
International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015), pp.183-192

http://dx.doi.org/10.14257/ijmue.2015.10.4.18

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2015 SERSC

An Approach to Robot Commonsense Reasoning

Kejun Wang, Tongchun Du and Xiaofei Yang

College of Automation, Harbin Engineering University

wangkejun@hrbeu.edu.cn, {tongchundu, xiaofeiy408}@gmail.com

Abstract

To perform missions assigned by people, the mobile robot needs to learn both itself

and the world it is in, to use the learned knowledge to reason and make decisions to

resolve problems, and to guide further learning, and to establish its knowledge base

which contains huge amounts of common sense. During the process of executing missions

by reasoning and learning, it is critical to enable domain-specific robots be more tolerant

rather than puzzled when encountering perturbations. In this paper, active logic is

improved to deal with contradicted beliefs, metacognitive loop is incorporated to

supervise and guide the whole reasoning process. Finally, route crack experiments state

that this metacognitive loop and improved active logic based method can handle robot

commonsense reasoning in an efficient way and be comparatively robust with

perturbations.

Keywords: commonsense reasoning, robot, metacognitive loop, improved active logic

1. Introduction

One long-standing dream of researchers in artificial intelligence and cognition science

communities is to construct a flexible and human-level intelligent system/agent, such as a

so-called autonomous and/or intelligent robot [1]. To illustrate what “flexible” means, let

us consider some contrasted examples, some domain or mission specific robots would be

disordered, have no idea about what to do, even be injured, and finally result in failure,

when the environment deviates a little from their expectations. For example, an unmanned

vehicle can automatically avoid obstacles and select flat routes to go through, but suppose

there occurs a big ditch on its frontal route (note that this is different from a traffic jam),

then how should the unmanned vehicle do to handle this situation, to save itself, and to

lead to a successful mission executing? Another example is the rescue robot which

usually uses infrared sensors to look for survivals at night, but if a building is on fire and

thus makes infrared sensors unsuitable to detect, how can the rescue robot find this

changed circumstance and adjust both its sensors and detecting algorithms automatically?

In this paper, “perturbation” is defined as all situations that are different from what are

pre-designed, e.g., sensor failure, environment change, etc. When encountering a

perturbation, a robot can protect itself, recover from the perturbation, re-assign its goal,

and change policies to guide executing missions. The abilities in this case are to some

degree what we intend to think of as “flexible” [1].

As one vehicle of Artificial Intelligent, a mobile robot often situates in complex and

dynamic environments. To perform missions assigned by people, the mobile robot needs

to learn both itself and the world it is in [5, 9], to use the learned knowledge to reason and

make decisions to resolve problems and to guide further learning, and to establish its

knowledge base which contains huge amounts of common sense [3]. Similar to but a little

different from an expert system which also needs huge amounts of expertise, what a robot

needs is a lot of common sense, e.g., a household robot needs to learn about a kitchen’s

environment including how a door looks like, what a plugin is, and how to plan a path

from one location to another, etc. Such kinds of common sense can be initially added by

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

184 Copyright ⓒ 2015 SERSC

the agent designer to the knowledge base (KB) or be obtained through learning,

perception, and reasoning. Reasoning rules of course play one critical role in KB. As is

concluded by many researchers, the main challenges of commonsense reasoning include

but not limit to that common sense cannot be fully described, that the expressions are

imprecise and incompatible, and that reasoning is non-monotonic. In the past decades,

non-monotonic reasoning always played the core role in commonsense reasoning, several

derived algorithms also paid much attention to non-monotonic problems and tried to

extend KB of commonsense to contain as many kinds of perturbations as possible. When

there exist contradicted beliefs (facts and rules), some methods even simply ignore those

contradictions and use the remaining knowledge to reason. It seems that contradictions

and perturbations are so horrific that everyone want to avoid them. However, in our

opinion, much of human knowledge are just gained from mistakes and contradictions, so

even contradicted beliefs could help commonsense reasoning. What is more, it will be a

labor intensive job for a reasoning machine designer to consider all kinds of perturbations

and put them in KB. Along this cue, we argue it is critical to design a domain general

perturbation handling mechanism to supervise the commonsense reasoning process. In the

paper, metacognitive loop is just playing this key role.

KB is continuously updated as the reasoning process goes. How to let the reasoning

machine not only reason about rules and knowledge but also make notes of the reasoning

process, so that when contradicted beliefs occur or some logic errors appear, the system

can conveniently consult and find out the problems. The answer is active logic which is

time situated, can not only reason in real time but also reason about time, and is able to

detect contradicted beliefs efficiently. We improve its contradiction handling ability by

adding some rules and definitions.

To supply the context of our idea, a “route crash” example will be presented in Section

II; Section III introduces the metacognitive loop (MCL); the principles of active logic lie

in Section IV; we give some details about how to realize our idea about route crash

example in Section V, also you will see our current plans and future research directions

there.

2. Route Crash Example

Robot Jack moves at a normal speed from location A to location B along a

planned route AB. At location C on the midway, his sensors find that a crash occurs

which may block the way to B. How should Jack react?

Let’s stop to make some explanations. Jack has its KB which contains some knowledge

about a crash, e.g., he can cross those crashes with finite width by accelerating. Since the

crash is not included in the route plan, Jack thinks of it as a perturbation to going through

the route AB. Herein, the original belief (e.g., Unblocked (AB)) is not suitable to describe

the current world.

Suppose there is a pre-equipped crash perturbation handling method with Jack. It

should be like this: Jack will observe the crash’s width and decide whether it is becoming

larger, and observe route AC to see if it is the same as before and if it is still safe (that is

Jack’s initial expectations: no perturbation and safety). If he is sure that the crash is not

too wide and not becoming wider, that route CB is still safe, and that according to his

knowledge he can cross the crash by accelerating, then he will accelerate to cross the

crash. If Jack finds that the crash is too wide to allow him cross or the crash is becoming

wider and wider, and route AC is still safe, then he would probably choose to accelerate to

return to location A. It is important to note that “accelerate to cross” and “accelerate to

return” are much different from “move normally”.

In this route crash case, Jack’s actions involve several kinds of abilities, he needs to be

able to firstly plan the path AB, to have KB including many common sense about a crash,

some expectations about going through the route and how the route looks like, to be able

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

Copyright ⓒ 2015 SERSC 185

to observe the width and the state of the crash and compare the value to his experience, to

evaluate the danger level to decide to go forth or return, and to possibly learn how to

accelerate. Reasoning, memory, vision, and learning all are required to bring Jack closer

to the so-called intelligent agent [4]. But the core role in this case is obviously the

perturbation detecting and handling mechanism/framework. Our long term research aims

to put some state-of-the-art technologies in this agent and has gained some successes.

Despite there is still an unforeseen way to go, we are pleased to present some parts of our

work here.

3. Metacognitive Loop

Metacognitive loop (MCL) is composed of setting expectations, comparing

observations to expectations, evaluating and explaining the perturbations, reacting to the

perturbations to guide the agent, and adjusting the expectations [2, 4, 11].

Note Evaluate Guide

Host

Expectation Actions

MCL

Figure 1. Perturbation Handling Procedures of MCL [2]

The contribution of MCL to the route crash example is detailed as below. Jack has an

expectation about route AB (i.e. unblocked), when there is a discrepancy between the

observation and this expectation, Jack views the observation as a perturbation; evaluates

the perturbation according to his available knowledge; then supplies corresponding

actions to guide executing subsequent missions, e. g, accelerate to cross the crash and go

along route CB or accelerate to return to A; and finally adjusts the original expectations

such as MoveTo(A), and adds these two pieces of knowledge, that accelerating to cross or

accelerating to return can deal with route crashes, to KB.

We could say with equipping MCL as the perturbation handling framework, if Jack

owns a lot of common sense about crashes, he can do well in dealing with crash

perturbations. Moreover, even though Jack knows little about crashes, MCL has a suit of

simple but efficient methods to resolve anomalies, e.g., evaluation methodology evaluates

that the perturbation may do harm to Jack but cannot get detailed information about the

crash, then guidance methodology just selects an avoiding policy to escape from this

perturbation. If Jack is sure that the crash is a perturbation but has no idea how to react, he

will ask for help or just terminate the mission. In practice, MCL aims to enable the system

more tolerant to perturbations rather than limit the scope of perturbations.

There are three key issues with MCL. First, how to select detecting technologies

according to the world’s changes? Second, how to fast and reasonably evaluate the

perturbation’s level? That is another reason why MCL is worthy. If the level of

perturbations is low and cannot affect the mission executing, e.g., the crash is not wide

and allows Jack to cross, then Jack (the host) should not change expectations, because in

this case accelerating to cross the crash may be at a high cost. Third, what kind of policy

is most efficient to lead react corresponding to some specific perturbations? These

policies at the least include go-back policy, which means if knowledge about the

perturbation is very limited, then the agent should simply return to the starting location

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

186 Copyright ⓒ 2015 SERSC

and learn from scratch, e.g., if receiving a recommended action “accelerate to cross” but

he does not know how to accelerate, Jack then needs to learn the new notation.

MCL can not only monitor system’s performance, but also know its descriptions about

perturbation are not suitable, and then employ methods such as learning and updating

beliefs to improve its performance. Therefore, different kinds of descriptions, reasoning

methods, and self-monitoring should be combined and cooperate in an efficient way.

Besides, as different domains need different kinds of methodologies and rules, the

designer of MCL should guarantee the knowledge and rules are suitable to the specific

domain. The system should be aware of the world shifting in order to adjust itself, which

requires abilities of high-level self-awareness and self-control. Self-learning and self-

improving are too in need to keep the system adaptive from one domain to another by

learning and choosing suitable methodologies. Above are the salient characteristics of

system with MCL [1, 2, 4, 7].

4. Active Logic

KB consists of linguistic descriptions from users, environment descriptions, domain

states, and rules added by managers. It can also divided into rules, facts, and states, all are

called knowledge [1, 2, 6]. The process that active logic reasons about knowledge and

makes notes of the process is depicted in Figure 2 [2].

linguistic description

environment

domain states

rules

Active logic

Observe and make

note of reasoning

process

 KB

Figure 2. Procedures of Reasoning about Knowledge in KB of Active Logic

Active logic is time situated, which can reason in real time as well as reason about

time. All rules and knowledge are labeled with timestamps. The symbolic representations

are listed here. ∧ means logic and, → induct to, ¬ not，∈ contained by, and‖irrelevant.

Some reasoning rules of active logic are show here [10].

 (1) “Now” awareness. All rules and knowledge are coupled with timestamps, e. g, the

current step number is i, then next time step is i+1.

i: Now(i)

i+1: Now(i+1)

 (2) Modus Ponens. If at time step i KB has knowledge A and the rule B can be obtained

with A, then next step, B is gained and added to KB. There is also extended modus ponens.

𝑖: … , ∝, (∝→ 𝛽)

𝑖 + 1: … , 𝛽
 𝑀𝑜𝑑𝑢𝑠 𝑃𝑜𝑛𝑒𝑛𝑠

𝑖: … , 𝑃1𝑎, … , 𝑃𝑛𝑎, ∀𝑥[(𝑃1𝑥 ⋀ … ⋀ 𝑃𝑛𝑥) → 𝑄𝑥]

𝑖 + 1: … , 𝑄𝑎

𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑀𝑜𝑑𝑢𝑠 𝑃𝑜𝑛𝑒𝑛𝑠

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

Copyright ⓒ 2015 SERSC 187

 (3) Inheritance. Knowledge at the former time step will be inherited at the next time

step.

𝑖: … , 𝛼

𝑖 + 1: … , 𝛼
 𝐼𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒

 (4) Modus Tollens. If the conclusions do not exist, then corresponding preconditions are

not fulfilled.

𝑖: … , ! 𝛽, (𝛼 → 𝛽)

𝑖 + 1: … , ! 𝛼
 𝑀𝑜𝑑𝑢𝑠 𝑇𝑜𝑙𝑙𝑒𝑛𝑠

(5) Contradiction detection. If novel knowledge (derived by reasoning or obtained

through observation) in KB is conflicted with old knowledge, active logic can detect this

conflict and delete the unsuitable knowledge to keep KB consistent. In active logic, the

contradiction detection and handling are completed within two time steps.

𝑖: … , ∝, ! ∝

𝑖 + 1: … , 𝑐𝑜𝑛𝑡𝑟𝑎(𝛼, ! 𝛼)
 𝐶𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

It is easy to detect contradictions but hard to resolve them. In many cases, we cannot

just delete contradictions, nor could we ignore them but only use consistent knowledge to

reason. This paper makes some revisions to improve the contradiction detection and

handling abilities of active logic.

 (6) We define Fact1 and Fact2 as two facts, and CommonSense1 and CommonSense2

as two common sense. Facts are concrete and special, while common sense are abstract

and general. The relations between facts and common sense include contained, negated,

and irrelevant.

Fact1‖ Fact2 indicates Fact1 is irrelevant to Fact2.

Fact1 = ¬ Fact2 indicates Fact1 is the negated form of Fact2.

Fact1∈ Fact2 means Fact1 is contained by Fact2.

 Contra (CommonSense1, CommonSense2) indicates that CommonSense1 and

CommonSense2 are a pair of contradicted knowledge.

 If we have

Fact1 → CommonSense1

Fact2 → CommonSense2

Contra (CommonSense1, CommonSense2), and

Fact1 ∈ Fact2,

Then keep CommonSense1 and delete CommonSense2, because Fact1 is a special case

of Fact2, we call this fact first policy. But if Fact1 ‖ Fact2 which means two irrelevant

facts induct two contradicted conclusions, then delete both two conclusions or just ignore

them waiting for more knowledge to process later.

Besides, the contained relations of facts have transitivity, that is to say, if Fact1 ∈

Fact2, Fact2 ∈ Fact3, then we get Fact1 ∈ Fact3.

 (7) For irrelevant facts and common sense, if they are not contradicted with

preconditions of a rule, they do not influence the reasoning.

If Fact1 ‖ Fact2

Fact1 → CommonSense1, then

Fact1 ∧ Fact2 → CommonSense1.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

188 Copyright ⓒ 2015 SERSC

 (8) Modus Ponens does not have transitivity. If A→B，B→C，now given A, we could

get A∧(A→B)∧(B→C)→C rather than A→C. Similarly, Modus Tollens does not have

transitivity.

We would like to test the improved active logic using some benchmark examples of

commonsense reasoning below.

 (a) If it is rainy, then the floor is wet. It is rainy, so the floor is wet.

Rainy(Weather)→Wet(Floor)

 (b) Birds can fly, wiki is a bird, so wiki can fly.

Birds(wiki)∧((Birds(X)→CanFly(X))→CanFly(wiki)

 (c) Birds can fly, wiki is a bird, but wiki cannot fly, so wiki cannot fly.

Birds(wiki)∧(Birds(X)→CanFly(X))∧ (¬CanFly(wiki))∧(wiki∈Birds)

→¬(CanFly(wiki))

 (d) If it is rainy, then the floor is wet. It is rainy and windy, so the floor is wet.

Windy(Weather)∧(Rainy(Weather) → Wet(Floor))∧(Windy(Weather)‖Rainy(Weather))

 →Wet(Floor)

 (e) Nixon Christians are pacifists, communists are not pacifists, Nixon is a Christian,

and Nixon is a communist, so Nixon is (pacifist or not)?

(Christian(X) → Pacifist(X))∧(Communist(X)→¬ Pacifist(X))

∧Christian(Nixon)∧Communist(Nixon)∧(Christian(X)‖Communist(X))

→Contra(Pacifist(Nixon), ¬ Pacifist(Nixon))

 (f) Penguin is a bird, birds can fly, penguin cannot fly, wiki is a bird, and wiki is a

penguin, so wiki (can fly or not)?

Birds(wiki)∧(Birds(X)→CanFly(X))∧(Penguin(X)→(¬ CanFly(X)))

∧(Penguin(wiki))∧Penguin(X)∈Birds(X)

→¬(CanFly(wiki))

 (g) If Carter died in 1979, then he would not fail in the selection in 1980. If Carter did

not fail in the selection in 1980, then Reagan would not be selected as the president. So if

Carter died in 1979, Reagan would not be selected as the president. As is talked before,

Modus Ponens does not have transitivity, so this inference is not set up.

Died(Carter)→¬FailedSel(Carter)∧¬FailedSel(Carter)→FailedSel(Reagan)

→(Died(Carter)∧(¬FailedSel(Carter)→ FailedSel(Reagan))

Supplemented with rules (6), (7), and (8), active logic get more suitable for

commonsense reasoning. Besides every piece of conclusion, precondition, reasoning rule,

and every step of reasoning process are labeled with timestamps, the technology to handle

contradictions can be summarized as that reasoning rules do not have the transitivity, that

the conclusions derived by specific preconditions with small extension are superior to

those derived by general preconditions with large extension, and that those contradicted

conclusions derived by irrelevant preconditions should be both deleted or pended waiting

for sufficient knowledge to handle.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

Copyright ⓒ 2015 SERSC 189

5. Experiments and Analysis

The route crash example involves three basic problems in commonsense reasoning: (1)

Beliefs would change as the time goes, that is, Jack expected the route is unblocked and

then found there was a crash blocking his route. (2) If the agent does not have knowledge

about crashes, such as how to observe the changes of crashes, then it could not

describe and make decisions properly. That is, knowledge in KB could not match the

environment. (3) Accelerating to cross or return are different from moving normally, so the

original expectations need to be updated.

Fortunately, those characteristics of active logic are designed to deal with these

problems, which include reasoning step by step, labeling rules and knowledge with

timestamps, technologies to resolve contradictions, and updating expectations and

knowledge. Some details about the route crash example are shown below.

Initializing KB and expectations. UnBlocked(AB), t=0. LocateAt(A), t=0.

MoveNormal(AB).

ArriveAt(B). SpectFrontRoute. SpectBackRoute.

Set some kinds of perturbations. ¬UnBlocked(AB). CrashAt(X), X∈AB. FireAt(X), X∈

AB indicates there is fire on route AB. BloodAt(X), X∈AB indicates there is flood on route

AB.

 Evaluating the perturbations:

 CrashAt(X)∧CrashWidth(Width)∧Width>5→Danger(Crash).

 CrashAt(X)∧CrashWidth(Width)∧Width<5∧¬CrashGrowing(X) → Safe(Crash).

 CrashAt(X)∧CrashGrowing(X)→Danger(Crash).

 CrashAt(X)∧Danger(Crash) →¬UnBlocked(AB).

 Guidance actions:

 Danger(Crash) ∧ UnBlocked(AC) → TurnAround ∧ MoveAccelerate(CA).

 Safe(Crash) ∧UnBlocked(BC) →MoveAccelerate(CB).

 Danger(Crash) ∧ ¬UnBlocked(AC) →Stop ∧ AskforHelp.

 According to above perturbation handling mechanism, if Jack find a crash at time step

t=5 and the crash is too wide to cross, then Jack should return to location A.

 SpectFrontRoute，1<t<5.

 CrashAt(X), X∈AB，t=5.

 CrashWidth(Width)∧Width>5, t=6.

 CrashAt(X)∧CrashWidth(Width)∧Width>5→Danger(Crash), t=7.

 CrashAt(X)∧Danger(Crash) →¬UnBlocked(AB), t=8.

 Contra(UnBlocked(AB), ¬ UnBlocked(AB), t=9.

 Delete(UnBlocked(AB)), t=10.

 SpectBackRoute, t=11.

 Danger(Crash) ∧ UnBlocked(CA) → TurnAround ∧ MoveAccelerate(CA), t=12.

In this process, KB is continuously updated, such as ¬UnBlocked(AB) is added to KB,

the expectation changes to MoveAccelerate(CA), and so on.

6. Conclusion

Base on combining metacognitive loop with improved active logic, this paper proposed

an efficient robot commonsense reasoning framework. Among metacognitive loop as the

top regulating system play a key role in monitoring, evaluating, and guiding the reasoning

process. Improved active logic is able to resolve contradicted knowledge reasonably, to

keep every historical reasoning step as the reasoning is time situated, and to continuously

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

190 Copyright ⓒ 2015 SERSC

update knowledge in KB. However in our example, we did not consider many kinds of

perturbations, also the evaluation methods and guidance actions are very limited,

therefore, Jack is not able to deal with unknown perturbations efficiently. Fortunately

despite lack of these explicit perturbation handling methods and in the simplest case,

suppose Jack could not deeply evaluate some perturbations, he can ask us for help or stop

from executing missions in a modest way. Our research group is now focusing on human

computer interactions (HCI) using a MCL based methodology, and some state-of-the-art

reinforcement learning methods such as natural actor-critic (NAC), and simulating a

virtual robot to learn itself and the world. Our long term research aims to construct a

human-level and flexible robot who can learn, reason, memory, thing, percept, and

interact with the world.

Acknowledgements

This research was supported by International Exchange Program of Harbin Engineering

University for Innovation-oriented Talents Cultivation, National Natural Science

Foundation of China (Grant No. 61100007, 61100081) and Fundamental Research Funds

for the Central Universities (HEUCFT1102, HEUCF041207).

References

[1] M. Anderson and D. Perlis, “Logic, self-awareness and self-improvement: The metacognitive loop and

problem of brittleness,” Journal of Logic and Computation, vol. 15, no. 1, (2005), pp. 21-40.

[2] M. Anderson, T. Oates, W. Chong, and D. Perlis. “The metacognitive loop I: Enhancing reinforcement

learning with metacognitive monitoring and control for improved perturbation tolerance,” Journal of

Experimental and Theoretical Artificial Intelligence, vol. 18, no. 3, (2006), pp. 387-411.

[3] Tongchun Du, Michael T. Cox, Don Perlis. “From Robots to Reinforcement Learning”. (2013)

International Conference on Tools with Artificial Intelligence, Washington DC.

[4] Don Perlis, Michael T. Cox, Michael Maynord, et al. A Broad Vision for Intelligent Behavior: Perpetual

Real-World Cognitive Agents [J]. Advances in Cognitive Systems 2 (2013) 1-18.

[5] Richard S. Sutton, Andrew G. Barto. Reinforcement Learning: An

Introduction,http://www.cs.ualbert.ca/%7Esutton/book/the-book.html (1 di 4)22/06/2005 9.04.27

[6] Thorben Ole Heins. A Case Study of Active Logic. Report.

[7] Preeti Bhargava, Micheal T. Cox, Tim Oates. The Robot Baby and Massive Metacognition: Future

Vision.(2012)

[8] Tongchun Du, Don Perlis, Michael T. Cox, Jared Shamwell, Tim Oates. “From Robots to Reinforcement

Learning.” (2013) ICTAI proceeding

[9] Jared Shamwell, Tim Oates, Preeti Bhargava, Michael T. Cox, Uran Oh, Matthew Paisner, Donald Perlis,

“The robot baby and massive metacognition: Early steps via growing neural gas.” Proceedings of the

IEEE Conference on Development and Learning - Epigenetic Robotics (2012) (ICDL/EpiRob)

[10] M. Anderson, D. Josyula, Y. Okamoto, and D. Perlis, “Time-situated agency: active logic and intention

formation”, 25th German Conference on Artificial Intelligence, (2002).

[11] H. Haidarian, W. Dinalankara, S. Fults, S. Wilson, D. Perlis, M. Schmill, T. Oates, D. Josyula and M.

Anderson, “The Metacognitive Loop: An Architecture for Building Robust Intelligent Systems”,

Proceedings of the AAAI Fall Symposium on Commonsense Knowledge (AAAI/CSK’10) (2010),

Arlington, VA, USA, November 11-13.

Authors

Kejun Wang, he received the Master’s degree in Automatic

control theory and applications from Harbin Shipbuilding

Engineering Institute in 1987, and PhD degree in Ships and marine

equipment and systems from Harbin Engineering University in 1995.

His research interests are biometric features recognition,

bioinformatics and biometric, and fitness things.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

Copyright ⓒ 2015 SERSC 191

Tongchun Du, he received his Bachelor’s degree from Harbin

Engineering University in 2009 and is a PhD student majored in

pattern recognition and intelligent system up to now. His research

mainly focuses on machine learning and artificial intelligence.

Xiaofei Yang, he received his Bachelor’s degree from

Heilongjiang University in 2006 and is currently a PhD student

majored in pattern recognition and intelligent system in Harbin

Engineering University. His research involves finger vein recognition

and biometric features fusion theory, etc.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.4 (2015)

192 Copyright ⓒ 2015 SERSC

