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Abstract 

2D vector maps are very important data in geographical information systems (GISs). It 

is considered to be content for which verification of integrity and authentication are 

urgently required. Using a marking technique and a rotation, scaling and translation 

(RST) invariant watermark generation method, we propose a scheme that detects and 

locates malicious attacks with high accuracy while providing the RST invariance 

property. In particular, we propose setting a unique mark on each feature, calculating the 

authentication watermark for each spatial feature group by folding the hash results of the 

differences of the log-radiuses, and embedding the watermark using a RST invariant 

watermarking method. While the watermark ensures both the sensitivity to malicious 

manipulations and the RST invariance property, the mark of each feature provides 

superior accuracy of tamper localization. Moreover, this algorithm is immune to feature 

rearrangement and vertex reversing operations. Theoretical analysis and experimental 

results are provided to demonstrate the effectiveness of our method. 

 

Keywords: authentication, fragile watermarking, tamper localization, RST invariance 

property, 2D vector map 

 

1. Introduction 

These days, digital products are gradually replacing their classical analogue 

counterparts. This is quite understandable because digital data can be easily replicated, 

manipulated and distributed using powerful available tools and equipment. On the other 

hand, it is very easy even for an amateur to illegally produce perfect copies of the original 

data and maliciously modify the original content. Thus, it is desirable to develop a strong 

method to protect the copyright and authenticate the integrity of the digital data.  

Many view watermarking as a potential solution for the requirement above. This 

technique can be defined as a process that embeds a secret code, called a watermark, into 

an object. Depending on the end applications, watermarking can be classified as robust or 

fragile schemes. The robust watermarking indicates the ownership while the fragile 

watermarking authenticates the integrity of digital data and locates any modification made 

to the original content. In this paper, we mainly consider fragile watermarking schemes 

for 2D vector maps. 

Currently, research on watermarking for 2D vector maps is mainly focused on robust 

watermarking [1-9] for copyright protection or reversible (also referred to as invertible, 

lossless, or distortion-free) watermarking [10-14] for content recovery. Few works have 

been done on 2D vector map fragile watermarking [15-19]. Shao et al. [15] divided the 

vertices into non-intersecting groups and embedded the watermark using Fridrich et al.’s 

reversible watermarking algorithm [14]. A drawback of this algorithm is that the tamper 

localization ability will be ruined if some vertices/features have been added or deleted. 
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Zheng and You [16] separated the vertices of a 2D vector map into several blocks 

according to a predefined threshold and embedded the watermark block by block. 

Because a vertex addition/deletion attack may make the block division result different 

from the original one, leading to correct watermark extraction impossible, it fails to locate 

tampered blocks. Another scheme was presented by Zheng et al. [17], in which the 

features are divided into different groups and the watermarks are embedded group by 

group independently. As the features are traversed according the record number, a feature 

reordering operation or a feature addition/deletion attack may totally disable the 

localization capability. To locate malicious attacks accurately and recover the original 

content, Wang and Men [18] proposed a reversible fragile watermarking algorithm based 

on feature marking. The features are divided into groups and the watermark is embedded 

using Wang et al.’s reversible watermarking technique [10]. For achieving good tamper 

localization performance, a marking method based on vertex insertion is applied to each 

feature. This scheme can locate tampered data accurately. Besides, Wang and Men [19] 

proposed a reversible fragile watermarking scheme for locating tampered blocks using a 

fragile watermarking technique based on vertex insertion. It can locate tampered regions 

accurately. However, since in some applications a vector map is still regarded as having 

value in use after RST transformations, and these operations are not seen as malicious 

attacks, the lack of RST invariance property may limit these schemes’ application scope.  

To provide both the RST invariance property and good tamper localization capability, 

we propose a RST invariant authentication watermark generation method and a feature 

location marking technique, and apply them to the fragile watermarking scheme for 2D 

vector maps. The shapefile format of Environmental Systems Research Institute, Inc. 

(ESRI) [20] is exploited for the algorithm. We divide the spatial features into groups and 

apply the marking method to each feature for correctly identifying the original features of 

each group in the watermark verification stage. After that, for each group, we generate a 

RST invariant watermark by folding the hash results of the differences of the log-radiuses, 

and embed the watermark using Chou and Tseng’s method [21]. While the watermark 

generation method ensures the properties of RST invariance and the sensitivity to 

malicious manipulations, the feature marking algorithm provides good tamper localization 

capability. Moreover, this scheme is immune to feature rearrangement and vertex 

reversing operations.  

The remaining sections are organized as follows. Section 2 briefly reviews the 

watermarking method by Chou and Tseng [21]. Section 3 explains our RST invariant 

fragile watermarking algorithm in detail. We present the experimental results and an 

analysis of the algorithm in Section 4. Conclusions are summarized in Section 5. 

 

2. Chou and Tseng’s RST Invariant Watermarking Method 

The 3D triangle model is used as the cover in Chou and Tseng’s algorithm [21]. Let t 

be a triangle, vn, vw and vh be the three vertices of t, w (0 ≤ w < Sw, Sw = 1, 2, 3,…) be the 

watermark to be embedded, Sw be an embedding parameter.  

In the embedding phase, the functionalities of t’s three vertices (vn, vw and vh) are 

first assigned. The vertex vn, called the normalization vertex, is used to get the 

normalized quantization step for t. The vertex vw, called the watermark-embedding 

vertex, is used to embed the watermark w. The vertex vh, called the hash-embedding 

vertex, is used to embed the hash function value h(w). w and h(w) are embedded and 

extracted using the same method. 

For embedding the watermark w into the vertex vw, the position of t’s neighboring 

vertices’ center t
c
 is first calculated, 
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where N(v) is the set of t’s neighboring vertices and |N(v)| is the size of N(v). In the 

following, we call the center of t’s neighboring vertices, i.e., t
c
, the neighboring center. 

Then, the normalized watermark quantization step Qw is computed using the 

Euclidean distance ||vnt
c
|| between the normalization vertex vn and the neighboring 

center t
c
, 

 

w
c

nw KtvQ / ,                                                                            (2) 

 

where Kw is an embedding parameter used to control the maximum distortion. 

After that, according to the Euclidean distance ||vwt
c
|| between the watermark-

embedding vertex vw and the neighboring center t
c
, vw is moved to a new location vw

e
 

so that the Euclidean distance || vw
e
t

c
|| between vw

e
 and t

c 
is a multiple of Qw,   
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Finally, the watermark w is embedded into vw
e
 and the watermarked vertex vw' is 

obtained, 
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After watermark embedding, vw' is on the straight line that is determined by vw 

and t
c
. For embedding the watermark w, vw moves less than Qw, i.e., the Euclidean 

distance ||vwvw'|| between vw and vw' is less than Qw (||vwvw'|| < Qw). Thus, the 

embedding distortion is less than Qw.  

The above is the embedding procedure. 

In the extraction phase, the normalized watermark quantization step Qw' is first 

calculated using Eq. (2). 

Then, according to the Euclidean distance ||vw't
c
|| between vw' and t

c
, the 

watermark is extracted from vw' by the following equation: 

 

'
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The above is Chou and Tseng’s method. After applying the RST transformations 

to a watermarked model, the embedded watermark can still be correctly extracted.  

 

3. The Proposed Watermarking Scheme 

In the proposed scheme, we suppose that the 2D vector map is composed of 

polyline or polygon features. As the only difference between a polyline and a 

polygon is that the first vertex coincides with the last one in a polygon, we will 

describe the method for polylines in detail. 

The scheme is introduced in two stages: watermark embedding and watermark 

verification.  

In the watermark embedding stage, the polylines of the vector map are first 

divided into groups using the watermark length L and the number of watermark bits 

a vertex carries c. As the original polylines of each group may be difficult to be 
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identified after malicious attacks, to accurately locate tampered groups in the 

watermark verification stage, we assign a unique mark, called the location ID, to 

each polyline and embed it into the polyline in the second step. The location ID can 

not only indicate the group which the polyline is divided into, but also denote the 

polyline’s location in the group. The vertices used to indicate the location ID are 

called mark vertices. Because of the importance of identifying the polylines’ 

original locations in the verification phase, the mark vertices do not carry 

watermark bits. Then, we generate a RST invariant authentication watermark for 

each group under the control of two private keys: K and k, and embed the watermark 

using Chou and Tseng’s method [21]. In each group, only one polyline is used to 

carry the watermark. Since a vertex carries c bits and the number of the mark 

vertices of each polyline is 4 which will be described in the feature location marking 

stage, the whole number of vertices within the polyline, which is used to carry the 

watermark, should be at least  cL /  + 4. We call the polyline that contains at least 

 cL /  + 4 vertices an eligible polyline. 

In the watermark verification stage, we first extract the embedded location ID of 

each polyline to identify its original location using the total number of polylines Z(Z 

= 1, 2, 3,…) and the parameter Kw. Then, according to the polylines’ location IDs, 

the original polylines of each group can be obtained. After that, for each group, we 

extract the embedded watermark and derive a watermark from the received vector 

map. Finally, tampered groups can be located by judging the mismatch between the 

extracted watermark and the watermark derived from the received content. 

 

3.1 Watermark Embedding Procedure 

The watermark embedding process consists of four basic steps: i) Group division 

ii) Feature location marking iii) Authentication watermark generation and iv) 

Watermark embedding. 

 

3.1.1 Group Division: Given a 2D vector map M that has Z polylines, we first traverse 

the whole vector map to find eligible polylines according to the unique record numbers of 

the polylines. Denote the polyline list which is ordered according to the polylines’ unique 

record numbers as P = {P
i 
| i ∈ [0, Z – 1]}, the eligible polyline list which is ordered 

according to their unique record numbers as Pe = {Pe
i 
| i ∈ [0, Ne – 1]}, and the whole 

number of eligible polylines of the vector map M as Ne. 

Then, we divide the polylines of P into non-overlapped groups, each of which 

contains n (n ≥1) polylines and at least one eligible polyline. To make sure that each 

group contains at least one eligible polyline, we assume Ne is greater than or equal 

to the whole number of groups Ng (Ng =  nZ / ). Because Z may be not a multiple of 

n, the number of polylines in the last group may be less than n. Suppose Pe
s
 = { Pe

s,i 

| i ∈ [0, Ng – 1]} is the eligible polyline list that contains the first Ng ordered 

polylines of Pe, and Pne = P – Pe
s 

= {Pne
i 
| i ∈ [0, Z – Ng – 1]} is the polyline list 

which consists of the ordered polylines of P except the polylines of Pe
s
. We divide 

the polylines into non-overlapped groups using the following method. 

For the i-th (0≤ i < Ng – 1) group Gi, it consists of the i-th eligible polyline of Pe
s
 

(i.e., Pe
s,i

) and Pne’s n –1 polylines from Pne
i×(n–1)

 to Pne
(i+1)× (n–1) –1

. 

For the last group GNg – 1, it consists of the (Ng–1)-th eligible polyline of Pe
s
 (i.e., 

Pe
s, Ng–1

) and Pne’s Nt (Nt =Z–Ng–(Ng–1)×(n–1)) polylines from Pn
(Ng – 1)×(n–1) 

to Pn
Z –

Ng–1
. That is, after group division, we have 
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We call the first eligible polyline of each group, which is used to carry the 

watermark, a watermark polyline, the second vertex of the watermark polyline a 

reference1 vertex and the penultimate vertex of the watermark polyline a reference2 

vertex. The reference1 vertex and the reference2 vertex will be used in the 

watermark embedding step. 

 

3.1.2 Feature Location Marking: For each group, a unique mark, i.e., the location ID, is 

assigned to each polyline. As a simple implementation, we assign the location ID mi,j (mi,j 

= i×n + j, m i,j ∈ [1, Z]) to the j-th (1≤ j ≤ n) polyline of the i-th (0≤ i ≤Ng – 1) group Gi. 

Then, we divide the polylines into three categories: one is composed of more than three 

vertices (normal), one is composed of three vertices (complex1) and the other is 

composed of two vertices (complex2). We will mark the three types of polylines using 

different approaches. 

 

a. Method of marking the location for a normal polyline 

Let’s assume a normal polyline Pln = {vi| i ∈ [0, r – 1], r > 3} contains r vertices and 

its location ID is mp,q (1≤ q ≤ n, 0≤ p ≤Ng – 1, mp,q ∈ [1, Z]). We embed mp,q into v0 to 

mark its location ID, and embed mp,q+1 into vr–1 to indicate the vertex order.  

We use Chou and Tseng’s method [21] to embed mp,q and mp,q+1. First, mp,q is 

embedded into v0. According to Eqs. (2)-(4), three different vertices (a normalization 

vertex, a watermark-embedding vertex and a neighboring center) are needed to embed 

mp,q. As mp,q+1 is going to be embedded into vr–1, vr–1’s coordinates will be changed after 

embedding. If vr–1 is used as a normalization vertex or a neighboring center in the process 

of embedding mp,q, the embedded mark mp,q may not be extracted correctly. Here, we 

embed the mark mp,q into v0 by regarding the vertices vr–2, v0 and v1 (v0≠ v1≠ vr–2≠ vr–1)  as 

the normalization vertex, the watermark-embedding vertex and the neighboring center, 

respectively.  

During embedding, the parameter Sw is set as 

 

2 ZSw ,                                                                                  (7) 

 

and the parameter Kw is set as 
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where 
jimlen

,
represents the length of the polyline whose location ID is mi,j, maxlen is the 

maximum length of the polylines of the vector map M, and τ is the vector map’s precision 

tolerance. With this configuration, the Euclidean distance ||v0v0'|| between v0 and v0' (the 

embedded v0) is always less than τ, i.e., 

 

 


len

r

w

r

w

vv

K

vv
Qvv

max
' ,

1212
100 .                                   (9) 

 

As the distortion introduced by feature location marking does not exceed the precision 

tolerance τ, the validity of the marked map data can be ensured. The parameter Kw 

obtained here will be directly used as an input in the verification phase. 
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Then, according to Eqs. (2)-(4) and Eqs. (7)-(8), we embed mp,q+1 into vr–1 by 

regarding the vertices v1, vr–1 and vr–2 (vr–2≠ vr–1≠ v1≠ v0) as the normalization vertex, the 

watermark-embedding vertex and the neighboring center, respectively.  

After setting a location ID on a normal polyline Pln, the marked normal polyline Pln
m
 

has the following characteristics: i) the vertex at one end of the polyline carries the 

polyline’s unique mark mp,q while the vertex at the other end of the polyline carries 

mp,q+1, ii) the vertex carrying mp,q is the first vertex of the polyline and the vertex carrying 

mp,q+1 is the last vertex of the polyline and iii) if the marked normal polyline is composed 

of four vertices, neither the first three adjacent vertices nor the last three adjacent vertices 

of the polyline are on the same straight line.  

Because of the condition, i.e., v0≠ v1≠ vr–2≠ vr–1, used in the embedding of mp,q, this 

marking method requires that the polyline contains at least 4 vertices. Thus, it can neither 

be applied to a complex1 polyline nor a complex2 polyline, and designing marking 

methods for complex1 polylines and complex2 polylines is necessary.  

As the first two adjacent vertices and the last two adjacent vertices of a marked normal 

polyline are used to indicate the polyline’s location ID and the vertex order, the number 

of its mark vertices is 4.  

 

b. Method of marking the location for a complex1 polyline 

For a complex1 polyline, we mark its location ID using Wang and Men’s method [18] 

for marking a PL1. Assuming the location ID of a complex1 polyline Plc1= {vi (vi
x
, vi

y
)| i 

∈ [0, 2]} is mp,q, we embed mp,q by inserting a vertex vc1(vc1
x
, vc1

y
) between v0 (v0

x
, v0

y
) and 

v1(v1
x
, v1

y
).  

The position of the vertex vc1is calculated by 
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In other words, the Euclidean distance between v0 and v1 is divided into Z+1 equal 

intervals and the number of intervals between v0 and vc1 is used to indicate the polyline’s 

location ID mp,q. 

After inserting the vertex vc1 into the polyline Plc1, the marked complex1 polyline Plc1
m
 

has the following characteristics: i) the four vertices it contains are not on the same 

straight line and ii) three adjacent vertices at one end of the polyline are on the same 

straight line, and the end which the three adjacent vertices are at indicates the beginning 

of the polyline’s vertex order. 

Since all the four vertices of a marked complex1 polyline are used to indicate the 

polyline’s location ID and the vertex order, the number of its mark vertices is 4. 

Although this marking method can also be used to mark the location of a normal 

polyline, because of the extra vertex’s space it requires for each polyline, it is not suitable 

for the applications where the storage space or the bandwidth is limited. Thus, the 

marking method for normal polylines is necessary. 

Moreover, this marking method cannot be applied a complex2 polyline. Assuming we 

mark a complex2 polyline’s location ID using this method, the marked complex2 polyline 

will consist of three vertices which are in the same line. After a vertex reversing attack, 

the original vertex order cannot be identified and the location ID we calculated in the 

verification phase may be incorrect. Thus, a marking method for complex2 polylines is 

needed. 
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c. Method of marking the location for a complex2 polyline 

For a complex2 polyline, we mark its location ID using Wang and Men’s method [18] 

method for marking a PL2. Assuming the location ID of a complex2 polyline Plc2= {vi (vi
x
, 

vi
y
)| i ∈ [0, 1] } is mp,q, we insert two vertices vc2,1 (

x
cv 1,2 , y

cv 1,2 ) and vc2,2(
x
cv 2,2 , y

cv 2,2 ) 

between v0 and v1. The vertex vc2,1 is used to indicate Plc2’s original vertex order and the 

vertex vc2,2 is used to mark Plc2’s location ID.    

We calculate the positions of the vertices vc2,1 and vc2,2 using the following equations: 
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and 
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That is, the Euclidean distance between v0 and v1 is divided into Z+3 equal intervals, 

the number of intervals between v0 and vc2,1 is one and the number of intervals between v0 

and vc2,2 is equal to mp,q +1. 

After inserting the two vertices vc2,1 and vc2,2 into Plc2, the marked complex2 polyline 

Plc2
m
 has the following characteristics: i) the four vertices it contains are on the same 

straight line, ii) the number of intervals between the two adjacent vertices at one end of 

the polyline is one while the number of intervals between the two adjacent vertices at the 

other end is more than one and iii) the end which the two adjacent vertices containing one 

interval are at indicates the beginning of the polyline’s vertex order. 

Because all the four vertices of a marked complex2 polyline are used to indicate the 

polyline’s location ID and the vertex order, the number of its mark vertices is 4. 

With these characteristics of a marked normal polyline, a marked complex1 polyline 

and a marked complex2 polyline, identifying each polyline’s original location ID and 

obtaining the original vertex order in the watermark verification stage are possible. 

After setting a unique mark on each polyline of Gi, a marked group Gi
m 

can be 

obtained. 

 

3.1.3. Watermark Data Generation:  To generate the watermark for each marked group, 

we first divide the vertices into two classes: one is used to generate the watermark (non-

watermark vertex) and the second one is used to embed the watermark (watermark 

vertex). Let the watermark polyline of the marked group Gi
m
 be the marked polyline Pl

m = 

{vj| j ∈ [0, r – 1], r ≥  cL /  + 4}. Pl
m
 is also a normal polyline, and the first two adjacent 

vertices and the last two adjacent vertices of it are mark vertices. Because the mark 

vertices do not carry watermark bits, the watermark vertices should be selected from the 

rest vertices of Pl
m
. Here, we see Pl

m
’s p (p =  cL / ) vertices from v2 to vp+1 as the 

watermark vertices of Gi
m
 and the rest vertices of Gi

m as the non-watermark vertices. 

Denote the watermark vertex set of Gi
m as Vi

w
 = { vj(vj

x
, vj

y
)| j ∈ [0,  cL /  – 1]}.  
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Then, using the non-watermark vertices of Gi
m, we generate the watermark Hi by the 

following function, 

 

),),,,),((( KLMikGIhashgrouphashH in
m
ii  ,                       (13) 

 

where I(·) is the method for acquiring the RST invariant spatial data of the non-

watermark vertices and attribution data of all polylines of Gi
m
, hash(·) represents an 

existing cryptographic hash method, k is a private key to obtain a random number for the 

input of hash(·), Min denotes the index of the vector map, L is the length of the generated 

watermark bits, grouphash(R, L, K) is a function that returns L bits from a string R in a 

random fashion under the control of a secret key K, and the bit string Hi ={hj | hj ∈ {0,1}, j 

∈ [0, L – 1]} of length L is the generated watermark.  

We acquire the RST invariant spatial data of the non-watermark vertices for I(·) using 

the following 4 steps. 

Step1. Scan the non-watermark vertices to get an ordered non-watermark vertex 

list. We traverse the marked polylines of Gi
m
 from the polyline that has the 

smallest location ID to the polyline that has the biggest location ID. Within each 

polyline, we scan the non-watermark vertices from the first vertex to the last 

vertex. Let Ni
nw

 be the whole number of the non-watermark vertices of Gi
m and 

Vi
nw

 = { vj(vj
x
, vj

y
)| j ∈ [0, Ni

nw
 – 1]} be the ordered non-watermark vertex list. 

Step 2. Calculate the center Gc,i (Gc,i
x
, Gc,i

y
) of the vertices of Vi

nw
 by 
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Step 3. Apply the log-polar mapping to the vertices of Vi
nw

 and get a log-radius 

list Vi
nw,r

 = {rj | j ∈ [0, Ni
nw

 – 1]}, 
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Step 4. Obtain the RST invariant spatial data Vi
nw,s

 = {sj| j ∈[0, Ni
nw 

– 2]} of Gi
m
 

by calculating the difference of every two adjacent elements of Vi
nw,r

, 

 

1 jjj rrs .                                                             (16) 

 

The above process of acquiring the RST invariant spatial data for I(·) is shown in 

Figure 1. 
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Figure 1. The Process of Acquiring the RST Invariant Spatial Data for I(·) 
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As the differences of the log-radiuses remain unchanged after RST transformations 

which will be discussed in Section 4.2, the watermark is invariant to RST. Furthermore, 

because the feature rearrangement and vertex reversing operations change neither the 

vertex traversing order nor the data’s precision, the watermark is also invariant to these 

attacks. 

 

3.1.3. Watermark Embedding: Let’s assume a watermark Hi ={hj | hj ∈ {0,1}, j ∈ [0, L 

– 1]} is going to be embedded into the marked group Gi
m
, and the watermark vertex set of 

Gi
m
 which we have obtained in the watermark generation stage is Vi

w
 = { vj(vj

x
, vj

y
)| j ∈ [0, 

 cL /  – 1].  

We first calculate the watermark sequence Wi ={wi
j
| j ∈ [0,  cL /  – 1]} to be 

embedded using Hi, 
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Then, for any element wi
j 
of Wi, we embed it into the watermark vertex vj of Vi

w
 using 

Eqs. (2)-(4). During embedding, the reference2 vertex of Gi
m
, the vertex vj, and the 

reference1 vertex of Gi
m

 are seen as the normalization vertex, the watermark-embedding 

vertex and the neighboring center, respectively. The parameter Sw is set as 2
c
 and the 

parameter Kw is set using Eq. (8).  

After embedding the watermark into each marked group, an embedded vector map M
w
 

is derived. 

 

3.2 Watermark Verification Procedure 

The watermark verification process consists of four basic steps: i) Identification 

of each polyline’s location ID, ii) Group division, iii) Extraction of group 

watermarks and iv) Verification of group watermarks. 

First of all, we identify the original location ID and the vertex order for each polyline. 

Given a polyline Pl
w ={vi

w
(vi

w, x
, vi

w, y
)| i ∈ [0, r – 1], r = 1, 2, 3 …} that contains r 

vertices, we identify its location ID and its vertex order according to four parts, from P1 

to P4. 

P1 Check if r ≥ 4. If not, its location ID is deemed invalid and it is detected as 

tampered directly. 

P2 Check if r > 4. If so, see it as a possible marked normal polyline and go through the 

following 4 steps. 

Step1. Extract two possible location IDs, denoted as mp,q
1
 and mp,q

2 
, from v0

w
 and vr–1

w
, 

respectively. Firstly, by regarding the vertices vr–2
w
, v0

w
 and v1

w
 as the normalization 

vertex, the watermark-embedding vertex and the neighboring center, respectively, 

extract mp,q
1 

from v0
w
 using Eq. (2), Eq. (5), Eq.(7) and the inputs (Kw and the total 

number of polylines Z).  

Step2. Check if 1 ≤ mp,q
1 
= mp,q

2
 – 1 ≤ Z or 1 ≤ mp,q

2 
= mp,q

1
 – 1 ≤ Z holds. If not, see its 

location ID as invalid and detect it as tampered directly. 

Step3. Check if 1 ≤ mp,q
1
= mp,q

2
 – 1≤ Z holds. If so, regard mp,q

1 
as Pl

w
’s location ID, 

and v0
w
 as Pl

w
’s first vertex.  

Step 4. Check if 1≤mp,q
2
= mp,q

1
 – 1≤ Z holds. If so, regard mp,q

2 
as Pl

w
’s location ID, and 

vr–1
w
 as Pl

w
’s first vertex. 

P3 Check if the 4 vertices Pl
w
 (r = 4) contains are on the same straight line. If so, see it 

as a possible marked complex2 polyline, and go through the following 4 steps. 
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Step 1. Divide the Euclidean distance between v0
w
 and v3

w
 into Z+3 equal intervals. 

Denote the number of intervals between v0
w
 and v1

w
 as Nf, and the number of intervals 

between v2
w
 and v3

w
 as Ne.  

Step 2. Check if Nf
 
=1 and Ne > 1 or Ne =1 and Nf > 1 hold. If not, see its location ID as 

invalid and detect it as tampered directly. 

Step 3. Check if Nf
 
=1 and Ne > 1 hold. If so, regard v0

w
 as the first vertex of Pl

w
 and 

calculate its location ID m by the following: 
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Step 4. Check if Ne =1 and Nf > 1 hold. If so, regard v3
w 

as the first vertex of Pl
w
 and 

calculate Pl
w
’s location ID m with the following equation, 
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P4 Check if the first 3 adjacent vertices (v0
w
, v1

w
 and v2

w
) or the last 3 adjacent vertices 

(v1
w
, v2

w
 and v3

w
) of Pl

w 
(r = 4) are on the same straight line. If not, see the polyline as a 

possible marked normal polyline, and obtain its original location ID and vertex order by 

going through the 4 steps of P2; otherwise, see it as a possible marked complex1 polyline, 

and go through the following 2 steps. 

Step 1. Check if v0
w
, v1

w
 and v2

w 
are in the same line. If so, regard v0

w
 as the first vertex of 

Pl
w
 and calculate Pl

w
’s location ID m by 
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Step 2. Check if v1
w
, v2

w
 and v3

w
 are in the same line. If so, regard v3

w
 as the first vertex of 

and calculate Pl
w
’s location ID m with the following equation,  
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Later, the original polylines of each group can be obtained according to their location 

IDs. Assuming a marked polyline’s location ID is m, we can get its group index i (0≤ i 

≤Ng – 1) and its location j (1≤ j ≤ n) in the corresponding watermarked group Gi
w 

by  

 









nimj

nmi /)( 1
.                                                                               (22) 

 

Then, using Eq. (2) and Eq. (5), we extract the embedded watermark from the 

watermark vertices for each group with the input Kw and the parameter Sw = 2
c
. Assume 

the watermark vertex set of Gi
w
 is Vi

w
' = { vj' | j ∈[0,  cL /  – 1], the extracted watermark 

sequence as Wi' ={wi
j
'| j ∈[0,  cL /  – 1]}, and the reference1 vertex and the reference1 

vertex of Gi
w 

are vr1' and vr2', respectively. For any watermark vertex vj' of Vi
w
', we extract 

an element of Wi' (wi
j
') from it by regarding vr2', vj', and vr1' as the normalization vertex, 

the watermark-embedding vertex and the neighboring center, respectively. By 

sequentially concatenating the elements of Wi', we can get the extracted watermark Hi
1
 of 

Gi
w
. 

After that, we generate each group’s watermark using the watermark generation 

method. The polyline order and the vertex order we used here are obtained in the step of 

identifying each polyline’s original location ID. 

At the last step, whether the group has been tampered can be judged by the mismatch 

between the extracted watermark and the watermark derived from the received content. A 

group is deemed authentic if the two watermarks are equal; otherwise it is seen as 

tampered. The inserted vertices used to indicate the location ID and the vertex order for 

complex1 polylines and complex2 polylines can be deleted for saving storage space. 

 

4. Results and Analysis 
 

4.1 Experimental Results 

We ran experiments on a PC with CPU 4400+ 2.31GHz, RAM 3G, WinXP 

Professional, ArcMap Version9.2, Map Objects 2.4 and Visual C++6.0. In the 

experiment, 50 different 2D vector maps were used as the covers. As shown in Fig. 2, six 

of them are a coastline map of Taylor Rookery [22], a river map [23], a coastline map of 

Windmill islands [24], a land map [23], a Roraima State map [23] and a lake map of 

SR41-42 Northern Prince Charles Mountains [25]. Table 1 lists some basic properties of 

the six vector maps, including the feature type, the number of vertices/features, the scale 

and the precision tolerance τ. During watermark embedding, the MD5 algorithm was 

employed as the hash function and the parameters were chosen as follows: watermark 

length L = 128, group size n = 3, and the number of watermark bits a vertex carries c = 8. 

In the first test case, we demonstrated the invisibility of our scheme. The average 

embedding distortion d and the maximum distortion [18] Maxd were exploited to measure 

the embedded vector map objective quality, 
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where vi the and vi
w
 are the corresponding vertices in the original vector map (M) and the 

watermarked vector map (M
w
) and V

M
 denotes the total number of vertices in the vector 

map M. The vector maps in Figure 2 were watermarked by the proposed technique 
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yielding the watermarked versions seen in Figure 3. The experimental results are listed in 

Table 2. Due to the configuration of the embedding parameter Kw (Eq. (8)), the introduced 

distortions do not exceed the precision τ, and hence the validity of the map data is 

guaranteed. 

The robustness against rotation, uniform scaling and translation was illustrated in the 

second test case. We rotated the watermarked river map shown in Figure 3(b) by different 

angles, scaled it with different factors and translated it with different △x and △y in the x 

and y axes, respectively. Since the authentication watermark is invariant to rotation, 

uniform scaling and translation operations, the manipulated vector map has passed the 

authentication in each experiment, as shown in Table 3, Table 4 and Table 5. 

 

 

Figure 2. Test 2D Vector Maps: (a) Coastline Map of Taylor Rookery, (b) 
river map, (c) Coastline Map of Windmill Islands, (d) Land Map, (e) Roraima 
State Map and (f) Lake Map of SR41-42 Northern Prince Charles Mountains 

Table 1. Properties of Original Vector Maps 

2D vector map Feature type Vertices/features Scale τ (m) 

Coastline map of Taylor 

Rookery 
polyline 4279/18 1:5000 0.5 

River map polyline 23854/1084 1:25000 2.5 

Coastline map of Windmill 

islands 
polyline 38082/496 1:50000 5 

Land map polygon 47170/35 1:100000 10 

Roraima State map polygon 574679/202 1:250000 25 

Lake map of SR41-42 Northern 

Prince Charles Mountains 
polygon 3138/55 1:1000000 100 

 

In the third test case, we demonstrated the tamper detection and localization ability of 

the proposed algorithm. The 2D vector map we used was the river map as shown in 

Figure 2(b). Figure 4 shows the original map at different stages of watermarking.  
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The original river map in Figure 4(a) was watermarked by the proposed algorithm 

yielding the watermarked map seen in Figure 4(b). Then, the watermarked map was 

manipulated using ArcMap to yield the map in Figure 4(c). In particular, 2 vertices were 

added to region ‘A’, 2 vertices in region ‘B’ were modified and 6 vertices were deleted 

from region ‘C’. In the third step, integrity and authenticity of the manipulated vector map 

were tested using the watermark verification algorithm. Output of the watermark 

verification step is seen in Figure 4(d). Red features indicate the located suspicious 

polyline groups. 

From Figure 4(d), we can find that the red features are exactly where the tampering 

operations happen. 

Table 2. The Maximum Distortion Maxd and the Average Distortion d 
Introduced by Watermark Embedding 

2D vector map Maxd (m) d (m) 

Coastline map of Taylor Rookery 0.25483 0.00056 

River map 1.96858 0.05261 

Coastline map of Windmill islands 1.67688 0.00203 

Land map 0.27600 0.00007 

Roraima State map 0.72412 0.00006 

Lake map of SR41-42 Northern Prince Charles 

Mountains 3.77436 0.05805 

 

 

Figure 3. The Watermarked 2D Vector Maps of Figure 2 

Table 3. Experiment Results of Rotation 

Rotation angle (degree) 30 60 90 120 150 180 240 300 

Authentication results Pass Pass Pass Pass Pass Pass Pass Pass 
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Table 4. Experiment Results of Uniform Scaling 

Scale factor 0.25 0.5 2.5 4.0 5.5 7.5 9.5 

Authentication results Pass Pass Pass Pass Pass Pass Pass 

Table 5. Experiment Results of Translation 

Distance (△x m, △y m) (– 1.2, 2.3) (4.2, 5.6) (2.6, – 7.9) (– 6.5, – 4.8) 

Authentication results Pass Pass Pass Pass 

 

 

Figure 4. (a) The Original River Map, (b) the Watermarked Map, (c) the Same 
View after the Watermarked Map has been Modified and (d) the Tamper 

Localization Results: the Red Features Represent the Suspicious Feature 
Groups 

4.2 Discussion of RST Invariance Property  

In this subsection, we discuss the RST invariance property of the proposed algorithm. 

In the following, we assume that group G
w
 is the watermarked version of group G, G

w
' is a 

rotated/scaled/translated version of G
w
, H is the watermark that G

w 
carries, H

w
 is the 

watermark extracted from G
w
', H

w
' is the watermark derived from G

w
', V

nw
 = { vj(vj

x
, vj

y
)| j 

∈ [0, N
nw

 – 1]} with N
nw

 vertices is the ordered non-watermark vertex list of G, Gc(Gc
x
, 
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Gc
y
)is the center of the vertices of V

nw
 and V

nw,s
 = {sj| j ∈ [0, N

nw
 – 2]} is the RST invariant 

spatial data of G. As non-watermark vertices do not carry watermark bits, V
nw

 is also the 

ordered non-watermark vertex list of G
w
. 

Since the watermark and each polyline’s location ID are embedded using Chou and 

Tseng’s method [21], the embedded watermark H remains unchanged after a 

rotated/scaled/translated operation, i.e., H = H
w
.  

 

4.2.1 Rotation Invariance: Given a non-watermark vertex vj(vj
x
, vj

y
) (0≤ j ≤ N

nw
 – 1) of 

V
nw

, a rotation by an angle ρ leads to a new non-watermark vertex vj'(vj
x
', vj

y
') and a new 

center Gc'(Gc
x
', Gc

y
') of the ordered non-watermark vertex list V

nw 

, 
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After applying the log-polar mapping to vj'(vj
x
', vj

y
'), the new log-radius rj ' becomes 
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which means the watermark derived from the rotated version is the same as the embedded 

watermark, i.e., H = H
w
'. Thus, H

w
' = H

w
, and the algorithm is invariant to rotation. 

 

4.2.2 Scaling Invariance: Given two adjacent non-watermark vertices vj(vj
x
, vj

y
) and 

vj+1(vj+1
x
, vj+1

y
) (0≤ j ≤ N

nw
 – 2) of V

nw
, after a scaling operation by a factor s (s > 0), the 

new non-watermark vertices vj'(vj
x
', vj

y
') and vj+1'(vj+1

x
', vj+1

y
'), and the new center Gc'(Gc

x
', 

Gc
y
') of the ordered non-watermark vertex list V

nw
 become 

 





















),()','(

),()','(

),()','(

sGsGGG

svsvvv

svsvvv

y
c

x
c

y
c

x
c

y
j

x
j

y
j

x
j

y
j

x
j

y
j

x
j

1111 .                                           (26) 

 

After applying the log-polar mapping to vj'(vj
x
', vj

y
') and vj+1'(vj+1

x
', vj+1

y
'), the new log-

radiuses rj ' and rj+1' become 
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Then, the new j-th element sj' of V
nw,s

 becomes 

 

jjjjjj srrrrs   11 ''' .                                                      (28) 

 

Thus, H = H
w
' = H

w
, and the algorithm is invariant to scaling. 
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4.2.3 Translation Invariance: Given a non-watermark vertex vj(vj
x
, vj

y
) (0≤ j ≤ N

nw
 – 1) 

of V
nw

, a translation by △x and △y in the x and y axes, respectively, leads to a new non-

watermark vertex vj'(vj
x
', vj

y
') and a new center Gc'(Gc

x
', Gc

y
') of the ordered non-

watermark vertex list V
nw

, 
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After applying the log-polar mapping to vj'(vj
x
', vj

y
'), the new log-radius rj ' becomes 
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We also have H = H
w
' = H

w
. Thus, the algorithm is invariant to translation. 

 

4.3 Discussion of Localization Accuracy 

To measure the tamper localization ability of the algorithm in features, the metrics β 

[18] which represents the number of polylines detected as tampered after malicious 

attacks is used. The expectation of β, denoted as Ex(β), was calculated to compare the 

localization accuracy of the proposed method with the ones reported in [17-18]. 

In [17], Zheng et al. divide the features into different groups according to the number 

of vertices a feature contains. However, the number of vertices within each feature is 

difficult to evaluate, which make the calculation of Ex(β) very hard. For simplicity, we 

assume that the vector map, which consists of Z polylines, is divided into Ng groups, each 

of which contains n features (Z = n× Ng), the probability that the added/deleted/modified 

feature belongs to the i-th (0≤i≤Ng–1) group is 1/Ng, and adding/deleting/modifying a 

vertex or modifying a feature does not change the grouping. Then, we obtain the lower 

limit of Ex(β) after a vertex addition/deletion/modification attack and a feature 

modification attack. Since after a feature rearrangement attack, the probability that D 

(1≤D≤Ng) groups are tampered is greater than the probability that D –1 groups are 

tampered, we assume the probability that D groups are tampered is 1/ Ng. Thus, the lower 

limit of Ex(β) after a feature rearrange attack is obtained. 

When calculating Ex(β) for the proposed method in [18], we assume the situation that 

the modified feature is divided into another group occurs with a probability close to zero, 

and the probability that the added feature is regarded as a valid feature is 1/2. 

Table 6. Tamper Localization Accuracy of Different Methods 

Attacks 
Ex(β) of the method in 

[17] 

Ex(β) of the method in 

[18] 

Ex(β) of the 

proposed method 

Vertex 

addition/deletion/modification 
n ≈n ≈n 

Feature addition (n + Z)/2+1 1+n/2 1+n/2 

Feature deletion (n + Z)/2−1 n – 1 n – 1 

Feature modification n ≈n ≈n 

Feature rearrangement (n + Z)/2 0 0 

Vertex reversing n 0 0 

Rotation/scaling/translation Z Z 0 
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From the results in Table 6, we can find that the proposed method has better 

localization capability than Zheng et al.’s method [17]. Besides, the proposed algorithm 

performs better in terms of RST invariance than the methods in [17-18]. 

 

5. Conclusions 

In this paper, we describe a RST invariant fragile watermarking scheme for 2D vector 

map authentication based on Chou and Tseng’s watermark embedding method [21]. By 

folding the hash results of the differences of the log-radiuses to generate the 

authentication watermark, the proposed method is tolerant to RST transformations, but 

sensitive to malicious attacks. As a unique mark indicating the original location of each 

feature is embedded into the feature itself, the algorithm can precisely locate tampered 

groups after malicious attacks. Meanwhile, with the vertex scanning order indicated by 

each feature’s mark, this scheme is immune to feature rearrangement and vertex reversing 

operations. 

Our RST invariant watermark generation method can be integrated with other RST 

invariant watermarking schemes in order to obtain both the sensitivity to malicious 

attacks and the RST invariance property. Besides, the idea of setting a unique mark on 

each feature can also be integrated with other RST invariant watermarking schemes for 

good tamper localization capability.  
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