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Abstract 

To perform missions assigned by people, the mobile robot needs to learn both itself 

and the world it is in, to use the learned knowledge to reason and make decisions to 

resolve problems, and to guide further learning, and to establish its knowledge base 

which contains huge amounts of common sense. During the process of executing missions 

by reasoning and learning, it is critical to enable domain-specific robots be more tolerant 

rather than puzzled when encountering perturbations. In this paper, active logic is 

improved to deal with contradicted beliefs, metacognitive loop is incorporated to 

supervise and guide the whole reasoning process. Finally, route crack experiments state 

that this metacognitive loop and improved active logic based method can handle robot 

commonsense reasoning in an efficient way and be comparatively robust with 

perturbations. 
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1. Introduction 

One long-standing dream of researchers in artificial intelligence and cognition science 

communities is to construct a flexible and human-level intelligent system/agent, such as a 

so-called autonomous and/or intelligent robot [1]. To illustrate what “flexible” means, let 

us consider some contrasted examples, some domain or mission specific robots would be 

disordered, have no idea about what to do, even be injured, and finally result in failure, 

when the environment deviates a little from their expectations. For example, an unmanned 

vehicle can automatically avoid obstacles and select flat routes to go through, but suppose 

there occurs a big ditch on its frontal route (note that this is different from a traffic jam), 

then how should the unmanned vehicle do to handle this situation, to save itself, and to 

lead to a successful mission executing?  Another example is the rescue robot which 

usually uses infrared sensors to look for survivals at night, but if a building is on fire and 

thus makes infrared sensors unsuitable to detect, how can the rescue robot find this 

changed circumstance and adjust both its sensors and detecting algorithms automatically? 

In this paper, “perturbation” is defined as all situations that are different from what are 

pre-designed, e.g., sensor failure, environment change, etc. When encountering a 

perturbation, a robot can protect itself, recover from the perturbation, re-assign its goal, 

and change policies to guide executing missions. The abilities in this case are to some 

degree what we intend to think of as “flexible” [1]. 

As one vehicle of Artificial Intelligent, a mobile robot often situates in complex and 

dynamic environments. To perform missions assigned by people, the mobile robot needs 

to learn both itself and the world it is in [5, 9], to use the learned knowledge to reason and 

make decisions to resolve problems and to guide further learning, and to establish its 

knowledge base which contains huge amounts of common sense [3]. Similar to but a little 

different from an expert system which also needs huge amounts of expertise, what a robot 

needs is a lot of common sense, e.g., a household robot needs to learn about a kitchen’s 

environment including how a door looks like, what a plugin is, and how to plan a path 

from one location to another, etc. Such kinds of common sense can be initially added by 
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the agent designer to the knowledge base (KB) or be obtained through learning, 

perception, and reasoning. Reasoning rules of course play one critical role in KB. As is 

concluded by many researchers, the main challenges of commonsense reasoning include 

but not limit to that common sense cannot be fully described, that the expressions are 

imprecise and incompatible, and that reasoning is non-monotonic. In the past decades, 

non-monotonic reasoning always played the core role in commonsense reasoning, several 

derived algorithms also paid much attention to non-monotonic problems and tried to 

extend KB of commonsense to contain as many kinds of perturbations as possible. When 

there exist contradicted beliefs (facts and rules), some methods even simply ignore those 

contradictions and use the remaining knowledge to reason. It seems that contradictions 

and perturbations are so horrific that everyone want to avoid them. However, in our 

opinion, much of human knowledge are just gained from mistakes and contradictions, so 

even contradicted beliefs could help commonsense reasoning. What is more, it will be a 

labor intensive job for a reasoning machine designer to consider all kinds of perturbations 

and put them in KB. Along this cue, we argue it is critical to design a domain general 

perturbation handling mechanism to supervise the commonsense reasoning process. In the 

paper, metacognitive loop is just playing this key role.   

KB is continuously updated as the reasoning process goes. How to let the reasoning 

machine not only reason about rules and knowledge but also make notes of the reasoning 

process, so that when contradicted beliefs occur or some logic errors appear, the system 

can conveniently consult and find out the problems. The answer is active logic which is 

time situated, can not only reason in real time but also reason about time, and is able to 

detect contradicted beliefs efficiently. We improve its contradiction handling ability by 

adding some rules and definitions. 

To supply the context of our idea, a “route crash” example will be presented in Section 

II; Section III introduces the metacognitive loop (MCL); the principles of active logic lie 

in Section IV; we give some details about how to realize our idea about route crash 

example in Section V, also you will see our current plans and future research directions 

there.  

 

2. Route Crash Example 

Robot Jack moves at a normal speed from location A to location B along a 

planned route AB. At location C on the midway, his sensors find that a crash occurs 

which may block the way to B. How should Jack react? 

Let’s stop to make some explanations. Jack has its KB which contains some knowledge 

about a crash, e.g., he can cross those crashes with finite width by accelerating. Since the 

crash is not included in the route plan, Jack thinks of it as a perturbation to going through 

the route AB. Herein, the original belief (e.g., Unblocked (AB) ) is not suitable to describe 

the current world.   

Suppose there is a pre-equipped crash perturbation handling method with Jack. It 

should be like this:  Jack will observe the crash’s width and decide whether it is becoming 

larger, and observe route AC to see if it is the same as before and if it is still safe (that is 

Jack’s initial expectations: no perturbation and safety). If he is sure that the crash is not 

too wide and not becoming wider, that route CB is still safe, and that according to his 

knowledge he can cross the crash by accelerating, then he will accelerate to cross the 

crash. If Jack finds that the crash is too wide to allow him cross or the crash is becoming 

wider and wider, and route AC is still safe, then he would probably choose to accelerate to 

return to location A. It is important to note that “accelerate to cross” and “accelerate to 

return” are much different from “move normally”.   

In this route crash case, Jack’s actions involve several kinds of abilities, he needs to be 

able to firstly plan the path AB, to have KB including many common sense about a crash, 

some expectations about going through the route and how the route looks like, to be able 
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to observe the width and the state of the crash and compare the value to his experience, to 

evaluate the danger level to decide to go forth or return, and to possibly learn how to 

accelerate. Reasoning, memory, vision, and learning all are required to bring Jack closer 

to the so-called intelligent agent [4]. But the core role in this case is obviously the 

perturbation detecting and handling mechanism/framework. Our long term research aims 

to put some state-of-the-art technologies in this agent and has gained some successes. 

Despite there is still an unforeseen way to go, we are pleased to present some parts of our 

work here.  

 

3. Metacognitive Loop 

Metacognitive loop (MCL) is composed of setting expectations, comparing 

observations to expectations, evaluating and explaining the perturbations, reacting to the 

perturbations to guide the agent, and adjusting the expectations [2, 4, 11]. 

 

Note Evaluate Guide

Host

Expectation Actions                  

MCL

 

Figure 1. Perturbation Handling Procedures of MCL [2] 

The contribution of MCL to the route crash example is detailed as below. Jack has an 

expectation about route AB (i.e. unblocked), when there is a discrepancy between the 

observation and this expectation, Jack views the observation as a perturbation; evaluates 

the perturbation according to his available knowledge; then supplies corresponding 

actions to guide executing subsequent missions, e. g, accelerate to cross the crash and go 

along route CB or accelerate to return to A; and finally adjusts the original expectations 

such as MoveTo(A), and adds these  two pieces of knowledge, that accelerating to cross or 

accelerating to return can deal with route crashes, to KB. 

We could say with equipping MCL as the perturbation handling framework, if Jack 

owns a lot of common sense about crashes, he can do well in dealing with crash 

perturbations. Moreover, even though Jack knows little about crashes, MCL has a suit of 

simple but efficient methods to resolve anomalies, e.g., evaluation methodology evaluates 

that the perturbation may do harm to Jack but cannot get detailed information about the 

crash, then guidance methodology just selects an avoiding policy to escape from this 

perturbation. If Jack is sure that the crash is a perturbation but has no idea how to react, he 

will ask for help or just terminate the mission. In practice, MCL aims to enable the system 

more tolerant to perturbations rather than limit the scope of perturbations. 

There are three key issues with MCL. First, how to select detecting technologies 

according to the world’s changes? Second, how to fast and reasonably evaluate the 

perturbation’s level? That is another reason why MCL is worthy. If the level of 

perturbations is low and cannot affect the mission executing, e.g., the crash is not wide 

and allows Jack to cross, then Jack (the host) should not change expectations, because in 

this case accelerating to cross the crash may be at a high cost. Third, what kind of policy 

is most efficient to lead react corresponding to some specific perturbations? These 

policies at the least include go-back policy, which means if knowledge about the 

perturbation is very limited, then the agent should simply return to the starting location 
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and learn from scratch, e.g., if receiving a recommended action “accelerate to cross” but 

he does not know how to accelerate, Jack then needs to learn the new notation.   

MCL can not only monitor system’s performance, but also know its descriptions about 

perturbation are not suitable, and then employ methods such as learning and updating 

beliefs to improve its performance. Therefore, different kinds of descriptions, reasoning 

methods, and self-monitoring should be combined and cooperate in an efficient way. 

Besides, as different domains need different kinds of methodologies and rules, the 

designer of MCL should guarantee the knowledge and rules are suitable to the specific 

domain. The system should be aware of the world shifting in order to adjust itself, which 

requires abilities of high-level self-awareness and self-control.  Self-learning and self-

improving are too in need to keep the system adaptive from one domain to another by 

learning and choosing suitable methodologies. Above are the salient characteristics of 

system with MCL [1, 2, 4, 7]. 

 

4. Active Logic 

KB consists of linguistic descriptions from users, environment descriptions, domain 

states, and rules added by managers. It can also divided into rules, facts, and states, all are 

called knowledge [1, 2, 6]. The process that active logic reasons about knowledge and 

makes notes of the process is depicted in Figure 2 [2]. 

 

linguistic description

environment

domain states

rules

Active logic

Observe and make 

note of reasoning 

process

 KB

 

Figure 2. Procedures of Reasoning about Knowledge in KB of Active Logic 

Active logic is time situated, which can reason in real time as well as reason about 

time. All rules and knowledge are labeled with timestamps. The symbolic representations 

are listed here. ∧ means logic and, → induct to, ¬ not，∈ contained by, and‖irrelevant. 

Some reasoning rules of active logic are show here [10]. 

     (1) “Now” awareness. All rules and knowledge are coupled with timestamps, e. g, the 

current step number is i, then next time step is i+1. 

 

i: Now(i) 

i+1: Now(i+1) 

    

  (2) Modus Ponens. If at time step i KB has knowledge A and the rule B can be obtained 

with A, then next step, B is gained and added to KB. There is also extended modus ponens.  

 
𝑖: … , ∝, (∝→ 𝛽)

𝑖 + 1: … , 𝛽
        𝑀𝑜𝑑𝑢𝑠 𝑃𝑜𝑛𝑒𝑛𝑠      

 
𝑖: … , 𝑃1𝑎, … , 𝑃𝑛𝑎, ∀𝑥[(𝑃1𝑥 ⋀ … ⋀ 𝑃𝑛𝑥) → 𝑄𝑥]

𝑖 + 1: … , 𝑄𝑎
      

 
𝐸𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑀𝑜𝑑𝑢𝑠 𝑃𝑜𝑛𝑒𝑛𝑠 
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     (3) Inheritance. Knowledge at the former time step will be inherited at the next time 

step. 

 
𝑖: … , 𝛼

𝑖 + 1: … , 𝛼 
       𝐼𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒    

     (4) Modus Tollens. If the conclusions do not exist, then corresponding preconditions are 

not fulfilled. 

 
𝑖: … , ! 𝛽, (𝛼 → 𝛽)

𝑖 + 1: … , ! 𝛼
       𝑀𝑜𝑑𝑢𝑠 𝑇𝑜𝑙𝑙𝑒𝑛𝑠 

 

(5) Contradiction detection. If novel knowledge (derived by reasoning or obtained 

through observation) in KB is conflicted with old knowledge, active logic can detect this 

conflict and delete the unsuitable knowledge to keep KB consistent. In active logic, the 

contradiction detection and handling are completed within two time steps. 

 
𝑖: … , ∝, ! ∝

𝑖 + 1: … , 𝑐𝑜𝑛𝑡𝑟𝑎(𝛼, ! 𝛼)
       𝐶𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 

 

It is easy to detect contradictions but hard to resolve them. In many cases, we cannot 

just delete contradictions, nor could we ignore them but only use consistent knowledge to 

reason. This paper makes some revisions to improve the contradiction detection and 

handling abilities of active logic.  

      (6) We define Fact1 and Fact2 as two facts, and CommonSense1 and CommonSense2 

as two common sense. Facts are concrete and special, while common sense are abstract 

and general. The relations between facts and common sense include contained, negated, 

and irrelevant. 

 

Fact1‖ Fact2 indicates Fact1 is irrelevant to Fact2. 

Fact1 = ¬ Fact2 indicates Fact1 is the negated form of Fact2. 

Fact1∈ Fact2 means Fact1 is contained by Fact2. 

 

     Contra (CommonSense1, CommonSense2) indicates that CommonSense1 and 

CommonSense2 are a pair of contradicted knowledge. 

     If we have  

Fact1 → CommonSense1 

Fact2 → CommonSense2 

Contra (CommonSense1, CommonSense2), and 

Fact1 ∈ Fact2, 

 

Then keep CommonSense1 and delete CommonSense2, because Fact1 is a special case 

of Fact2, we call this fact first policy. But if Fact1 ‖ Fact2 which means two irrelevant 

facts induct two contradicted conclusions, then delete both two conclusions or just ignore 

them waiting for more knowledge to process later.  

Besides, the contained relations of facts have transitivity, that is to say, if Fact1 ∈ 

Fact2, Fact2 ∈ Fact3, then we get Fact1 ∈ Fact3.  

     (7) For irrelevant facts and common sense, if they are not contradicted with 

preconditions of a rule, they do not influence the reasoning. 

 

If Fact1 ‖  Fact2 

Fact1 → CommonSense1, then 

Fact1 ∧ Fact2 → CommonSense1. 
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     (8) Modus Ponens does not have transitivity.  If A→B，B→C，now given A, we could 

get A∧(A→B)∧(B→C)→C rather than A→C. Similarly, Modus Tollens does not have 

transitivity.  

We would like to test the improved active logic using some benchmark examples of 

commonsense reasoning below. 

     (a) If it is rainy, then the floor is wet. It is rainy, so the floor is wet.  

 

Rainy(Weather)→Wet(Floor) 
 

     (b) Birds can fly, wiki is a bird, so wiki can fly. 

 

Birds(wiki)∧((Birds(X)→CanFly(X))→CanFly(wiki) 

 

     (c) Birds can fly, wiki is a bird, but wiki cannot fly, so wiki cannot fly.  

 

Birds(wiki)∧(Birds(X)→CanFly(X))∧ (¬CanFly(wiki))∧(wiki∈Birds) 

→¬(CanFly(wiki)) 

     (d) If it is rainy, then the floor is wet. It is rainy and windy, so the floor is wet. 

 

Windy(Weather)∧(Rainy(Weather) → Wet(Floor))∧(Windy(Weather)‖Rainy(Weather)) 

                                                        →Wet(Floor) 

 

     (e) Nixon Christians are pacifists, communists are not pacifists, Nixon is a Christian, 

and Nixon is a communist, so Nixon is (pacifist or not)? 

 

(Christian(X) → Pacifist(X))∧(Communist(X)→¬ Pacifist(X)) 

∧Christian(Nixon)∧Communist(Nixon)∧(Christian(X)‖Communist(X)) 

→Contra(Pacifist(Nixon), ¬ Pacifist(Nixon)) 

 

     (f) Penguin is a bird, birds can fly, penguin cannot fly, wiki is a bird, and wiki is a 

penguin, so wiki (can fly or not)? 

 

Birds(wiki)∧(Birds(X)→CanFly(X))∧(Penguin(X)→(¬ CanFly(X))) 

∧(Penguin(wiki))∧Penguin(X)∈Birds(X) 

→¬(CanFly(wiki)) 

     (g) If Carter died in 1979, then he would not fail in the selection in 1980. If Carter did 

not fail in the selection in 1980, then Reagan would not be selected as the president. So if 

Carter died in 1979, Reagan would not be selected as the president.  As is talked before, 

Modus Ponens does not have transitivity, so this inference is not set up. 

 

Died(Carter)→¬FailedSel(Carter)∧¬FailedSel(Carter)→FailedSel(Reagan) 

→(Died(Carter)∧(¬FailedSel(Carter)→ FailedSel(Reagan)) 

 

Supplemented with rules (6), (7), and (8), active logic get more suitable for 

commonsense reasoning. Besides every piece of conclusion, precondition, reasoning rule, 

and every step of reasoning process are labeled with timestamps, the technology to handle 

contradictions can be summarized as that reasoning rules do not have the transitivity, that 

the conclusions derived by specific preconditions with small extension are superior to 

those derived by general preconditions with large extension, and that those contradicted 

conclusions derived by irrelevant preconditions should be both deleted or pended waiting 

for sufficient knowledge to handle. 
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5. Experiments and Analysis 

The route crash example involves three basic problems in commonsense reasoning: (1) 

Beliefs would change as the time goes, that is, Jack expected the route is unblocked and 

then found there was a crash blocking his route. (2) If the agent does not have knowledge 

about crashes, such as how to observe the changes of crashes, then it could not 

describe and make decisions properly. That is, knowledge in KB could not match the 

environment. (3) Accelerating to cross or return are different from moving normally, so the 

original expectations need to be updated. 

Fortunately, those characteristics of active logic are designed to deal with these 

problems, which include reasoning step by step, labeling rules and knowledge with 

timestamps, technologies to resolve contradictions, and updating expectations and 

knowledge. Some details about the route crash example are shown below. 

Initializing KB and expectations. UnBlocked(AB), t=0. LocateAt(A), t=0. 

MoveNormal(AB). 

ArriveAt(B). SpectFrontRoute. SpectBackRoute. 

Set some kinds of perturbations. ¬UnBlocked(AB). CrashAt(X), X∈AB. FireAt(X), X∈

AB indicates there is fire on route AB. BloodAt(X), X∈AB indicates there is flood on route 

AB. 

     Evaluating the perturbations: 

 

     CrashAt(X)∧CrashWidth(Width)∧Width>5→Danger(Crash).  

     CrashAt(X)∧CrashWidth(Width)∧Width<5∧¬CrashGrowing(X) → Safe(Crash). 

     CrashAt(X)∧CrashGrowing(X)→Danger(Crash). 

     CrashAt(X)∧Danger(Crash) →¬UnBlocked(AB). 

     Guidance actions:  

     Danger(Crash) ∧ UnBlocked(AC) → TurnAround ∧ MoveAccelerate(CA). 

     Safe(Crash) ∧UnBlocked(BC) →MoveAccelerate(CB). 

     Danger(Crash) ∧ ¬UnBlocked(AC) →Stop ∧ AskforHelp. 

     According to above perturbation handling mechanism, if Jack find a crash at time step 

t=5 and the crash is too wide to cross, then Jack should return to location A. 

     SpectFrontRoute，1<t<5. 

     CrashAt(X), X∈AB，t=5. 

     CrashWidth(Width)∧Width>5, t=6. 

     CrashAt(X)∧CrashWidth(Width)∧Width>5→Danger(Crash), t=7. 

     CrashAt(X)∧Danger(Crash) →¬UnBlocked(AB), t=8. 

     Contra(UnBlocked(AB), ¬ UnBlocked(AB), t=9. 

     Delete(UnBlocked(AB)), t=10. 

     SpectBackRoute, t=11. 

     Danger(Crash) ∧ UnBlocked(CA) → TurnAround ∧ MoveAccelerate(CA), t=12. 

 

In this process, KB is continuously updated, such as ¬UnBlocked(AB) is added to KB, 

the expectation changes to MoveAccelerate(CA), and so on. 

 

6. Conclusion 

Base on combining metacognitive loop with improved active logic, this paper proposed 

an efficient robot commonsense reasoning framework. Among metacognitive loop as the 

top regulating system play a key role in monitoring, evaluating, and guiding the reasoning 

process. Improved active logic is able to resolve contradicted knowledge reasonably, to 

keep every historical reasoning step as the reasoning is time situated, and to continuously 
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update knowledge in KB. However in our example, we did not consider many kinds of 

perturbations, also the evaluation methods and guidance actions are very limited, 

therefore, Jack is not able to deal with unknown perturbations efficiently. Fortunately 

despite lack of these explicit perturbation handling methods and in the simplest case, 

suppose Jack could not deeply evaluate some perturbations, he can ask us for help or stop 

from executing missions in a modest way. Our research group is now focusing on human 

computer interactions (HCI) using a MCL based methodology, and some state-of-the-art 

reinforcement learning methods such as natural actor-critic (NAC), and simulating a 

virtual robot to learn itself and the world. Our long term research aims to construct a 

human-level and flexible robot who can learn, reason, memory, thing, percept, and 

interact with the world. 
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