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Abstract 

A modified second-order sliding mode (SOSM) control scheme is developed to 

synchronize two different fractional order hyperchaotic systems. On the basis of 

chattering free SOSM control scheme, a special fractional sliding mode surface is firstly 

proposed. Subsequently, a robust control law is designed to ensure the occurrence of 

sliding mode in a given time. This control scheme is rigorously proved by Lyapunov 

stability theory. Finally, a numerical example is given to illustrate the effectiveness of the 

proposed synchronization approach. 
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1. Introduction 

Even though fractional calculus is a mathematical topic with more than 300 years 

history, its application to physics and engineering has attracted lots of attention only in 

the recent years. It was found that, with the help of fractional calculus, many systems in 

interdisciplinary fields can be described delicately, such as viscoelastic system [1], 

dielectric polarization [2], electrode-electrolyte polarization [3], finance systems and 

electromagnetic waves [4]. That is to say, fractional derivatives provide a superb 

instrument for the description of memory and hereditary properties of various materials 

and processes. 

Recently, studying fractional order system has become an active research area. In 

particular, control and synchronization of the fractional order chaotic systems have 

attracted much attention from various scientific fields. Some methods have been proposed 

to achieve chaos synchronization in fractional order chaotic systems. Such as nonlinear 

feedback control [5], nonlinear state observer control [6], active control [7], adaptive 

control [8], etc. With the development of sliding mode control (SMC) technique, SMC 

approach has became a universal method to realize the control or synchronization of 

fractional order chaotic systems in the past decades [9-11]. 

However, the traditional sliding mode control is of the first order, and there exists an 

inevitable drawback when using such traditional SMC, that is the so-called chattering 

phenomenon, namely, the occurrence of undesirable high frequency vibrations of the 

system variables which are caused by the discontinuous high frequency nature of first-

order sliding mode control signals. In order to improve the control accuracy and reduce 

the undesired chattering effect, the second-order sliding mode (SOSM) method is 

proposed. To the best of our knowledge, few works are available for the synchronization 

of two different fractional order chaotic systems by using SOSM control approach so far. 

In this paper, the synchronization of two different fractional order chaotic systems are 

researched based on modified SOSM approach. A key point of the introduced approach is 

the choosing of a special fractional order sliding surface whose first-order total time 

derivative contains integer order derivatives only, thus being manageable by standard 
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sliding mode controllers. The synchronization error system is transformed to a classic 

control form, which permits a simple stability analysis of sliding mode zero-dynamics. 

The rest of this paper is organized as follows. In Section II, relevant definitions and 

lemmas are presented. Section III gives the main results. In Section IV, a simulation 

example is used to verify the effectiveness of the proposed method. Finally, conclusions 

are given in Section V. 

 

2. Preliminaries 
 

2.1. Definitions and Lemmas 

The Riemann-Liouville, Caputo definition are the frequently used definitions of 

fractional calculus. 

 

Definition 1 The   order Riemann-Liouville fractional integration is given by 
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where )(  is the Gamma function, determined by 
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Definition 2 For nn  1 , Rn , the  order Riemann-Liouville fractional 

derivative is defined as 
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Definition 3 The   order Caputo fractional derivative is written as 
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where m is the smallest integer number, larger than  . 

 

Lemma 1 (see [12]) Consider the system 

 

))(()( txftx  , 0)0( f , 
nRtx )(  (5)  

 

where 
nRDf :  is continuous on an open neighborhood 

nRD  . Suppose there 

exists a continuous differential positive definite function RDtxV :))(( , real numbers 

0p , 10  , such that 

 

0))(())((  txpVtxV  , Dtx  )(  (6)  
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Then the origin of system (5) is a locally finite time stable equilibrium, and the settling 

time, depending on the initial state 0)0( xx  , satisfies )1()()( 0

1

0    pxVxT . In 

addition, if 
nRD   and ))(( txV  is also radially unbounded, then the origin is a globally 

finite time stable equilibrium of system (5). 

 

Lemma 2 (see [13]) Consider a vector signal 
mRtz )( , Let )1,0( . If there exist 

1t  such that 0)( tzI , 1tt  ,  then 0)(lim 


tz
t

. 

 

Lemma 3 (see [14]) Consider a system )()( tAxtxD 
, the system is asymptotically 

stable if and only if 2|))(arg(| Aspec , in this case, each state of system converge 

to zero like 
t ; The system is stable if and only if either it is asymptotically stable or 

these eigenvalues which satisfy 2|))(arg(| Aspec  have geometric multiplicity one. 

 

2.2. Problem Formulation 

Consider the following a class of chaotic systems as drive system 

 

)(11 xgxAxD 
 (6)  

 

where 
nRx is the state vector of the system; 

T

n)...,,,( 21    are fractional 

orders satisfying 10  i ; 
nnRA 1  represents the linear part of the system dynamics; 

nn RRg :1  is the nonlinear part of the system. 

The fractional order response systems are described as 

 

)(22 ygyAyD 
 (7)  

 

where 
nRy  is the state vector of the system; 

T

n)...,,,( 21   are satisfying 

10  i ; 
nnRA 2  and 

nn RRg :2  imply the same roles as 1A  and 1g for the 

drive system, respectively. 

Define xye  , and add 
nRtu )(  to the response system (7), one can get 

 

)()(22 tuygyAyD 
 (8)  

let 

)()()( 21 tututu   (9)  

 

where 
nRtu )(2  is a vector control function to be designed later, the 

nRtu )(1 is a 

compensation controller, and )()( 221 xgxAxDtu  
. Substituting (9) into (8), the 

response system (8) can be rewritten as 

 

)()()( 2222 tuxgygeAeD 
 (10)  

 

In accordance with the active control design procedure, the nonlinear part of the error 

dynamics is eliminated by the following choice of the input vector 
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)()()()( 222 tBwygxgtu   (11)  

 

Error system (10) is rewritten as 

 

)(2 tBweAeD 
 (12)  

 

where 
nRB  is a constant gain vector and )(tw  is the control input to be designed later 

by using modified SOSM approach. 

Motivated by the above analysis, the synchronization task is equivalently transformed 

to the asymptotic stabilization problem of the system (12). 

We define the sliding manifold for the system (12) in the following form 

 

eCIs 1 
 (13)  

 

where 
n

n RcccC  1

21 )...,,,(  is a constant row vector. From now on the design 

problem entails the following two steps. In the first step, the sliding manifold is designed. 

In the second step, the appropriate control input is developed. 

 

3. Main Results 

In this paper, we research the synchronization problem between incommensurate 

fractional order hyperchaotic system and commensurate fractional order hyperchaotic 

system. Considering the special form (13) for the selected sliding manifold, the sliding 

mode dynamics is actually described by a fractional order system as follows 
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According to the linearity of the fractional integral operator, the sliding manifold can 

be written in the form 

 

0)(1   CeIs 
 (16) 

 

From Lemma 2, when s  equal to zero, then Ce  tend to zero asymptotically. 

Next, we will introduce how to design the control input base on modified SOSM 

approach to stabilize system (14). According to (13), we can get 

 

eCDs   (17) 

 

Substituting (14) into (17), it yields 

 

)(2 tCBweCAs   (18) 

 

We can designed the controller as follows 
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Considering (18) and (19), it yields 
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Next, we will give a theorem to realize the synchronization of two different chaotic 

systems with nonidentical fractional orders. 

 

Theorem 1 If the appropriate vector B  and C  are selected such that  
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where I  is an identity matrix, 1k , 2k , 3k , 04 k  denote the design parameters 

satisfying that  
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then the synchronization error system (14) is globally and asymptotically stable. 

 

Proof Selecting a Lyapunov function for system (20) 
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It is obviously that )(tV  is continuous but is not differentiable at 0s ; it is positive 

and radially unbounded if 03 k . Besides, we have 
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derivative of )(tV  along the system (20), and through a simple derivation, we have 

 





















































212
2

21
41

2/12

1

3

1
312/1

2

2

2

2

23

242

2/1

212

2

132

2

2

2

2/1

12

2

23

242

2/1

21

2/3
2

21
41

2

1

2/1
3

1
312

2

132

22

5
)sgn(||||

2||

1

2)()sgn(||3||)2(

||2
2

)()sgn(||3||
2

5

)sgn(||
2

||)2()(











k
s

kk
kkssks

k
kk

s

kskskkksskkskkkk

k
s

k
sk

skkksskks
kk

kk

sks
k

kkskkkktV

 (26) 

 

Therefore, we can rewrite )(tV  as 
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Note that )(tV  is negative definite if 01   and 02  . It is not difficult to show that 

this will be the case if 0ik , 4,3,2,1i  and 
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Since 
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By Lemma 1, it follows easily that the )(tV  Lyapunov function and s  globally 

converge to zero in finite time. When the sliding mode variable s  equal to zero, 

according to the third equation of (19) we can find a constant M  such that M , 

substituting (19) into (14) we can get 
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input MCBB 1)( 
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of two different hyperchaotic systems with different fractional orders is achieved. Hence, 

the proof is completed. 

 

4. Numerical Simulation 

According to the numerical algorithm of fractional order systems presented in [16], we 

can research the synchronization problem between fractional order hyperchaotic Lorenz 

system and a novel hyperchaotic system [17]. 

First, we take the fractional order hyperchaotic Lorenz system as drive system, which 

is written as 
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On the basis of Ref. [16], the drive system can be discrete in the following form 
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Tx )1,3,2,1()0(  , the system (35) is hyperchaotic. The chaotic attractors 

are shown in Figure 1 (red line). 

We take a novel hyperchaotic system [17] as response system, which is described by 
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  (36) 

 

Similarly, through the same operation, we can conclude that when 101 a , 5.21 b , 

11 c , 101 r , 40q , 
T)98.0,98.0,98.0,98.0( , with the initial condition 

Ty )1,6,3,1()0(  , the attractors of response system are shown in Figure 1 (blue 

line). 
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Figure 1. Chaotic Attractors of Drive System (35) and Response System (36) 

For observing the control effect of the proposed method, we firstly given the state 

trajectories of the drive system and response system without controller, shown in Figure 

2. 
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Figure 2. State Trajectories of Drive and Response Systems without Controller 

From systems (35) and (36), we know that 
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According to (14), for convenience, we can choose 
TB )0,0,1,1( , the 

synchronization error dynamics is described as 
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From Theorem 1, C can be selected as )0,1,0,20(C , then the eigenvalues of 

  2

1)( ACCBBIAeq

 are 101  , 
16

2 216.7  e , 2192.03  , 

2808.24  , which satisfy the condition 2|))(arg(| eqAspec , so the value of 

|))(arg(| eqAspec  lies in the stable region. By Theorem 1, choose parameters 11 k , 

12 k , 13 k , 44 k . With the sampling time sh 01.0 , then we can get the time 

response of synchronization error system (37) with the controller activated at st 10 , 

illustrated in Figure 3. 
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Figure 3. Time Response of the Error System with Controller Activated at st 10  

In Figure 3, it is not hard to see, the synchronization errors converge to zero 

asymptotically, which implies that the SOSM approach is effective to address the 

synchronization problem of two different fractional order hyperchaotic systems. The state 

trajectories of drive and response systems with the controller activated at st 10 are 

displayed in Figure 4. 
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Figure 4. Time Evolutions of Drive System and Response System with Controller 

Activated at st 10  

From Figure 4, it is easily can be seen that with applying the proposed robust 

controller, the state trajectories of the response system (36) asymptotically converge to the 

drive system (35). 

These simulation results verify the good robustness of the proposed approach and 

highlight the better performance featured by SOSM technique. 

 

5. Conclusions 

The modified SOSM scheme is proposed in this paper to synchronize two different 

fractional order hyperchaotic systems. A special fractional order sliding mode manifold is 

firstly designed, and the design procedures are described in detail. Subsequently, on the 

basis of modified SOSM technique and finite-time theory, a controller is designed to 

ensure the occurrence of sliding motion in finite time. Finally, the stability of the 

suggested scheme has been demonstrated via Lyapunov theorem, and a simulation 

example is given to show its effectiveness. 
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