
International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015), pp.413-428

http://dx.doi.org/10.14257/ijmue.2015.10.4.39

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2015 SERSC

An Integrated Approach of Real-time Hand Gesture Recognition

Based on Feature Points

Yingying She, Yunzhe Jia, Ting Gu, Qun He and Qingqiang Wu
*

Software School, Xiamen University, Xiamen, China
*
Corresponding author: wuqq@xmu.edu.cn

Abstract

Hand Gesture recognition systems enable people to interact with digital systems

naturally. Due to the spread of body motion capture device, depth information is

available for getting more delicate and effective gesture recognition results. However,

due to the limitation of devices such as Microsoft Kinect, it is still very difficult to obtain

hand gesture information in rela-time. This paper proposes an integrated approach of

real-time hand gesture recognition based on feature points. It explains our solutions for

hand segmentation and feature points abstraction based on real-time motion captured

images. Having been tested with a series of applications, our method is proved to be

robust and effective, and suitable for further extension in real-time hand gesture

recognition systems.

Keywords: HCI, Hand gesture recognition, Feature points

1. Introduction

Hand gesture recognition is an important topic in HCI (Human Computer Interaction).

Since the hand-based interaction is the natural way of human machine interactions, it has

a very wide range of application scenarios. The traditional approach of processing hand

gesture interaction is mainly based on RGB optical images. However, the limitation of

lacking depth information reduces the precision of gesture recognition. With the

popularity of motion capture devices such as the Microsoft Kinect, the cost of depth

information capturing has been greatly reduced. Although Microsoft provides the library

called Kinect SDK to support application development using the Kinect, it treats the

whole hand as one single point. In this paper, we present our study on the process of hand

gesture recognition using Microsoft Kinect. This approach combines skeletal-based and

morphological-based gesture recognition methodologies, abstracts hand regions from

captured images, and positions feature points in order to support the tracking and

recognition of hands in real-time.

2. Related Work

There are many approaches associated with the accuracy of hand gesture recognition.

Zhou Ren [1] focused on building a robust part-based hand gesture recognition system

using the Kinect sensor. In that system, Finger-Earth Mover's Distance (FEMD) was used

to measure the dissimilarity between hand shapes in order to abstract the hand shape.

HiaathamHasan [2] explored a multi-layer neural network-based approach to recognize

the hand gestures. Javier Molina [3] used static and dynamic models to get a real-time

user independent hand gesture. Radhikacentre [4] presented a computer vision method to

recognize the hand gesture from the image captured by a webcam. Wang C [14] presented

a hand gesture recognition algorithm by using the depth and skeleton from Kinect.

http://dx.doi.org/10.14257/ijmue.2015.10.4.21

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

414 Copyright ⓒ 2015 SERSC

Since the insufficient hands motion capture data is delivered by the Microsoft

KinectSDK, two major issues are the keys to success in hand gesture recognition: One is

the hand region segmentation, and another is hand feature points positioning.

In the processing of hand region segmentation, most techniques are relied on color

spaces to identify hands. Dan Xu [5] proposed a method which can locate hands

simultaneously in real-time by using skin-color detection and K-means in conjunction

with stereoscopic depth information, and using a YCbCr color space filter to locate hand

regions. However, this method has usage limitations due to the premise of this method,

the entire human body should be captured and the whole skeleton should be tracked at the

same time. The histogram color-based image threshold can be used to detect skin on the

human body, and use the GMM model to segment human hand regions [6]. Zhong Yang

et al introduced the HSV color space skin filter [8]. Antonis A. Argyro et al. [9] used a

Bayesian classifier which is boot strapped with a small set of training data to detect skin-

colored objects [10-11]. No matter what color spaces are used, the color-based methods

are sensitive to noises. In addition, the morphological filtering technique can be used to

effectively remove background and object noise from binary images [7]. In this paper, we

improve the techniques of eliminating noise interference by combining color and depth

information in the hand segmentation process.

Hand feature points provide the basic hand gesture tracking and recognition

information. In terms of positioning feature points, traditional approaches mainly focus on

looking for the center of a maximum inscribed circle [12]. Jagdish L Raheja et al. located

the palm center by using distance transformation. However, the result of this method is

not stable as we illustrate in the experimental result (section 4.2). After analyzing images

captured by Kinect, we extend the idea presented [11] by positioning feature points based

on morphological operations. The Graham Scan is used in [10] to find the convex hull of

a hand including the fingertips, but this process is not always precise due to the capture

device factors and dynamic hand movements. Raheja, J. L. et al. assumes that the

fingertip is the point with minimum depth in each finger point cluster [13]. However, the

limitation of this method is it cannot precisely conduct fingertips when they are blending.

In this paper, we propose a depth image based algorithm to solve the recognition

problems on blending fingers. In the experimental section (section 4.3), we provide the

comparison of a traditional binary image based algorithm and our algorithm.

3. Methodology

Hand region segmentation and feature point extraction plays an important role in the

hand gesture recognition process. As seen in figure 1, there are six steps in the hand

gesture detection pipeline. These 6 steps have been embed into a hand gesture recognition

system. In this paper, we explain a detailed implementation of step 1 to 5 in the following

sections.

3.1. Background Separation, Hand Region Extraction and Blob Clustering

The purpose of background separation is to extract the foreground target region and

eliminate background interference from the original images. The background interference

refers to noise points that are not in the hand region. In our project, in order to segment

hand regions, we assume that hands are the closet objects to the Kinect. Based on the

OTSU threshold method, we extract the targeted hand regions from depth images [15].

However, since the depth value of hands and nearby obstacles is similar, the OTSU

method classifies

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

Copyright ⓒ 2015 SERSC 415

Figure 1. The Procedure of Hand Gesture Detection

these noises as the foreground targeted hand region, there are further actions to be made

on skin-color filtering to separate hand regions and other obstacle noises. In addition, we

fill in holes in hand regions based on the connected domain partition in the hands region.

After hand region extraction, we get the region for all hands. We have to separate each

hand region in order to have accurate hand gesture recognition. We propose a clustering

algorithm based on DBSCAN [16] (Density-Based Spatial Clustering of Applications

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

416 Copyright ⓒ 2015 SERSC

with Noise) to do clustering. A connected domain is an independent hand region, and it is

an independent cluster. We use depth value and the hand points in hands region to obtain

clusters.

There are holes in the hand region. In the depth images that we get from Kinect,

points in these holes have a similar depth as points in the hand region. A connected

domain is an independent hand region, and it is an independent cluster. In the hand

region M, it contains points and realted depth value. In the hand region clustering

algorithm, for a point p in M, q is the neighbor point of p, if the difference in depth

value of p and q is less than ε, then we consider there is an edge between p and q.

If in the depth image, there exists a path from p to q, then we consider p_depth and

q_depth to belong to the same connected domain.

Based on the scattered feature of skin-color obstacles, we consider the ratio of

pixel numbers in an obstacle connected domain and total pixel numbers in

connected domains are related less. In order to eliminate obstacles skin-color and

noise, we set the ratio of skin-color pixels and the total number of the pixels

threshold toη, the minimum point number as MinPts. For a connected domain

Connected_i, if the ratio of Connected_i.skinPts and Connected_i.size is large than

η, and Connected_i.size is large than MinPt, then we consider the connected

domain is a hand region.

Algorithm: Hand Region Clustering

Input: hand points set M, depth map Depth, threshold η, ε

Output: clusters C, each cluster contains points belonging to one hand with depth value

i = 1;

mark all points in Depth as unvisited;

mark skin-color points in M as unvisited;

do

 randomly pick one unvisited point 𝑝′ in M;

 mark 𝑝′ as visited;

 create new cluster 𝑛𝑒𝑤𝐶𝑖;

find p, which is corresponding point of 𝑝′in Depth;

 add p to 𝑛𝑒𝑤𝐶𝑖;

 count = 1;

Stack.push(p);

while Stack is not empty

s = Stack.pop();

 for each point t in 8- neighborhood of s in Depth

 if t is unvisited && abs(t.depth-s.depth)<ε

 mark t as visited in Depth;

 add t to 𝑛𝑒𝑤𝐶𝑖;

Stack.push(𝑡);

 find 𝑡′, which is corresponding point of t in M;

 if t belongs to skin-color points

 mark t as visited in M

 count++;

 end if

 end if

 end for

end while

if 𝑛𝑒𝑤𝐶𝑖.size>MinPts && (count ⁄ 𝑛𝑒𝑤𝐶𝑖.size)>η

 add 𝑛𝑒𝑤𝐶𝑖 to C;

else

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

Copyright ⓒ 2015 SERSC 417

 mark points in 𝑛𝑒𝑤𝐶𝑖 as noise；

end if

i = i + 1

until no unvisited skin point in M;

return C;

3.2. Contour Detection

Contour is an important element to express characteristics of gestures. The contour

includes the external contour of the whole hand region and the internal contour in hand

region. We consider the initial gesture as the open hand status. During the gesture

tracking, fingers might bend sometimes. In these cases, we have to use the internal

contour to calculate the degree of bending.

After Blob clustering, for every independent hand region, we have to do contour

detection. In general, the contour of a hand region that we get from the previous step is

zigzag. We have to do an anti-aliased process in order to smooth the contour. The

traditional linear filtering algorithm is simple and easy to implement, and the result is

good. However, due to the usage of a neighborhood domain average algorithm, it might

have the result of edge blur, and affect the subsequent processes. Also, a low-pass filter

can effectively remove the high frequency noise in the image. It is very good at removing

isolated noises. However, it also removes the high frequency part of the target, and

reduces the image clarity. In our project, we use the median filtering algorithm to remove

the isolated noise in the image, while maintaining the target edge information.

In order to obtain the complete hand region contour while a finger and palm are

overlapping, such as bending fingers, the calculation should also count in the depth value.

We set a threshold μ, when the difference of two pixels depth is large than μ, we consider

these two points depth mutation points. In order to identify depth mutation points, we

define a threshold η. If in a point’s 8-neighborhood region, the number of depth mutation

points is larger than η, then this point is a depth mutation point.

If there is a point p with value 1 in the M, and q is a point in p’s 8-neighborhood

region, we have the following calculation,

f(p, q) = {
1 |𝑝. 𝑑𝑒𝑝𝑡 − 𝑞. 𝑑𝑒𝑝𝑡| ≫ 𝜇

0 |𝑝. 𝑑𝑒𝑝𝑡 − 𝑞. 𝑑𝑒𝑝𝑡| < 𝜇

count(p) = ∑ 𝑓(𝑝, 𝑞)

|𝑝−𝑞|≤1

Contour = {𝑝|count(p) ≥ η,M(p) = 1}

Here is the detail algorithm for finding the hand contour:

Algorithm: Finding the Hand Contour

Input: hand binary image M with depth value, threshold μ, η

Output: hand contour contour

set depth of all non-hand points in M to -1;

for each hand point p in M

count = 0;

for each point q in 8- neighborhood of p

 if abs(q.depth - p.depth) <μ

 count++;

end for

if count >η

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

418 Copyright ⓒ 2015 SERSC

add p to contour;

end for

3.3. Palm Center Positioning

For each hand, we have to find its palm center as one of the feature points. In our

project, the palm center positioning algorithm is based on morphology. We adopt the

morphology corrosion approach from [7], and use the morphological corrosion operater to

process the hand region. The idea is to remove fingers form the hand, and calculate the

palm centre based on the leaving pixels. The region of the corrosion operator in the hand

area is related to the total number of pixels in the hand. In this paper, we use the

rectangular corrosion operator to calculate the palm center. The edge of corrosion

operator is

a= √
M.size

ε
 . (ε = 40)

The idea is to use the operator a to process the hand region binary image M, and

obtain the corrosion result 𝑀1. Then, the center of 𝑀1 is the palm center.

3.4. Fingertip Positioning

3.4.1 Fingertip Candidate

Fingertips have the largest curvature in the finger. So, the way to locate the fingertip is

by looking for the point with the largest curvature in the finger. Since it is unable to get

the hand contour curve equation, We couldn't get accurate curvature calculations for a

point in a finger. We use the geometric feature of points in the finger to get the fingertip

candidates.

 First, we set a threshold𝜃, a point pt and vectors ptpt−m⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ and ptpt+m⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ in the

contour. If the angle 𝛾 between these vectors is less than𝜃, then the pointpt is the

candidate of a fingertip. Usually, the candidate point set is an arc in the contour.

Candidate = {pt|pt ∈ Contour,< ptpt−m⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 、ptpt+m⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ >< 𝜃}

 If we take two pints ps、pt（s > t）from candidates,s − t > 𝜏and

{ps+1, ps+2, … , pt−1} ∩ Candidate = ∅, then ps and ptbelong to different arcs.

The value of τ is in proportion to the total pixel number of the contour,

τ =
Contour.size

ε
（ε = 40）.

 After getting the candidate set, we have to do clustering, and obtain independent arc

segments. After clustering, if independent fingertip arc Ci , and pi,j which is the jth

point in the arc Ci, then candidate fingertips are

Candidate = C1 ∪ C2 ∪ …∪ Cn. In Figure 2, candidate sets are denoted in yellow arcs.

Figure 2. Candidate set

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

Copyright ⓒ 2015 SERSC 419

The arc Ci（i=1,2，…，n）is a symmetrical arc in genreal, and the fingertip point is

the mid-point in the arc. However, since the resolution and dynamic interaction, arcs in

captured images are not always symmetrical. In order to get the accurate fingertip

coordinate values, we calculate the angle between mid-point and its neighbor points

which have a distance m within the arc. In total, there are 2m+1 neighbor points

corresponding to 2m+1 angles. We choose the point with the smallest angle as the

fingertip candidate.

Di = {pi,j|pi,j ∈ Ci,
Ci. size

2
−m < 𝑗 <

Ci. size

2
+ m}

FingerCandidatei = argmin
pt∈Di

< ptpt−m⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 、ptpt+m⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ >

Here is the algorithm to find fingertip candidates fingerCandidate:

Algorithm: Finding Fingertip Candidate

Input: hand contour contour, threshold ,

Output: fingertip candidates fingerCandidate

1. sort all points in contour;

2. for i th point in contour

 calculate angle γ between𝑝𝑖𝑝𝑖−𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗、𝑝𝑖𝑝𝑖+𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗; (m=10 in our experiment)

 if γ < 𝜃

 add 𝑝𝑖 to the end of candidate

 end for

3. cluster candidate into C1 ∪ C2 ∪ …∪ Cnby distance between points in candidate;

4. add the point with lowest corresponding in each cluster C1, C2, … , Cn to

fingerCandidate;

5. return fingerCandidate;

3.4.2 Filtering Fingertips

The fingertip candidates include fingertip and finger valleys. We have to filter the

finger valleys point in order to get the fingertip points. When a person opens five fingers,

the distance between the fingertips and the palm center is longer than the distance from

the finger valley to the palm center. So, we design the fingertip algorithm as seen below:

Algorithm: Locating Fingertips and Finger Valleys

Input: finger candidates fingerCandidate, palm centrecenter

Output: fingertips points fingertips, finger valleys points fingervalleys

1. calculate distances between center and each point in fingerCandidate, storing in Dis;

2. calculate mean, which is mean of Dis;

3. for each 𝑝𝑖 in fingerCandidate

 if Dis[i] < Mean

 add 𝑝𝑖 to fingervalleys;

 else

 add 𝑝𝑖 to fingertips;

4. return fingertips and fingervalleys;

3.4.3. Labeling Fingertips

In order to label fingertips, we assume that all five fingertips have been detected. So,

the fingertips size is 5. The fingertips are marked as thumb fingertip (T), index fingertip

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

420 Copyright ⓒ 2015 SERSC

(I), middle fingertip (M), ring fingertip (R) and little fingertip (L). When five fingers are

open, there are vectors CT⃗⃗⃗⃗ ⃗，CI⃗⃗ ⃗，CM⃗⃗⃗⃗⃗⃗ ，CR⃗⃗⃗⃗ ⃗，CL ⃗⃗ ⃗⃗ ⃗ from the palm centre to the fingertips.

𝛼<CT⃗⃗⃗⃗ ⃗,CT⃗⃗⃗⃗ ⃗> < 𝛼<CT⃗⃗⃗⃗ ⃗,CI⃗⃗⃗⃗ > < 𝛼<CT⃗⃗⃗⃗ ⃗,CM⃗⃗ ⃗⃗ ⃗⃗ > < 𝛼<CT⃗⃗⃗⃗ ⃗,CR⃗⃗ ⃗⃗ ⃗> < 𝛼<CT⃗⃗⃗⃗ ⃗,CL⃗⃗⃗⃗ ⃗>

Where 𝛼<A⃗⃗ ,B⃗⃗ > denotes the intersection angle of A⃗⃗ , B ⃗⃗ ⃗The angle between fingertips

CT⃗⃗⃗⃗ ⃗ and CM⃗⃗⃗⃗⃗⃗ , as shown in Figure 3.

The distance between palm center and thumb fingertip and the distance between palm

center and little fingertip are smaller than the distances between palm center and the other

three fingertips. Therefore, we can get T and L first. Then distinguish them by the

assumption that the thumb fingertip is thicker than the little fingertip.

(a) Fingertips (b) 𝐂𝐓⃗⃗⃗⃗ ⃗𝐚𝐧𝐝 𝐂𝐌⃗⃗⃗⃗ ⃗⃗

Figure 3. The Angle of 𝐂𝐓⃗⃗⃗⃗ ⃗𝐚𝐧𝐝 𝐂𝐌⃗⃗⃗⃗ ⃗⃗

The algorithm of labeling fingertips is described as below:

Algorithm: Labelling Fingertips

Input: fingertips points fingertips

Output: labelled fingertips (from thumb to little finger) fingertips

1. calculate distances between center and each point in fingertips, select 𝑓1 and 𝑓2 with

lowest and second lowest distance;

2. calculate α、β, former is angle between 𝑓1 and m-th ahead and after points in

contour, using same method in finding fingertip candidate(3.4.1), β is for 𝑓2 as well;

3. if α > 𝛽, label 𝑓1 as T (thumb), otherwise label 𝑓2 as T (thumb);

4. calculate < CenterT⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 、 CenterFingertipsi⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ > , where Fingertip si are other four

fingertips, sorting them in ascend order, then label the fingertips as I (index finger), M

(middle finger), R (ring finger), L(little finger) in that order;

5. return labelled fingertips;

3.4.4. Locating Finger Root Joints

The finger root joints is defined as the intersection of fingers middle line and the palm,

as yellow points in figure 4. The distance between joint and palm center is roughly equal

to the distance between the finger valley and the palm center. Define Ax + B = Y is when

one of the fingers middle line, d is the mean of distances from palm center to five finger

valleys. Then the corresponding root Jointsi(xi, yi)holds.

Jointsi(xi, yi) = {
Aix + Bi = 0

(x − center. x)2 + (y − center. y)2 = d2
 i = 1,2,3,4,5

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

Copyright ⓒ 2015 SERSC 421

Figure 4. Finger Root Joints

Suppose pi is a fingertip on the sorted contour, then we choose another n (n is a

threshold) pair of points(pi−1, pi+1),(pi−2, pi+2),…,(pi−n, pi+n), Then calculate the

middle points of all the pairs, mid1(t1, s1),mid2(t2, s2),...,midn(tn, sn)，the middle line

of the finger linei is calculated by

 linei = Aix + Bi i = 1,2,3,4,5

{

 t̅ =

1

n
∑tj

n

j=1

s̅ =
1

n
∑sj

n

j=1

Ai=
∑ tjsj − n ∙
n
j=1 t̅s̅

∑ tj
2 − n ∙n

j=1 (t̅)2

Bi = s̅ − Ait̅

 i = 1,2,3,4,5

The whole algorithm is described as below:

Algorithm: Locating Finger joints

Input: fingertips points fingertips, palm centre center, sorted contour contour, finger

valleys fingervalleys

Output: finger joints joints

1.calculate distances between center and each point in fingervalleys, then calculate

mean

of these distances;

2. for each 𝑓𝑖 in fingertips

 get points 𝑚𝑖𝑑1, 𝑚𝑖𝑑2, … ,𝑚𝑖𝑑𝑛 (n=30 in out experiment), where 𝑚𝑖𝑑𝑗 is

middle

point of j-th ahead and after points of 𝑓𝑖 in contour;

calculate 𝑙𝑖𝑛𝑒𝑖 using Min Square with middle points;

 calculate intersection of 𝑙𝑖𝑛𝑒𝑖 and (x − center. x)2 + (y − center. y)2 = mean2

,

then add it to joints;

 end for

3. return joints;

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

422 Copyright ⓒ 2015 SERSC

4. Experiments

In these experiment, we test our algorithms in real-time by using Microsoft Kinect

captured videos. Figure 5,6,7,8 are captured images from these videos.

4.1. Compare of Depth Image based and Binary Image based Contour Algorithm

We implement the depth image based algorithm and compare the results with the

binary image based algorithm introduce in [17]. In the depth image based algorithm, we

set parameter μ = 8mm，η = 2. The indicated gestures one, two, three, four and five

are selected for the purpose of analysis.

Figure 6 shows the results of the proposed contour algorithm and binary image based

contour algorithm. It can be told that the contour generated by the binary image based

algorithm is nearly a smooth curve, which is ideal for sorting. Our proposed algorithms

can detect the proper contour even when the fingers are bending, but the binary image

based algorithm cannot. According to the performance, we choose the binary image based

imaging for initial gesture detection and depth image based for further gesture tracking.

4.2. Comparison of Distance Transform based and Morphological Operation based

Palm Center Locating Algorithm

The input of the experiment is the contour (smooth curve) generated by a binary image

based contour algorithm. The distance transform based algorithm takes the point with

maximum distance value as the palm center, while the morphological based algorithm

erodes the finger part, then takes the center point of the left part as the palm center. The

indicating five gestures are selected to be captured for analysis. In the morphological

operation based algorithm, a (hand.size / 40) × (hand.size / 40) matrix is used as the

kernel to perform the operation.

With distance transformations, sometimes more than one point exists with the

maximum value. Then the consequent palm center would shock up and down when those

points are relatively far away from each other. Due to the deficiency of the hardware, the

palm center moves up and down when we hold fingers still. Such problems could be

avoided by using a morphological operation based algorithm introduced in section 3.3,

and the result of it is good, as shown in Figure 7. In the last column of Figure 7, red

point indicates the palm center found by distance transform based algorithm and

green points is the result of morphological operation based algorithm

（a）Positioning fingertips (b) Labelling fingertips

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

Copyright ⓒ 2015 SERSC 423

(c) Detecting joints
(d) Feature points in

original image

Figure 5. Result of Labeling Fingertips and Finger Root Joints

Captured image Binary Image basedAlgorithm Depth Image based Algorithm

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

424 Copyright ⓒ 2015 SERSC

Figure 6. Depth Image based Contour Algorithm vs. Binary Image based
Contour Algorithm

4.3. Experiment of Locating and Labeling Fingertips and Joints

Analyzing feature points of hand includes locating fingertips and joints, and labeling

them. In this test, we design two test cases. The first test is for locating, and the second

one is for labeling fingertips and joints.

In the first test, we detect fingertips in five different gestures; in the second test,

labeling is done based on the results of gesture with five fingers open. The parameters

m=20 and θ = 55°. Figure 8 denotes the process and results of locating fingertips. The

first column is the original captured images from Kinect; the second column is the

contour and palm center; the third column shows the fingertips candidate; the last column

is the results of fingertips.

The second test denotes the final result of this paper. Figure 5 shows the feature points

detected. Based on the result of detecting fingertips, the proposed algorithm finds thumb

(blue point in figure 5) first. Then other four fingertips - index finger (green), middle

finger (red), ring finger (cyan), little finger (pink) are labeled based on the relative

position with thumb. Finger root joints are found with the help of Min Square algorithm

in section 3.4.4.

Captured image Distance transform Image after erosion
Results of two

algorithms

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

Copyright ⓒ 2015 SERSC 425

Figure 7. Distance Transform based vs. Morphological Operation based
Palm Center Locating Algorithms

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

426 Copyright ⓒ 2015 SERSC

Figure 8. Results of Locating Fingertips

5. Conclusion

 Hand gesture recognition technology is an important aspect in NUI (Nature-User-

Interaction) study, and can be applied to games, vision enabled robots, from virtual reality

to smart home systems.. This paper explains the fundamental hand gesture recognition

solution based on feature points. Extends of this work is the study of movement

characteristics of hands, and the expression of hand gestures. This approach could be

applied in different VR (Virtual Reality) or AR (Augmented Reality) systems, immersive

games and other sign language related systems.

Acknowledgements

The authors would like to acknowledge the support of Education game platform based

on mobile cloud services (3502Z2014116, principal, technological innovation projects for

early-stage companies, Science and Technology Planning of Xiamen, 2014.6-2016.6).

References

[1] Z. Ren, J. Yuan and J. Meng, “Robust part-based hand gesture recognition using kinect sensor”, IEEE

Transactions on Multimedia, vol. 15, no. 5, (2013).

[2] H. Hasan and S. Abdul-Kareem, “Static hand gesture recognition using neural networks”, Artificial

Intelligence Review, vol. 41, no. 2, (2014).

[3] J. Molina, M. Escudero-Viñolo and A. Signoriello, “Real-time user independent hand gesture recognition

from time-of-flight camera video using static and dynamic models”, Machine vision and applications,

vol. 24, no. 1, (2013).

[4] R. Bhatt, N. Fernandes and A. Dhage, “Vision Based Hand Gesture Recognition for Human Computer

Interaction”, International Journal of Engineering Science and Innovative Technology, vol. 2, no. 3,

(2013).
[5] D. Xu, Y. L. Chen and X. Wu, “Integrated approach of skin-color detection and depth information for

hand and face localization”, Proceedings of IEEE International Conference on Robotics and

Biomimetics, (2011) December 7-11; Karon Beach, Phuket.

[6] Y. Ming, Q. Ruan, and A. G. Hauptmann, “Activity recognition from rgb-d camera with 3D local spatio-

temporal features”< Proceedings of IEEE International Conference on Multimedia and Expo, (2012) July

9-13; Melbourne, Australia.

[7] D. K. Ghosh and S. Ari, “A static hand gesture recognition algorithm using k-mean based radial basis

function neural network”. Proceedings of the 8th International Conference on Information,

Communications and Signal Processing, (2011) December 13-16; Singapore.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

Copyright ⓒ 2015 SERSC 427

[8] Z. Yang, Y. Li, W. Chen and Y. Zheng, “Dynamic hand gesture recognition using hidden Markov

models”, Proceedings of the 7th International Conference on Computer Science & Education, (2012)

July 14-17; Melbourne, Australia.

[9] A. A. Argyros and M. I. A. Lourakis, “Real-time tracking of multiple skin-colored objects with a

possibly moving camera”, Proceedings of the 8th European Conference on Computer Vision, (2004)

May 11-14; Prague, Czech Republic.

[10] Y. Wen, C. Hu, G. Yu, “A robust method of detecting hand gestures using depth sensors”, Proceedings

of IEEE International Workshop on Haptic Audio Visual Environments and Games, (2012) October 8-9;

Munich, German.

[11] M. K. Bhuyan, D. R. Neog and M. K. Kar, “Hand pose recognition using geometric features”,

Proceedings of National Conference on Communications, (2011) January 28-30; Bangalore, India.

[12] H. Liang, J. Yuan and D. Thalmann, “3D fingertip and palm tracking in depth image sequences”,

Proceedings of the 20th ACM international conference on Multimedia, (2012), October 29-Movember 2;

New York, USA.

[13] C. Wang and S. Chan, “A new hand gesture recognition algorithm based on joint color-depth Superpixel

Earth Mover's Distance”, Proceedings of the 4th International Workshop on Cognitive Information

Processing, (2014) May 26-28; Copenhagen, Denmark.

[14] J. L. Raheja, A. Chaudhary and K. Singal, “Tracking of fingertips and centers of palm using Kinect”,

Proceedings of the 3rd International Conference on Modelling and Simulation, (2011) September 20-22;

Langkawi, Malaysia.

[15] A. Kurakin, Z. Zhang and Z. Liu, “A real time system for dynamic hand gesture recognition with a depth

sensor”, Proceedings of the 20th European Signal Processing Conference, (2012) August 27-31;

Bucharest.

[16] M. Ester, H. P. Kriegel, J. Sander and X. Xu, “A density-based algorithm for discovering clusters in

large spatial databases with noise”, Proceedings of the 2nd International Conference on Knowledge

Discovery and Data Mining (1996) August 2-4; Oregon, Portland.

[17] S. Suzuki, “Topological structural analysis of digitized binary images by border following”, Computer

Vision, Graphics, and Image Processing, vol. 30, no. 1, (1985).

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

428 Copyright ⓒ 2015 SERSC

