
International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015), pp.251-258

http://dx.doi.org/10.14257/ijmue.2015.10.4.24

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2015 SERSC

Study on a New Heterogeneous Multi-core Hardware/Software

Partitioning Method

Lanying Li and Longjuan Chen

The College of Computer Science and Technology, Harbin University of Science

and Technology, Harbin 150080,China

lulu08521@sina.com

Abstract

As to the high request of low power consumption for hardware/software partitioning

algorithm in multi-core processor structure, based on reducing the system power

consumption, the relevant formal model was defined, and the problem was decomposed

into two periods: the task division of heterogeneous multi-core platform and low power

scheduling. The quantum genetic algorithm was proposed in the paper by taking the

advantage of quantum computing combined with the traditional genetic algorithm, and

the scheduling method based on critical tasks was used to solve scheduling problems of

task after division. Experimental results show that the quantum genetic algorithm

increases the diversity of population in the process of task partitioning and the task

scheduling algorithm based on the key tasks determines the optimal execution order. The

whole algorithm achieves the design goals of reducing the power consumption of the

system and lessening the time complexity.

Keywords: hardware/software partition; heterogeneous multi-core processor; low

power consumption; quantum genetic algorithm; critical tasks.

1. Introduction
In the last few years, with the rapid development of technology and the urgent request

of low power consumption in embedded system, low-power system design under

heterogeneous multi-core platform has received extensive attention in academia and

industry [1]. In the early period, hardware/software partitioning was a two-way

partitioning, and the target structure only contained a single processor and a FPGA.

Reasonable distribution of the system functions in multiple processor and FPGA is called

multiple division [2]. Task scheduling of heterogeneous multi-core processors can be

divided into static task scheduling and dynamic task scheduling according to whether it

can be dynamically adjusted in the process of scheduling [3]. Unique architecture of

heterogeneous multi-core processor makes traditional scheduling algorithms in single-

core processor platform no longer suitable for it. For low power consumption of system

structure in embedded heterogeneous multi-core processor, the current research direction

mainly focus on decomposing the problem into task partitioning and low power

scheduling in two stages. The algorithm of reducing power consumption is adopted at

each stage, and finally optimal algorithm of two stages will be integrated in order to

achieve the system goal of maximum reduction of the power consumption [5]. For

heterogeneous multi-core platform task partitioning problem, researchers put forward

many solutions, which commonly used ones are dynamic programming method[6]and

Lippmann processes [7],geometric method[8],combination method [9], multi-layer

classification method [10] and the heuristic algorithm and so on. Among them, the

heuristic algorithm is the most widely used. How to coordinate with the heuristic

algorithm and scheduling algorithm to reduce the power consumption of the system as a

whole becomes the focus of current research. To solve above problems, this paper

http://dx.doi.org/10.14257/ijmue.2015.10.4.21

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

252 Copyright ⓒ 2015 SERSC

presents a quantum genetic algorithm to solve the problem of low power

hardware/software partitioning and low power scheduling algorithm based on critical

tasks.

2. Hardware/software Partitioning Model

2.1. Target System Structure Model

The essence of hardware/software partitioning is a kind of distribution, at the same

time is also a kind of optimization [11]. References [12-13] have proved that under the

environment of heterogeneous multi-core processor, task partitioning problem is N-P

problem. Reference [14] has proved that no algorithm can adapt to all of the

constraints and situations. System model is defined as follows:

Definition 1: Heterogeneous multi-core embedded system structure of target is

represented by a directed acyclic graph: Ga(PE,CL) . PE stands for the collection of

processing unit nodes,
0 1 2 nPE ={PE ,PE ,PE ,...,PE },

jPE stands for the j th

processing unit,
0 1 2 nCL={CL ,CL ,CL ,...,CL } on behalf of the communication link set.

At least there is one directly connected communication path between any two

processing units. The system energy consumption is represented by formula 1:

m n l

m S i S n h i h i ij clm n

S h c

p i i ijS PE V V h PE V V C CL eg EG
E e e e

 (1)

SPE and

hPE stand for software processing unit set and hardware processing unit

set respectively. CL stands for communications link set.
clEG stands for the path set

from task i to tasks j . mS ,
nh stand for software processing unit and hardware

processing unit respectively. iC stands for the i th communication link, iV stands for

the i th task allocation in a processing unit,
ijeg stands for the path from the task i to

the task j , mS

ie stands for the power consumption value in execution of the i th task

allocated on mS , nh

ie stands for the power consumption value in execution of the i th

task allocated on
nh ,

Ci

ije stands for the consumed power value when selecting the

iC path from all paths from task i to task j . All cost is defined as formula 2:

, [1,a]

, [1,b]

m

i ij ci m S i sm

n

n h i hn

m

i Sm

n n

i hn

SCi

p ij iC CL eg EG S PE V V

h

ih PE V V

S Sm

P iV V

h h

P iV V

T t t

t

M m m

A a n

 (2)

Heterogeneous multi-core hardware/software partitioning based on quantum

genetic algorithm is described below:

 Minimize PE (3)

Subject to ,

,

m m

n n

P 0

S S

P 0

h h

P 0

T T

M M m [1,a]

A A n [1,b]

 (4)

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

Copyright ⓒ 2015 SERSC 253

0T , mS

0M , nh

0A stand for processor, memory and the FPGA time limit respectively.

Fitness function is defined as formula 5:

m m n n

m S n h

S S h h

P S P 0 h P 0 t p 0S PE h PE
minf = E + P max(0,M - M)+ P max(0,A - A)+ Pmax(0,T - T)

 (5)

SP ,
hP and

tP , as larger integers, are used to eliminate over memory limit, the

FPGA area limit and execution time limit of the whole system hardware/software

partitioning scheme.

 2.2. Task Model

The task design of the embedded system is expressed by a DGA [15] (Directed

Acyclic Graph).

Definition 2: Attribute of each node in the model is defined as a six-meshes as

follows:
es ts ms eh th ah

i i i i i i iV =<v ,v ,v ,v ,v ,v > (6)

 i stands for task node number, es

iv , ts

iv , ms

iv stand for power consumption of task i

in the software processor, time needed for execution and memory respectively.
eh

iv , th

iv , ah

iv stand for power consumption of node i in FPGA , time needed for

execution and area respectively.

Definition 3: Attribute of each edge in the model is defined as a binary set as

follows:

tij eij

ij ij ijeg =< eg ,eg > (7)

tij

ijeg stands for the time consumption in transmission from task i to task j ,
eij

ijeg

stands for the power consumption in the transmission from task i to task j .

3. Quantum Genetic Algorithm

Quantum computing is different from traditional computing in that its natural

characteristics of parallelism are able to handle the huge amounts of information quickly,

and greatly reduce the processing time in scale complex problems [16]. Combining this

advantages of quantum computation with the genetic algorithm produces quantum genetic

algorithm QGA (Quantum Genetic Algorithm). Using qubit coding to express

chromosome and getting the next generation of group by the quantum gate rotating could

effectively avoid the lack of species diversity in the traditional genetic algorithm and

avoid the selection pressure successfully.

3.1. Qubits Encoded:

If a system has n quantum bits, then the system will contain n2 linear

superposition of quantum ground state, then its general condition is expressed as:

|
s

i=1

>= Ci | i > (8)

| i > is one of the n2 ground states, iC stands for the superposition coefficient of

the ground state.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

254 Copyright ⓒ 2015 SERSC

Each individual quantum could be coded by the following quantum coding form:

t t t t t t t t t

j11 j12 j1k j21 j22 j2k jp1 jp2 jpkt

j t t t t t t t t t

j11 j12 j1k j21 j22 j2k jp1 jp2 jpk

a a a a a a a a a...
q =

b b b b b b b b b...

 (9)

t

jq stands for the t generation of the j individuals,
t

jaba ,
t

jabb stand for b th

probability amplitude of a genes in the chromosome. When k is the independent

variables of each component, used in quantum bit number, p is the chromosome

number of genes.

3.2. Update of Quantum Genetic Operations

The quantum genetic algorithm adjusts the rotation angle of quantum gate, and

multiplies the initial qubits probability to complete updating and then to produce

new individual qubits. Formula is shown as follows:

' ' '

ii i i

' ' '
ii i i

aa cos(q) -sin(q)
= *

bb sin(q) cos(q)

 (10)

'

i stands for the variation of , ia and
ib stand for probability amplitude at some point.

3.3. Quantum Genetic Algorithm

Supposed there are p tasks assigned to k processing unit, the quantum genetic

algorithm in the chromosomes of each individual consists of p genes, each gene

includes m quantum bits, so each gene will be able to stand for a qubit string, which

meet the conditions. The specific process is as follows:

(1) Initialize the current iteration number t , produce the population size

of p , t t t t

1 2 3 nQ(t)={q ,q ,q ...q } ,
t

jq stands for the j individuals of the t generation, as

shown in formula 9 chromosome expression form.

(2) Do a measurement for each individual in the population, randomly generated a

number of [0, 1], If it is greater than 2

1| a | , measurement value is 1, otherwise

the value is 0, corresponding to get state: t t t t

1 2 3 mS(t)={x ,x ,x ...x } , t

ix stands for the

binary string which length is m .

(3) According to each t

ix in S(t) actual distribution of tasks to processing unit,

calculate the fitness function value of each scheme.

(4) According to the fitness function value remove t highest in fitness of the

individual, assignment plan and record the corresponding fitness function value.

(5) According to quantum gate rotation for the next generation, repeat (2), (3), (4)

step operation, to every individual's fitness value and the current optimal

scheme of the fitness value is used in the comparison, according to the

comparison results to decide whether to update scheme.

(6) If the number of iterations out of the scheduled times, then the end, otherwise

repeat step (5) operation.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

Copyright ⓒ 2015 SERSC 255

4. Scheduling Algorithm based on Key Tasks

Task division and task scheduling play important roles in reducing the power

consumption of the system to the whole problem. This paper combines with DVS

(Dynamic Voltage Scaling) technology to design a low-power scheduling algorithm

which is based on the analysis of the key tasks called CT_LPS (Critical Task

Analysis Low Power Scheduling Algorithm).

Figure 1. Flow Chart of Scheduling Algorithm based on the Task Scheduling

Definition 4: In figure DAG, the path from the initial node to the end node weights

of maximum is called critical path, all the task nodes on the critical path are called

critical tasks.

Definition 5: The time period between the initial node to the end node is called

scheduling length. The scheduling length of DAG figure depends on the key task.

Definition 6: The relaxation time of task refers to the difference between the

deadline of the task and the completion time export nodes.

The increase of relaxation time can increase the potential of reducing power

consumption, while the relaxation time is determined by the length of the

scheduling, the scheduling length depends on the key tasks, and therefore, the

treatment of key tasks will affect the consumption of the system. The DVS

technology shows that the properties of the task will be changed under different

voltage levels, and the earliest and latest start time of the task needs to be

recalculated, producing the possible new task execution order. Based on the facts

above, the scheduling algorithm based on key task flow chart shows in figure 1.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

256 Copyright ⓒ 2015 SERSC

5. Experimental Results

To verify the hardware/software partitioning algorithm and the effectiveness of

the scheduling strategy based on critical tasks, we adopt TGFF toolkit to generate

different nodes of a directed acyclic graph, whose nodes are between 10-70,

matching processing units between 3 and 6.

 In order to evaluate performance and efficiency of the algorithm, we conduct

the contrast test in this paper. In view of the problem about task partitioning, we

realize the traditional genetic algorithm-GA and quantum genetic algorithm

proposed in this paper. These two algorithms are both the related to the theory of

genetic algorithm, so they can show more advantages of QGA. In view of the

problem about task scheduling, we realize the scheduling algorithm of CTLPS

implemented in this paper and order task analysis of low power scheduling

algorithm –OTLPS. We compare QGA_CT_LPS with GA-OT_LPS and find the

maximum iteration is 200 and the optimal solution for 10 generations has no

obvious improvement will terminate the operation.

This paper mainly evaluates the performance from the two aspects: the effect of

energy saving and the time complexity of algorithm. By the formula 11, we can

know that the larger the , the higher consumption rate, and the greater energy

saving effect of the algorithm.

 0 0=(E - E) / E (11)

0E stands for the energy dissipations of the system at the highest performance

runtime, E stands for the energy dissipations of the system after using the

algorithm of low power.

We set the starting point of algorithm is run at
ST , end to ET , and the algorithm

operation time can be defined as follows:

exe E ST T T (12)

Statistics in Table 1 show the experimental results of GA-OT_LPS and 200

generations evolve QGA-CT_LPS. We can find that QGA_CT_LPS algorithm is

superior to GA-OT_LPS in reducing the power consumption and operation time.

Table 1. Performance Comparison between GA-OT_LPS and QGA-CT_LPS

Task

Graph

Node/Processing

Unit

GA-OT_LPS QGA-CT_LPS

power

consumption

reduce rate（

%）

Execution time

（ms）

power

consumption

reduce rate（%

）

Execution

time（ms）

TF0 10/3 35.584 680.496 40.296 656.120

TF1 30/5 18.578 1938.104 22.274 1670.269

TF2 50/4 27.614 3383.939 32.099 2754.267

TF3 70/6 41.716 4779.716 51.147 3855.005

From Table 1, we can conclude that GA-OT_LPS can reduce more power consumption

than GA - OT LPS under the same system structure because QGA can provides more

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

Copyright ⓒ 2015 SERSC 257

solution space for the division of scheme, and the energy saving effect of CT_LPS is

better than OT_LPS.

Figure 2 represents the runtime efficiency of the algorithm and we can conclude that

QGA-CT_LPS is lower than GA-OT_LPS in the respect of time complexity, and with the

increase of nodes numbers, the advantages of QGA-CT_LPS are becoming more obvious

because QGA can quickly deal with huge amounts of data in a short time with the

characteristics of quantum computing.

0

1000

2000

3000

4000

5000

6000

TF0 TF1 TF2 TF3

Task Graph

E
x
e
c
u
t
i
o
n

T
i
m
e

(

m
s

)

GA-OT_LPS

QGA-CT_LPS

Figure 2. Comparison of Running Time between GA-OT_LPS and QGA-
CT_LPS

6. Conclusion

We put forward QGA and the heterogeneous multi-core hardware/software partitioning

algorithm for low power consumption based on the critical task scheduling algorithm.

First, we take advantage of the parallelism of quantum computing combined with

quantum algorithm and traditional genetic algorithm to solve the problem of low power

hardware/software partitioning, and realize the evolution update operation by quantum

revolving door, reducing the time consumption and ensuring the diversity of the

population. Scheduling strategy based on the critical tasks reduces the power consumption

of the system significantly. The contrast experiments show that the design of low-power

heterogeneous multi-core algorithm effectively reduces the energy consumption of the

system and improve the previous problem of high time complexity. However, in the

process of theoretical analysis and experimental simulation of the algorithm, we find that

the heterogeneous multi-core algorithm proposed in this paper has the potential to

improve more. How to determine the optimal solution of distribution and improve the

population initialization operation and make the algorithm on the basis of original

chromosome converge to the optimal solution more quickly by the hardware/software

partitioning algorithm proposed in this paper become important research contents after

this article.

Acknowledgements

Supported by Scientific Research Fund of Heilongjiang Provincial Education

Department (NO: 2531107).

References

[1] F. Chen, D. Zhang and Z. Wang, “Research of the heterogeneous multi-Core processor architecture

design [J]”, Computer Engineering and Science, vol. 33, no. 12, (2011), pp. 27-36.

[2] S. Han, “Hardware/Software partitioning based on combination of genetic algorithm and simulated

annealing [D]”, Journal of Harbin University of Science and Technology, (2013).

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

258 Copyright ⓒ 2015 SERSC

[3] O. Beaumont, L. Caterb and J. Ferrante, “Bandwidth-centric allocation of independent tasks on

heterogeneous platforms”, In International Parallel and Distributed Processing Symposium, (2002), pp.

67-72.

[4] J. Li and S. Jin, “Research on static task scheduling strategy based on heterogeneous multi-core

processors [J]”, Computer Engineering and Design, vol. 34, no. 1, (2013), pp. 178-184.

[5] J. Jiang, “Research on embedded software key issues of heterogeneous multi-core processor [D]”, Chong

Qing University, (2011).

[6] Y. Jing, “Different constraints of reconfigurable system hardware/software partitioning algorithm

research [D]”, Hu Nan University, (2013).

[7] A. Pothen, H. Simon and K. Lioum, “Partitioning sparse matrices with eigenvectors of graphs [J]”,

SIAM Journal of Matrix Ana1ysis and Applications, vol. 11, no. 3, (1990), pp. 430一452.

[8] M. Berger and S. Bokhari, “Partitioning strategy for non-uniform problems on Multiprocessors [J]”,

IEEE Transaction on Computers, vol. C-36, no. 5, (1987), pp. 70-580.

[9] A. George and J. Liu, “Computer Solution of Large Sparse Positive Definite Systems [M]”, Prentice-Hall

Press, (1981).

[10] G. Karypis and V. Kumar, “A fast and high quality multilevel seheme for partitioning irregular graphs

[J]”, SIAM Journal on Scientific Computing, vol. 20, no. 1, (1998), pp. 359一392.

[11] X. Zhu and Z. Zhu, “Efficient critical path hardware/software partitioning algorithm of particle

swarm[J]”, Microelectronics and Computer, vol. 30, no. 4, (2013), pp. 160-163,168.

[12] S. Baruah, “Feasibility analysis of preemptive real-time systems upon heterogeneous multiprocessor

platforms”, In: Proc. of the 25th IEEE Int. Real-Time Systems Symposium, Los Alamitos, CA: IEEE

Computer Society Press, (2004), pp. 37-46.

[13] S K. Baruah, “Partitioning real-time tasks among heterogeneous multiprocessors”, In: Proc. of the 2004

International Conference on Parallel Processing, ICPP, Toronto, Canada, (2004), pp. 467-474.

[14] E. Rotem, A. Mendelson and R. Ginosar, “Multiple Clock and Voltage Domains for Chip Multi

Processors”, In: Proc. of ACM MICRO’09. (2009), pp. 459-468.

[15] R. Li, Y. Liu and X. Cheng, “A Survey of task scheduling research progress on multiprocessor”, Journal

of Computer Research and Development, vol. 45, no. 9, (2008), pp. 1620-1629.

[16] Y. Zhang, K. Lu and H. Gao, “Multiprocessor scheduling research progress on a chip system [J]”,

Chinese Journal of Computers, vol. 36, no. 9, (2013), pp.1835-1842.

