

1.2,2.2 1.1, 

2.1 

Step 13:  

 
 

 

 
 

 

Sparse matrix omitted 

Gtext Democracy means a govornment of the people , by for 

Gvertex 1 2 3 4 5 6 7 8 9 10 

Gedge N/A 1.1 1.1, 

2.1 

1.1,2.1 1.1,2.1 1.1,2.1 

1.1,2.1 

1.2,2.1 

2.1 

1.2,2.2 1.1, 

2.1 

1.1, 

2.1 

Step 14:  

 

 

 

 

 

 
 

Sparse matrix omitted 

 

Gtext Democracy means a govornment of the people , by for 

Gvertex 1 2 3 4 5 6 7 8 9 10 

Gedge N/A 1.1 1.1, 

2.1 

1.1,2.1 1.1,2.1 1.1,2.1 

1.1,2.2, 

1.1 

1.2,2.1 

2.1 

1.2,2.2 1.1, 

2.1 

1.1, 

2.1 

Step 15: 

 

 

 
 

 

 
Sparse matrix omitted 

 

Gtext Democracy means a govornment of the people , by for 

Gvertex 1 2 3 4 5 6 7 8 9 10 

Gedge N/A 1.1 1.1, 

2.1 

1.1,2.1 1.1,2.1 1.1,2.1 

1.1,2.2, 
1.1 

1.3,2.1 

2.1,1.1 

1.2,2.2 1.1, 

2.1 

1.1, 

2.1 

Step 16:  

 

 

 
 

 

 
 

 

Graphical representation( in sparse matrix form) 

 

Gtext Democracy means a govornment of the people , by for . 

Gvertex 1 2 3 4 5 6 7 8 9 10 11 

Gedge N/A 1.1 1.1, 

2.1 

1.1,2.1 1.1,2.1 1.1,2.1 

1.1,2.2, 

1.1 

1.3,2.1 

2.1,1.1 

1.2,2.2 1.1, 

2.1 

1.1, 

2.1 

1.1, 

2.1 
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0 1.1 2.1 0 0 0 0 0 0 0 0 

0 0 1.1 2.1 0 0 0 0 0 0 0 

0 0 0 1.1 2.1 0 0 0 0 0 0 

0 0 0 0 1.1 2.1 0 0 0 0 0 

0 0 0 0 0 1.1 2.1 0 0 0 0 

0 0 0 0 0 0 1.3 2.2 0 0 1.1 

0 0 0 0 0 0 0 1.2 2.1 2.1 2.1 

0 0 0 0 0 2.2 0 0 1.1 1.1 0 

0 0 0 0 0 1.1 1.1 0 0 0 0 

0 0 0 0 0 1.1 2.1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

 

           
 

 

Figure 1. CSGM2 in Compression: Word Net Building and Encoding. (Step1-
16) 

 

Figure 2. Graph Generated using MATLAB for the Sentence “Democracy 
Means a Government of the People, by the People, for the People.” from the 

Sparse Matrix Obtained, in Accordance with CSGM2 Model 

Hence the CSGM2 has reduced the sentence “Democracy means a government of the 

people, by the people, for the people.” to “Democracy means a government of the people, 

by for.”. The technique has reduced 19 characters in one sentence only, at the cost of the 

sparse matrix, which is approximately 19*8=152 bits (ignoring the space occupied by the 
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sparse matrix). According to Heaps law the vocabulary grows sublinearly with the 

collection size. It can be formulated as ( )RV n Kn  where VR is the number of distinct 

words in an instance text of size n. K and β are free parameters determined empirically. 

With English text corpora, typically the minimum value of K is 10, and minimum of β is 

0.4. Considering the minimum values, if we think about a text file having 300 words then 

the number of distinct words will be approximately 98 which is about 300% less than the 

original file. This precision can only be achieved with the help of graph representation at 

the cost of the space required to store the sparse matrix. This also implies that for small 

size texts the memory occupied by the graph representation may larger or equal to the text 

representation. But as the text file size increases the effectiveness of CSGM2 also 

increases.  
 

6. Conclusion 

This paper proposes and confirms a preprocessing step for data compression that can 

be used to optimize all the existing data compression algorithms. The above graph based 

approach describes a specific preprocessing technique for natural language text 

compression. The text transformation (word net), which CSGM2 approaches, obtains an 

impressive representation that can be built in an effective way through a word-based 

directed graph. The resultant model gives a 2
nd

 order text representation based on the 

information provided by the edges in the word net. These edges are dynamically handled 

on some heuristics. Thus, each word transition in the original text is encoded with the 

help of the local identifier of each edge in its respective source vertex. 

In this paper it was desired to provide a new strategy for data compression. As the 

world is moving towards the goal of providing highest service at a lowest expense, this 

strategy will make any text segment able to use lesser memory space without decreasing 

its features rather will increase its usability and portability. It will decrease the memory 

area occupied by text segment in any type of file and also speed up its transfer time 

through the internet. 
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