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Abstract 

As cloud computing has emerged as a promising technique in mainstream application 

domains, significant attention has been paid to distributed video encoding, in which 

resource-intensive encoding tasks are distributed across unlimited computational 

resources available in the cloud environment. For distributed video encoding, the input 

video must be partitioned into several segments. This approach decreases the total 

encoding time but may suffer from quality degradation associated with a lack of 

information, such as the coding complexity of the previous video segment. In this paper, 

two well-known video partitioning methods are explored from different performance 

perspectives, including encoding time, bitrates, and peak signal-to-noise ratio (PSNR).  
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1. Introduction 

The H.264/Moving Picture Experts Group (MPEG)-4 Advanced Video Coding (AVC) 

standard [1] is one of most widely used video coding standards for many applications. 

However, with the recent market trend toward large-sized display devices for Ultra High-

Definition (UHD) video services, the increasing demands for higher-quality, higher-

resolution digital video necessitates a new, high-performance with superior coding 

efficiency to that of H.264/MPEG-4 AVC. To meet such needs, the ITU-T Video Coding 

Experts Group (VCEG) and ISO/IEC MPEG have established the Joint Collaboration 

Team on Video Coding (JCT-VC) and developed the High Efficiency Video Coding 

(HEVC) standard [2]. On April, 2013, HEVC was approved as an ITU-T standard and is 

now available as a free download from the official ITU-T website. 

The main advantage of HEVC is its coding efficiency. Several evaluations showed that 

HEVC requires only half the bitrate of H.264/MPEG-4 AVC at the same level of video 

quality [3][4]. As such, it can support 8K UHD and resolutions up to 8,192×4,312 with 

moderate bitrates. As with H.264/MPEG-4 AVC, HEVC also uses the block-based hybrid 

coding architecture that incorporates a motion estimation and compensation stage, a 

transform stage, and an entropy encoder. However, the use in HEVC of various block 

structures with flexible subpartitioning mechanism, such as Coding Unit (CU), Prediction 

Unit (PU), and Transform Unit (TU), improves coding efficiency, yet introduces 

significantly increased computational complexity and thus longer encoding times. For 

instance, according to [4], in many test cases, HEVC can achieve the same visual quality 

as H.264/MPEG-4 AVC at half the bitrate, but at the cost of 2–10 times increase in 

computational complexity. Similar experimental results [5] showed that up to 12 hours 

were needed to encode a single 10-second test case with the HEVC software codec known 

as HEVC Test Model (HM 8) [6].  

                                                           

 This paper is a revised and expanded version of a paper entitled “Cloud-based Distributed HEVC 

Encoding” presented at the 7th International Conference on Signal Processing, Image Processing 

and Pattern Recognition (SIP 2014) on Dec. 20-23, 2014 at Hainan China.  
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Figure 1. The Architecture of the Proposed MapReduce-based Distributed 
HEVC Encoder 

Many studies have developed algorithms and methods to reduce HEVC encoding time. 

One end of the spectrum for such efforts is to optimize the internal processes of HEVC. 

For example, [7] introduced a fast inter prediction mode decision method, whereas [8] 

focused on rapid CU selection for inter prediction since in HEVC inter prediction 

involves the greatest computational complexity. The other end of the spectrum involves 

parallel and distributed processing of HEVC. Although HEVC provides parallel 

processing tools such as tiles and wavefront parallel processing (WPP), these are still 

limited in reducing encoding time. Recently, as cloud computing has emerged as a 

promising technique for mainstream applications, significant attention has been paid to 

distributed video encoding, in which encoding tasks that involve high computational 

complexity are distributed across the unlimited resources available in the cloud 

computing environment. This approach more effectively reduces encoding time than does 

the use of existing standalone HEVC encoders. 

For distributed encoding, the input video is partitioned into individual segments that 

are then encoded independently via distributed computational resources. Therefore, the 

chosen method of video partitioning plays an important role in determining overall 

encoding performance such as encoding time, bitrate, and peak signal-noise ratio (PSNR). 

In this paper, we conduct empirical comparison of the uniform partitioning and the Group 

of Picture (GOP)-based partitioning methods, which are frequently used in many 

distributed video coding systems, for different type of videos. In the former method, the 

input video is uniformly partitioned into the number of nodes available to perform 

encoding process, whereas in the latter method the input video is partitioned on the basis 

of the GOP size which is provided as an encoding parameter. The comparison identifies 

important factors that must be taken into account when developing efficient video 

partitioning methods. 
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The remainder of this paper is organized as follows: Section 2 summarizes related 

studies on distributed video encoding. Section 3 provides detailed information on two 

video partitioning methods and Section 4 describes the architecture of the developed 

system for distributed HEVC encoding. Section 5 presents detailed empirical analysis of 

the video partitioning methods. Finally, Section 6 provides a summary and suggestions 

for future work. 

 

2. Related Work 

Parallel distributed video processing is not a new concept and there have been many 

attempts to apply this idea to multi-core processors or cluster computers. Recently, due to 

many advantages in term of costs as well as performance, cloud computing has emerged 

as a potential platform for distributed video processing. In particular, several studies [9]-

[13] applied the MapReduce paradigm to distributed video encoding and transcoding. 

These consist of a Map stage, in which the input video is divided into small segments, and 

individual nodes run tasks to encode or transcode the assigned segments in parallel; and a 

Reduce stage, where processed segments are collected and combined into the final output 

video. 

In [11], it is assumed that individual computing nodes used for encoding video 

segments have heterogeneous computing capabilities, and a scheduling algorithm is 

proposed to allocate complex segments to powerful nodes. This approach reduces 

potential capacity wastage associated with task-launching overhead. Another study 

explored the merits of implementing cloud computing concepts in the transcoding stage of 

delivering video content, by comparing the performance of three use cases with differing 

roles of the cloud storage [12]. In addition, the impact of video partitioning methods was 

studied from the point of content availability. Experimental results showed that 

transcoding delay was low when the video content was split into 10-second segments. 

[14] and [15] focused on the length of segments in optimizing the transcoding speed: 

[14] proposed a multi-resolution load balancing algorithm for distributed transcoding. In 

that proposal, the foreside and the tail of the source media file are split into segments of 

different sizes, so that heavily loaded computing nodes are more likely to receive fewer 

finer video segments for processing than the lightly loaded nodes at the back of 

transcoding phase. In [15], segment length is determined so that the total transcoding time 

is minimized and a performance model is developed for the optimum length of segments.  
 

3. MapReduce-based Distributed HEVC Encoder 

In order to analyze the impact of video partitioning methods, we developed a 

MapReduce-based distributed HEVC encoder. As shown in Figure 1, the workflow of the 

developed system consists of three stages. In the partitioning stage, the Video Partitioner 

partitions the uncompressed video file into several non-overlapping segments according 

to the given video partitioning algorithm and the encoding parameters provided by users. 

Note that instead of retrieving the uncompressed video file, dividing it into segments, and 

then sending individual segments to corresponding Map tasks, the Video Partitioner 

simply identifies the start and end points of each segment and sends those sets of 

information to the Map tasks, thus reducing network transmission overheads.  

In the encoding stage, individual Map tasks perform HEVC encoding for the received 

video segments. The present study used the HEVC test model (HM 14.0) [16] for HEVC 

encoding. Individual segments have different complexity and therefore require differing 

encoding time, despite having the same duration or number of frames. This introduces 

unbalanced computational loads on different nodes and eventually affects the availability 

time of encoded segments in the Reducer task. Therefore, it is necessary for the encoding 

stage to implement an efficient segment allocation algorithm in consideration of segment 

complexity and resource status. Given that our implementation is based on the 
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MapReduce framework, we used its default scheduling algorithm in which each Map task 

receives video segments on standby once the current encoding task is complete. One of 

our future research objectives is to optimize the partitioning and encoding stages in order 

to produce high-quality results within an acceptable encoding time. 

Finally, in the combining stage, the Reduce task receives HEVC-encoded segments 

from Map tasks and merges them into a final HEVC-encoded video file, which is stored 

within the cloud. 
 

4. Video Partitioning Methods 

As with other coding standards such as H.264/MPEG-4 AVC, the HEVC-encoded 

video consists of multiple coded video sequences, each of which in turn comprises a 

sequence header and one or more GOPs. The GOP starts with an I-frame followed by a 

number of P- and B-frames. There are two types of GOP: Closed-GOP and Open GOP. In 

Closed-GOP, all reference frames belong to the same GOP, and can thus be decoded 

independently without referencing any frames of other GOPs. In contrast, as shown in 

Figure 2(a), Open-GOP can use reference frames from other GOPs. In general, Open-

GOP is more efficient in coding than Closed-GOP because it reduces the temporal 

redundancy between consecutive frames around GOP boundaries [15], with the cost of 

increased delay and larger frame-storage requirements.  

It is obvious that encoding many video segments in parallel can significantly reduce 

total encoding time. The downside is that parallel encoding suffers from quality 

discontinuity and degradation, due to lack of information about the coding complexity of 

previous video segments. In the following section, we describe two well-known video 

partitioning methods—uniform partitioning and GOP-based partitioning—and compare 

the coding structures of encoded video generated from these methods to those generated 

without partitioning. 

 

 

Fig. 2. Internal coding structures of encoded videos 

4.1. Uniform Partitioning 

Uniform-partitioning is a basic partitioning method used in many of existing 

distributed encoding systems. In this method, the input video is partitioned into N video 

segments of the same size (M/N), where M and N represent the total number of frames to 

encode and the total number of nodes to participate in encoding, respectively. Therefore, 

individual segments can have frames belonging to different GOPs. For instance, 

according to Figure 2(b), the first segment consists of frames of “GOP 1” and some 
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frames of “GOP 2”. In this case, those frames from “GOP 2” cannot reference frames at 

the tail area of “GOP 2”, thus leading to inefficient inter-coding. In addition, as each node 

encodes the received segment independently, the first frame of the encoded video must be 

an I-frame. Therefore, the number of I-frames may increase in accordance with the 

number of segments formed. Reducing the number of I-frames is crucial in reducing the 

bitrate of the encoded video, because I-frames have considerably higher bitrates than 

those of P- or B-frames. 
 

4.2. GOP-based Partitioning 

Figure 2(c) shows an example coding structure of a video encoded using GOP-based 

partitioning. In this method, the unit of distribution is the GOP; therefore, the size of the 

segment is equal to the GOP size and there are M/G segments in total, where G denotes 

the GOP size. Similarly to the uniform partitioning method, GOP-based partitioning also 

suffers from limited use of reference pictures between GOPs. For instance, “GOP 1” 

cannot reference the I-frame of “GOP 2” (which could be used previously as shown in 

Figure 2(a)) because of partitioning. Unlike uniform partitioning, however, the GOP-

based method does not allow the GOP itself to be partitioned, so there is no additional 

increase in the number of I-frames. Note that the problem of limited use of reference 

pictures occurs only in the Open-GOP structure, as the Close-GOP is an independent unit 

that can be coded without having any frames of other GOPs. In this paper, we assume that 

all video streams have Open-GOP, because it provides higher coding efficiency. 

Depending on the duration of the video, the number of segments to be encoded may 

exceed the number of encoding nodes. In such cases, this method can take more encoding 

time than the uniform partitioning method, due to increased overhead of Map task 

creation and data transmission. 

 

5. Empirical Analysis of Video Partitioning Methods 

We implemented two video partitioning methods in the Video Partitioner of the 

proposed system and compared their performances using different types of videos. Table 

1 describes the testbed on which the proposed system was deployed, and the input videos 

used in the experiments. 

Table 1.  Information on the Testbed and Input Videos 

Category Description 

Testbed 

Hadoop Version: 1.0.3 

CPU: Intel Xeon E3-1220 V2 

RAM: 8GB 

Nodes: 20 

Input Video 

Resolution: 4K (3,840×2,160) 

Total Frames: 1,400 

Video Format: YUV420p 

Content Type: Type I, Type 2 

HEVC Encoding 

Parameters 

Mode: Random Access (CLA) 

FPS: 60 

GOP Size: 32 

 

Note that the Intel Xeon E3-1220 V2 CPU consists of four cores and can run four tasks 

in parallel without significant performance degradation. However, we limited the system 

to two Map tasks per node for minimizing task interference and conducting controlled 

experiments. Therefore, the maximum number of allowable Map tasks is 38. We 

differentiated input videos based on their contents. Type I videos represent scenes with 
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many changes in motion between frames (e.g., a soccer game), whereas Type II videos 

have comparatively few movements and, thus, consist of similar frames (e.g., a nature 

documentary). As mentioned in Section 3, Each Map task invokes the HM Test model for 

HEVC encoding. For Open-GOP structure, we used the CRA mode of the HM Test 

model. 

(a) Type I                                                           (b) Type II 

Figure 3. Changes in Encoding Time based on Video Partitioning Methods 

Figure 3 shows the encoding times for two different types of videos according to the 

uniform and GOP-based partitioning methods. In general, encoding Type II video require 

less time than for Type I, which has high dissimilarity between successive frames and 

therefore requires more computational cycles for inter coding. In addition, the uniform 

partitioning outperforms the GOP-based method in terms of the encoding time. In 

uniform partitioning, the number of segments formed is the same as the number of nodes 

performing HEVC encoding. Therefore, all segments are processed in parallel. In 

contrast, the GOP-based method forms 44 segments, which exceeds the maximum 

allowable nodes. Therefore, only 38 segments can be processed in parallel, and the 

remaining 6 segments must stand by for processing as soon as nodes finish encoding their 

current segments. However, as the number of nodes increases, encoding times of two 

methods tend to converge as a result of network I/O rates. 

 

 

Figure 4. Changes in Bitrate based on Video Partitioning Methods 

Figure 4 shows changes in bitrate. In the GOP-based method, the structure and number 

of segments remain the same regardless of the number of computational nodes, and only 

the number of segments being processed simultaneously can differ. As a result, the 

number of nodes does not affect the bitrate, except for the case with a single node. In this 

method, the number of I-frames is the same in all cases. However, when segments are 
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processed in a distributed manner, they cannot reference frames of other GOPs, thus 

leading to increased bitrates compared to the single node case. 

 

 

Figure 5. The Effect of the Number of I-frames on Bitrate 

For uniform video partitioning, due to the increased number of I-frames and inability to 

reference frames belonging to other GOPs, bitrates tend to increase as the number of 

computational node increases. Interestingly, however, in some cases, the total bitrate 

decreased although the number of I-frames increased. For instance, in Figure 5, when 

encoding Type I video using 14 or 20 nodes, the number of I-frames generated were 56 

and 60, giving respective bitrates of 15.4 MB and 15.24 MB. This result suggests that, 

depending on how the input video is partitioned, it is possible to achieve zero 

performance loss in terms of both encoding time and bitrate. A similar observation was 

made for the Type II video.  

  

 

Figure 6. Changes in PSNR based on video Partitioning Methods 

Finally, Figure 6 shows changes in PSNR. PSNRs for the Type II video were slightly 

higher than those for Type I. This is because the content of Type II video is relatively 

static and, as a result, its frames can be well coded. Overall, although there were some 

changes in PSNR, they were marginal. In summary, the experimental results show that 

video partitioning methods can affect various performance parameters of video encoding. 

In particular, the uniform video partitioning method exhibits some tendency in 

performance wise, whereas the bitrate generally (but not always) increases with the 

number of computational nodes. Therefore, one of our future research objectives is to 
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develop video partitioning algorithms to optimize the number of nodes necessary to 

achieve rapid HEVC encoding without significant increases in the bitrate. 

   

6. Conclusion and Future Work 

As users demand increasingly higher-quality, higher-resolution digital video content 

such as UHD, the computational complexity of associated video coding technologies also 

increases. Dedicated hardware solutions for video encoding can provide the best solutions 

but they involve higher costs and are difficult to extend. As a result, from the performance 

and cost perspectives, distributed video encoding based on cloud computing has gained 

significant attention in recent years. Distributed video encoding requires partitioning and 

allocating chunks of the input video to appropriate computational nodes for subsequent 

encoding. Therefore, the present study explored the effects of the basic video partitioning 

methods on various performance parameters, such as encoding time, bitrate, and PSNR.  

The experimental results showed that cloud-based distributed encoding reduces the 

total encoding time significantly for HEVC, which was previously shown to involve 2–10 

times greater computational complexity. In terms of bitrate, a greater number of segments 

generally results in higher bitrate of the encoded video, due to increased I-frames and/or 

limited use of reference frames, especially for Open-GOP structures. Interestingly, 

however, for uniform partitioning, a scenario with fewer segments does not always 

outperform one with more segments in terms of bitrate. This finding suggests that, 

depending on the approach to video partitioning, fast HEVC encoding can be achieved 

with higher number of I-frames yet no corresponding increases in bitrates. Our future 

research will also focus on developing various video partitioning algorithms, considering 

both encoding time and bitrate. 
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