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Abstract 

Virtual resources have the duality of hardware and software, which brings new 

challenges to virtual resources management and manipulation. There is urgent need for 

formally describing virtual resources in order to effectively reason about virtual 

resources allocation, scheduling and management. This paper describes the virtual 

resources and their dynamic behavior. We first give the formal definition of the resources 

pool and the virtual machine (VM).  Then, we describe the dynamic behavior of VMs. In 

particular, we present a formal description of how virtual resources are used by VMs. 

This paper reveals the logical laws of virtual resources and their dynamic behaviors and 

makes the virtualization theory system more rigorous. 
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1. Introduction 

Virtualization technology is gaining popularity as a software-based solution for 

building shared hardware infrastructures. In this emerging technology, each physical 

server runs a software layer called Virtual Machine Monitor (VMM) that supports the 

execution of multiple VMs and provides safety and isolation to the overlying VMs. VMM 

also has the ability to migrate running VMs between physical servers to improve the 

availability and security of VMs. With the advantage of functional isolation, 

manageability and live migration, virtualization technology has been widely used. Over 

the years, a number of VMMs have been proposed. Xen [1] is an x86 VMM and supports 

both full-virtualization and para-virtualization. The virtualization approach taken by Xen 

is extremely efficient. It allows operating systems, such as Linux and windows XP, to be 

hosted simultaneously for a negligible performance overhead. Other VMMs, like KVM 

[2], are designed to only support full-virtualization. 

The virtualization technology converts the physical resources, such as CPU, memory, 

disk and I/O to “resources pool”. The VMs can be customized according to the 

requirement on the resources pool. Multiple isolated VMs can be created on the resource 

pool according to the requirement. The resources of VMs are the software simulation of 

the hardware resources. They can be created or destroyed dynamically, and they can even 

migrate from one physical server to another. Therefore, virtual resources have software 

properties. On the other hand, virtual resources such as virtual CPU, virtual I/O and 

virtual Memory can perform compute, communication and storage operation. These 

resources also have hardware properties. Virtual resources have the duality of software 

and hardware, which brings new challenges to virtual resources allocation, scheduling and 

management. 

The recent research on virtual resources scheduling and management mainly focuses 

on improving VM performance[3,4], maximizing underlying physical resources 

utilization [5, 6] or achieving underlying physical resource fairness [7-9]. However, these 

approaches are not based on a formal description and a formal semantics, or provide only 

a partial formal semantics. We believe that formal semantics is essential for reasoning 
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about the virtual resources scheduling and management. In order to effectively reason 

about virtual resources management and manipulation, the virtual resources need to be 

described in a formal method. Formal semantics is the cornerstone for state space 

exploration techniques [10] which can be used to build trustworthy, highly reliable 

systems. More generally, we advocate that formal semantics is essential to describe 

virtual resources, as it offers the potential to reason about the correctness of virtual 

resources management and manipulation. However, as far as we know, it has no work on 

formal methods of virtual resources. 

This paper describes the virtual resources and their dynamic behavior. We take xen 

VMM as the example, because xen VMM supports both para-virtualization and full-

virtualization. We first formally define the resources pool, the virtual resources pool and 

the virtual machine, and we also describe the relationship among them. Secondly, we give 

the operation semantic of VMs and describe their dynamic behavior, including VM 

creation, VM destruction, VM clone and VM migration. Thirdly, we describe the virtual 

resources of VMs and formally describe how these virtual resources are used.  

Our major contributions are the following aspects: 

 We propose that virtual resources have the duality of hardware and software. 

 We give the operation semantics of VMs. 

 We describe virtual resources and their dynamic behavior in a formal method.           

The rest of the paper is organized as follows: Section 2 introduces the virtual 

resources management framework. Section 3 introduces the formal definition of the 

VM. Section 4 introduces the operation semantic. Section 5 introduces the virtual 

resources of VMs. Section 6 introduces the related work. Finally, Section 7 gives 

conclusions and future work. 

 

2. Background and Related Work 

This section presents an overview of the virtual resources management framework, 

focusing on the concept of CPU virtualization, I/O device virtualization and memory 

management.  

 

2.1. Xen Architecture 

Xen [1] is an open-source VMM that allows multiple operating systems to share the 

same physical server in a safe and resource managed fashion. Figure 1 describes the xen 

architecture. The Xen VMM is located between operating systems and hardware. It 

provides virtual resources, such as virtual CPU (VCPU) and virtual I/O device, for the 

overlying operating systems and performs functions such as scheduling CPU and 

allocating memory among operating systems. There is a privileged domain (Dom0) in the 

xen VMM which is an auxiliary management domain. It can access to hardware resources 

directly. Guest operating systems (OS) are not allowed to access to hardware resources 

directly and they must access hardware resources through Dom0. 
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Figure 1. Xen Architecture 

2.2. CPU Virtualization 

In the xen virtualization environment, Guest OS cannot directly schedule physical 

CPU. Xen establishes the virtual CPU (VCPU) structure and provides one or more 

VCPUs for every Guest OS. All VCPUs are time-division multiplexing physical CPU. So, 

xen need reasonable allocation of time slices for VCPUs and schedule them. 

Xen provides multiple schedulers, such as borrowed virtual time (BVT) [11], simple 

earliest deadline first (SEDF) [12] and credit scheduler [13]. The credit scheduler is xen’s 

default scheduler at present. Its overall objective is to allocate the processor resources 

fairly. The Guest OS is assigned a weight value when it is created. Each Guest OS is 

allocated a certain number of credits according to its weight every 30 milliseconds. The 

credits will be allocated to VCPUs of the Guest OS fairly. As a VCPU runs, it consumes 

credits. According to the credits of VCPU, a VCPU’s priority can be one of the three 

values: OVER, UNDER and BOOST. If VCPUs are in the OVER state, then they have 

used up its fair share of CPU resources. If VCPUs are in the UNDER state, then they have 

CPU resources that can be consumed. The BOOST state provides a mechanism for 

domains to achieve low I/O response latency. All VCPUs in BOOST state are placed in 

front of those in UNDER state in the run queue, while those in OVER state are kept in the 

tail of the queue. Every physical CPU has a run queue of VCPUs. The queue is sorted by 

the priority of VCPUs and the head of the queue is always selected to run.  

 

2.3. I/O Device Virtualization 

Xen adopts split virtual driver model by introducing a privileged driver domain 

(Dom0). A virtual driver consists of two split sub-drivers, respectively called front-end 

driver (FE) and back-end driver (BE). The FE driver provides interfaces of the virtual 

driver to Guest OS, but the FE driver cannot conduct real I/O operations. The Dom0 

conducts real I/O operations on behalf of Guest OS. Communications between FE and BE 

are implemented by the I/O ring mechanism. The I/O ring adopts producer/consumer 

communication mode. When Guest OS need perform I/O operation, they put read/write 

requests into I/O ring. The BE will read these requests, process them and put response 

information into I/O ring. Processed response information can be read by the FE. FE and 

BE notify each other of an I/O event via an event channel. This I/O model improves the 

efficiency of the I/O device and enhances the reliability of an entire system.  
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2.4. Virtual Memory Management 

The initial memory allocation for each Guest OS is specified at the time of its 

creation. But, the allocated memory is not fully utilized by the Guest OS when it is 

running. To make full use of physical memory, xen implemented balloon driver 

technology [14] to adjust physical memory of Guest OSes. Xen VMM can reclaim 

memory by balloon driver inflation and increase the memory of Guest OS by 

balloon driver deflation. 

 

3. The Formal Definition of the VM 

This section gives the formal definition of the VM and resources pool. 

 

Firstly, we introduce some concepts and notations. 

 We use ∏for the resources pool. It is the logical abstract of physical resources. 

The VM can be customized according to the requirement on the resources pool. 

 we can form a view VM:∏ to mean that a virtual machine VM is running on the 

resources pool ∏. The view VM:∏ can also be expressed as ∏(vid), where vid is the ID 

of the virtual machine which is running on the resource pool ∏. 

 Virtual resources pool (VRP). Virtualization technology also allows multiple 

virtual machines to be created on the virtual machine. So, a virtual machine can be 

considered as a “virtual resources pool”. We use ∏(vid) for the virtual resources pool.  

 Res::=CPU|memory|disk|I/O|VCPU|Vmemory|Vdisk|VI/O, where CPU, memory, 

disk and I/O is the resources of ∏, VCPU is the virtual CPU of  the ∏(vid) , Vmemory is 

the virtual memory of the ∏(vid) , Vdisk is the virtual disk of the ∏(vid) and VI/O is the 

virtual I/O of the ∏(vid).  

 We suppose there are n VMs are running on the same resources pool ∏, we use 

i
VM  for the i-th VM and 

ii
VCVM .  for the i-th VCPU of the 

i
VM . 

 We suppose 
)1(...1 nii

VM   is a VM and there are n VMs are running on the
)1(...1 nii

VM , 

we use 
innii

VM
)1(...1 

 for the in-th VM which is running on the
)1(...1 nii

VM .  

Table 1 gives the list of symbols we use in this paper along with their meaning. 

Table 1. Description of Symbols Used in this Paper 

∏    resources pool 

i
VC   The i-th VCPU of the VM 

i
C    The i-th CPU of the resources pool 

R    one resource of Res 

m    a memory space 

v    the value of the data 

i
w    The weight of the 

i
VM   

i
v    The number of VCPUs of the 

i
VM   

 
Definition 3.1. A resources pool is a four-tuple ∏=<C, M, D, B> where:  

 C is a finite set of CPU resources. Every element of C can be expressed to {(c, h)| 

c∈N, h∈R+} where c is the number of CPU and h is the frequency of the CPU.  

 M is a finite set of memories. 

 D is a finite set of disks. 

 B is the size of I/O bandwidth.  
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Definition 3.2. ∏ is a resources pool and VM1 is a virtual machine that is running on 

the ∏. 

(1) ∏(1) is a virtual resource pool. 

(2) If ∏(
n

vvv ,...,
21

) is a virtual resources pool, then ∏ ),...,(
121 nn

vvvv  is a virtual 

resources pool 

Only generated by (1) and (2) is a virtual resources pool. 

 

Definition 3.3. A virtual machine is a five-tuple VM=<
v

C , 
v

M , 
v

D , 
v

B , S> where: 

 
v

C is a finite set of VCPU resources. Every element of Cv can be expressed to {(c, 

h)| c∈N, h∈R+}. Where c is the number of VCPU and h is the frequency of the VCPU. 

 
v

M  is a finite set of virtual memories. 

 
v

D  is a finite set of virtual disks. 

 
v

B  is the size of the virtual bandwidth  

S is the state of the virtual machine. S::=r|b|p|s|d where: r represents that the 

virtual machine is running, b represents that the virtual machine is blocked because 

of waiting for I/O, p represents that the virtual machine is paused, s represents that 

the virtual machine is shutdown and d represents that the virtual machine is dying. 

At any time, the state of the virtual machine can only be one of the S. 

 

4. Operation Semantics 

When we want to create a VM, we need to specify the parameters, such as the number 

of core, the size of memory, the size of disk and the size of bandwidth. When the VM is 

created, it will be allocated to resources according to the parameters by the VMM.  

The CPU resources allocation is maps VCPUs of the VM to CPUs of the resources 

pool. The memory and disk resources allocation is allocates the specified size of address 

space. 

 

Definition 4.1. For each
vi

CVMVC . , the function m (
i

VC ) =
j

C  represents that the 

i
VC  is allocated to the run queue of

j
C . 

 

Definition 4.2. Let Lm be a set of memory address space, we define m[VM.vm Lm] 

for the virtual memory of VM is allocated to the address space Lm. Let Ld be a set of disk 

address space, we define m[VM.vd Ld] for the virtual disk of VM is allocated to the 

address space Ld. 

When we want to create a VM, we can also specify the bandwidth value. In the xen 

virtualization, the bandwidth value is converted into a certain number of credits. 

 

Definition 4.3.  let T:B→Cb be a transfer function. For a input B, we define the transfer 

function T:B→Cb by T(B)=Cb. 

We use the notation VM_Create(∏(vid0)) to mean that creates a virtual machine on the 

resource pool ∏. It should be noted that not all creation operation can succeed. When the 

capacity of the resources pool ∏ can not satisfy the resources requirement of the VM, the 

VM cannot be successfully created. The formal definition of the creating conditions of 

VMs as follows. 

 

Definition 4.4. Let S be a finite set, the operation size(S) return the size of the set. Let 

S1 and S2 are two finite set, we define the operation 

S1∪S2={s|s∈S1 or s∈S2},  

S1∩S2={s|s∈ S1 and s∈ S2},  

S1-S2={s|s∈ S1 but s S2}. 
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Definition 4.5. The VM=<
vvvv

BDMC ,,,  > can be successfully created on the 

resources pool ∏=<C,M,D,B> only when the following relationships are satisfied:  

1. size(
v

C )<=size(C)  

2. Size(
v

M )<=size(M) 

3. size(
v

D )<size(D)  

4. 
v

B <=B.  

When the specified parameters of the VM satisfy the definition 4.5, the VM can be 

created. The creation rule can be described as follows: 

))0((_)(
0

vidCreateVMvid 

]/[],[],[],[

)](.[],[],[],1),([

0
vidvidBBBDDDMMM

BTCbVMLDmLMmmiVCm

vvv

dvmvi







        (Rule1) 

We also give the destruction rule which is described as follows: 

))((_ vidDestroyVM   

][],[],[],[

].[],.[],.[],1],[[










vidBBBDDDMMM

BVMDVMmMVMmmiVCm

vvv

vvvi (R

ule2) 

Virtual machines are not only can be dynamically created and destroyed, but also can 

be cloned and dynamically migrate from one resources pool to another. 

 

Definition 4.6. let VM=<
vvvv

BDMC ,,, , S> is a virtual machine and it is running on 

the resources pool ∏. We define the clone of the VM for creating a virtual machine 

VMclone=<
vvvv

BDMC ,,, , S> on the same resource pool ∏. 

 

Definition 4.7. let VM=<
vvvv

BDMC ,,, , S> is a virtual machine and it is running on 

the resources pool ∏1 . we define the migration of VM from ∏1 to ∏2 for creating a 

VM=<
vvvv

BDMC ,,, , S> on the resources pool ∏2 and destroying the VM from 

resources pool ∏1. 

 

Proposition 4.1 the VM can be cloned on the resources pool ∏ only when 

size(Vmemoy)<=size(M)&size(Dv)<=size(D)&size(Bv)<=size(B). 

Proof. If the VM is running on the resources pool ∏, then by definition 4.5, 

len(VM.c)<=len(∏.c). By definition 4.6, len(VMclone.C)=len(VM.clone). So, 

len(VMclone.C)<= len(∏.c). By definition 4.5, the clone operation can succeed only 

when ize(Vmemoy)<=size(M)&size(Dv)<=size(D)&size(Bv)<=size(B). 

 

Definition 4.8. VM=<
vvvv

BDMC ,,, ,S> can be successfully migrated to the resources 

pool ∏=<C,M,D,B> only when the following relationships are satisfied:  

1. size(Cv)<=size(C)  

2. Size(Mv)<=size(M) 

3. size(Dv)<size(D)  

4. Bv<=B.  

Now, we give the clone rule and migration rule as follows. 

))((_)(
0

vidCloneVMvid   

]/)1[(],[],[],[

))1((_

0
vidvidBBBDDDMMM

vidCreateVM

vvv



      (Rule 3) 

))()((_
021

vidvidMigrateVM  =
))((_

))((_

1

02

vidDestroyVM

vidCreateVM




      (Rule 4) 
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5. Virtual Resources of VMs 

This section describes the virtual resources of VMs, including virtual CPU, virtual 

memory and virtual I/O.  

 

5.1. Syntax Definitions 

First, we introduce some syntax that will be used later. 

(1) )(:
1 i

n

i
PR


  where R∈ Res and it is shared among 

n
PPP ,...,,

21
. Any one or 

multiple of them can access to the R at the same time. 

(2) )(||:
1 i

n

i
PR


. R is shared among 

n
PPP ,...,,

21
 and only one of them can access to 

the R at the same time. 

(3) ),(_
jii

CCVCMigrateVC  . The VCPU 
i

VC  migrates from 
i

C  to 
j

C . 

(4) RVM
r

 . The VM can access to the R and the R can only be read by the VM.  

(5) RVM
w

 . The VM can access the R and the R can only be written by the 

VM.  

(6) RVM
rw
 . The VM can access the R and the R can be read and written by 

the VM. 

(7) 
j

r

i
VMRVM . . The 

i
VM  permits the 

j
VM  access the R can be read by 

the
j

VM .  

(8) 
j

rw

i
VMRVM . . The 

i
VM  permits the 

j
VM access the R and the R can be 

read and written by the 
j

VM . 

(9) 
j

t

i
VMRVM . . The 

i
VM  loses the ownership of the R and the 

j
VM gets the 

ownership of the R.  

(10) mvVM
in
.  The VM inputs the data v into m. 

(11) mvVM
out
 .  The VM gets the data v from m. 

(12) 
j

send

i
VMvVM  . . The 

i
VM  sends the data v to the 

j
VM  through network. 

 

5.2. CPU Virtualization  

In the xen virtualization system, VCPUs scheduling of the VMM must decide which 

VCPUs should run on the physical CPU. Given a resources pool ∏ with N physical 

CPUs, we will distinguish them with an identifier 
i

C , i=0,1,…,N-1. Every 
i

C  has a run 

queue
i

Cq . 

 

Definition 5.1. A status of VCPU can be one of the following: 

BOOST: if the VCPU wakes up from a blocked event, its status will be BOOST.  

UNDER: if the credits of the VCPU are more than zero.  

OVER: if the credits of VCPU are less than or equal to zero. 

 

Definition 5.2. a Cq is a VCPU run queue. The order of the Cq is according to the 

status of the VCPU. The head of Cq will select to run on the
i

C . We form a view 

VC∈
i

Cq  to mean that the VC is in the queue 
i

Cq  and form a view VC: 
i

C  to mean that 

the VC is running on the
i

C .  

 

Definition 5.3. a queue 
i

Cq  is busy if it has one or more VCPUs waiting for 

scheduling, otherwise it is idle. 

 

Definition 5.4. we suppose there are N vcpu
N

VCVC ,...,
1

, if VCi∈
i

Cq ,i=1,…N, then  

)(||:
1 i

n

ii
VCC


. 

 

Definition 5.5. if VC:Ci and CacheC
rw

i
 , then CacheVC

rw
  
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Definition 5.6. if VC1:Ci ,VC2:Cj, CacheC
rw

i
 , CacheC

rw

j
  then  

CacheVCVC
rw
 )(

21
 

 

5.3. Memory Resources of VMs 

This section describes the memory resources of VMs. When VMs are created, they are 

allocated a certain size of memory according to their specified size. However, the 

allocated memory is not fully utilized by VMs when they are running. Firstly, applications 

which are running on the VMs may lead to insufficient memory, and the VMs need more 

memory. Secondly, the memory of VMs is idle when their workloads are low, and the 

VMM will recycle the idle memory of VMs. Thirdly, the memory of one VM may be 

accessed to by another VM or the ownership of the memory may transfer to another VM 

in the xen shared memory mechanism. In this paper, we mainly focus on page mapping 

and page transferring.  

 

Definition 5.7. We suppose 
i

VM  and 
j

VM  are any two VMs which are running on 

the same resources pool. Page mapping is the memory page of the 
i

VM
 
is allowed to be 

accessed to by the 
j

VM  but the ownership is also belongs to
i

VM . Page transferring is 

the 
j

VM  get the ownership of the memory page and the 
i

VM
 
loses the ownership of the 

memory page. 

The page mapping and page transferring are based on the grant mechanism. 

 

Definition 5.8. A grant entry is a three-tuple GE=<T, ID, Fm> where: 

 T is the type of xen grant mechanism. T:: =NULL|M|T where NULL represents 

that there is no grant, M represents that the type of grant entry is page mapping and T 

represents that the type of grant entry is page transferring. Each M or T has its subflags, 

which are the memory page frame status in the page mapping or page transferring process. 

subflag:: =readonly|reading|writing|transferring|transferred where readonly represents that 

the shared page can only be read by the destination VM, reading represents that the shared 

page is reading by the destination VM, writing represents that the shared page is writing 

by the destination VM, transferring represents that the shared page is page transferring 

and transferred represents that page transferring has been completed.  

 ID is the id of the destination VM. 

 Fm is the page frame number of the granted memory.  

Each GE is marked by an integer key, which is called grant reference (GR).   

 

5.3.1. Page Mapping 

This section describes the interactions that should be performed when a 
j

VM  want to 

access to the memory page P of 
i

VM . 

The page mapping behaves as follows.  

1. 
j

send

i

create

i
VMGRVMGRVM    .,  

GR=<M-readonly,VMj,P>. 

As before, VMi creates a GR and send it to
j

VM .  

2. PGRVM
m

j
.   

When the 
j

VM  receives the GR, it can map the memory page P, which is granted 

access, to its memory address space. 

3. PVM
access

j
   

Once the above two operations are completed, the 
j

VM can access to the memory page 

P. 
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4. PVM
destroy

j
   

When the 
j

VM completed the memory access, it will remove the memory page from 

its memory address space.  

5. GRVMGRVMVM
destroy

ij

recycle

i
   ,.  

Then, the 
i

VM recycles the GR from the 
j

VM and destroys the GR. 

 

5.3.2. Page Transferring 

This section describes the interactions that should be performed when the ownership of 

memory page P is transferring from 
i

VM to 
j

VM .  

The page transferring behaves as follows.  

1. 
i

send

j

create

j
VMGRVMGRVM    .,  

GR=<T, 
i

VM ,P>. 

The 
j

VM creates a GR and sends it to the
i

VM . 

2. 
trs

create

i
TVM    

Ttrs=<mfn,id,gr> where mfn is the grant memory frame number which will be 

transferred, and id is the VM id of the receiver and gr is the GR provided by the receiver. 

When the 
i

VM receives the GR transferred by
j

VM , it creates a Ttrs and completes the 

page transferring operation.    

3. PVM
receive

j
   

The 
j

VM  receives the transferred memory page P and maps the memory page P, 

which is granted to be accessed, to its memory address space. 

4. GRVM
destroy

j
   

When the 
j

VM  has mapped the memory page P, which is granted to be accessed, to its 

memory address space, it destroys the GR. 

 

5.3 I/O Resources of VMs 

This section describes the I/O virtualization of VMs.  

 

5.4.1. Shared-memory Communication Model 

This section describes the behavior when one VM wants to communicate with another 

VM which is running on the same resources pool. An example scenario would occur when 

the 
i

VM tries to send the message v to the 
j

VM . VMs which are running on the same 

resources pool can communicate through memory. The shared memory communication 

between VMs is different from processes. The sharing mechanism is based on the 

authorization mechanism. The communication behaves as follows. 

1. mvVM
in

i
  

As before, the 
i

VM puts the v into the memory space m. 

2. 
j

send

i

create

i
VMGRVMGRVM    .,  

GR=<M-readonly, 
j

VM , m>. 

The 
i

VM creates a GR, the grant type is the page mapping, the subflag is readonly, the 

destination id is the id of 
j

VM and Fm is the page frame number of m. Then, the 

i
VM sends the GR to VMj. 

3. mVMGRVM
m

j

receive

j
   ,  

Once the 
j

VM receives the GR, it can map the memory m to its memory address space. 

4. mVMvVM
i

out

j
..    

The 
j

VM can read the v from the m of the
i

VM . 

5. mVM
destroy

j
   

When the 
j

VM  has get the data v, it removes the memory page from its memory 

address space.  

6. GRVMGRVMVM
destroy

ij

recycle

i
   ,.  



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 3 (2015) 

 

 

292   Copyright ⓒ 2015 SERSC 

The 
i

VM recycle the GR from the 
j

VM and destroy the GR. 

5.4.2 Virtual Device Communication Model 

This section describes the behavior when one VM wants to communicate with another 

VM which is running on the different resources pool. When two VMs are running on the 

different resources pool, they communicate through the underlying physical I/O device. 

However, VMs cannot access to physical I/O device directly. Virtual device model is a 

commonly used model of Para-virtualization. The I/O performance of the model can close 

to the real physical platform. When the hardware virtual machine (HVM) installed para-

virtualization driver [15], it can also use virtual device model. The virtual device model is 

based on device I/O ring, event channel and grant mechanism.   

 

Definition 5.9.  A device I/O ring is a four-tuple Sring =<QP, QC, PP, PC,> where:  

QP is the number of request producer; 

PP is the number of response producer; 

PE is the number of request event; 

QE is the number of response event. 

 

Definition 5.10. A front-end ring is a three-turple Fring =< QP, PC, NR > where: 

QP is the number of request producer; 

PC is the number of response consumer. 

NR is the size of the Fring. 

 

Definition 5.11 A back-end ring is a three-turple Bring =< QC, PP, NR > where:  

QC is the number of request consumers; 

PP is the number of response producer; 

NR is the size of the Bring. 

 

Definition 5.12. We define the Fring input I/O request into Sring as 

QPSringQPFring ..  . We define the Bring input I/O response into Sring as 

PPSringPPBring ..   

 

Definition 5.13. We define ioreq is the I/O request information which includes the 

address and length of data which need write to I/O device. We define iorep is the I/O 

response information which include the id and completed status of the ioreq.   

 

Definition 5.14. An I/O request queue (ReqQ) or I/O response queue (RepR) is a linear 

storage device which only allows insert I/O request on one end and delete I/O request on 

the other end. 

 

Proposition5.1. the size of the idle queue of the ReqQ is || PCQPNR  . A ReqQ 

is full if and only if 0||  PCQPNR  

Proof. The size of the ReqQ is NR according to the definition 5.10. The number of 

requests generated by front-end is QP according to the definition 5.10. When there are no 

responses from the back-end ring, the size of the idle queue of the ReqQ is || QPNR  . 

When the number of responses from the back-end is PC, the size of the idle queue of the 

ReqQ will be || PCQPNR  .  

Because the size of the idle queue of the ReqQ is || PCQPNR  , if 

0||  PCQPNR , the ReqQ is full. If 0||  PCQPNR , the ReqQ is not full. 

So, A ReqQ is full if and only if 0||  PCQPNR .  
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Proposition5.2. There are outstanding messages to be processed on a ring if and only 

if 0|..|  PCFringPPSring  

Proof. The number of requests inputted into the shared ring by the front-end 

is PPSring .  according to the definition 5.9. The number of processed requests is 

PCFring .  according to the definition 5.10.  There are outstanding messages to be 

processed on a ring if 0|..|  PCFringPPSring . There are not outstanding messages 

to be processed on a ring if 0|..|  PCFringPPSring . So, there are outstanding 

messages to be processed on a ring if and only if 0|..|  PCFringPPSring .        

 

Example 5.1. An example scenario would occur when the 
i

VM tries to send the 

message v to the 
j

VM which is running on another resources pool. The communication 

behaves as follows. 

(1) mvVM
in

i
.  

As before, the 
i

VM put the message v into its memory m. 

(2) SringioreqVMioreqVM
in

i

generate

i
  .,  

Next, the front device of the 
i

VM generates an ioreq including the id of the request, the 

address and the size of the message. Then, the 
i

VM  puts the ioreq into the I/O shared ring.      

(3) 
j

send

i

create

i
VMGRVMGRVM    .,  

GR=<M-readonly, Dom0, m>. 

The 
i

VM  creates a GR, the grant type is the page mapping, the subflag is readonly, the 

destination id is the id of Dom0 and Fm is the page frame number of m. Then, the 
i

VM  

sends the GR to Dom0. 

(4) 0. DomVM
notify

i
   

The VMi notifies the Dom0 that it has sent an ioreq through event channel.  

(5) ../0 ioreqORingIDom
out
  

When the Dom0 receives the notification, it will remove the ioreq from the I/O shared 

ring.    

(6) RqueueioreqDom
in
.0  

The Dom0 not process the ioreq immediately, and it puts the ioreq into the response 

queue.  

(7) RqueueioreqDom
out
.0  

The I/O requests in the response queue are processed using first come first serve (FCFS) 

strategy. When the ioreq is in the head of the response queue, it will be processed by the 

Dom0.  

(8) mVMGRVM
m

j

receive

j
   ,  

The Dom0 receives the GR, it maps the memory m to its memory address space.  

(9) mVMvDom
i

out
..0    

Once the Dom0 reads the ioreq, it can acquire the information of the ioreq. The Dom0 

can get the message from the m. 

(10) mDom
destroy

 0  

When the Dom0 has got the data v, it removes the memory page from its memory 

address space.  

(11) GRVMGRVMVM
destroy

ij

recycle

i
   ,.  

The 
i

VM recycles the GR from the Dom0 and destroys the GR. 

(12) iorepDomVMvDom
generate

j

s
  0,.0  

The Dom0 sends the message v to the 
j

VM uses the physical network device of the 

resources pool. Then, it generates an iorep including the id and the status of the iorep.   

(13) 
i

notifyin
VMDomORingIiorepDom   0,/.0  

    The Dom0 puts the iorep into I/O the shared ring and notifies the 
i

VM that it has 

sent an iorep through event channel. 

(14) ../ iorepORingIVM
out

i
   
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When the 
i

VM  receives the notification, it removes the iorep form the I/O shared 

ring. 

 

6. Related Work 
 

Our work is motivated by previous work on virtual resources management and 

scheduling, the description of physical machine resources and the description of the 

system framework. 

 

6.1 Virtual Resources Management and Scheduling 

There has been recent work on improving I/O performance or I/O fairness. HwanjuKim 

et al. [16] present a virtual machine scheduling technique for transparently bridging the 

semantic gap between the VMM and Guest OSes in order to improve I/O performance 

without compromising CPU fairness. Task-aware scheduling [17] and Communication-

aware scheduling [4] are both scheduling strategies in order to improve I/O performance. 

The building of a virtual router platform is investigated to ensure I/O fairness [7]. There 

are also some work on dynamically allocate CPU resources. Fernando Rodríguez-Haro et 

al. [18] present a resources management approach to support dynamically change 

resource requirements of VMs with monitoring and control primitives. XMM [19] is a 

resources management tool to support real time task.  

 

6.2 The Description of Physical Resources 

A number of formal languages, equipped with a formal semantic, have been 

introduced, like communicating sequential process [20] and π-calculus [21]. C.A.R Hoare 

[20] first introduces the basic concept and the behavior of the process. Then, the 

concurrency behavior of processes is introduced, and the algebraic laws which describe 

the interaction of processes are proposed. Thirdly, a complete mathematical definition of 

the concept of a nondeterministic process and techniques for avoiding nondeterministic 

are proposed. Fourthly, the communication among processes and resources which are 

shared among many processes are described. CSP provides clear assistance to the 

programmer in his tasks of specification, design, implementation, verification and 

validation of complex computer systems.π-calculus also formally describe the 

communication and concurrency behavior among processes. These work is similar to our 

work. However, their work mainly focuses on effectively facilitates the construction of 

safe and reliable software. Our work mainly focuses on effectively reason about virtual 

resources management and manipulation. Formal description of programming languages 

is mainly used to improve the security and stability of the language. Avinash Malik et al. 

[22] present a programming language and give its formal model of computation, formal 

syntax and semantics. Direct memory manipulation through pointers is essential in many 

applications. The misuse of pointers will cause program errors. Dengping Zhu and 

Hongwei Xi [23] describe resources use a light-weighted formal method to support safe 

programming with pointers. R. Shi and H. Xi [24] present an approach to safe multi-core 

programming in ATS. They formalize a type system that can guarantee safe manipulation 

of resources on multi-core machines.   

 

6.3 The Description of the System Frame 

MarcAiguier et al. [25] define a unified framework for modeling abstract components, 

as well as a formalization of integration rules to combine their behavior. The authors of 

[26] present a formal description of an advanced management infrastructure able to 

provide end user with pseudonymity, identity aggregation, cross-layer singlesign-on and 
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advanced authorization decisions. The authors of [27] establish a formal fuzzy reasoning 

system and the associated semantics. Ruqayya Abdulrahman et al. [28] construct a formal 

specification of an OSNRS to help us investigate the feasibility of using Multi Agent 

System technology in retrieving historical information from Online Social Networks sites. 
 

7. Conclusions and Future Work 

This paper presents a formal description of virtual resources system framework. We 

have defined the resources pool and virtual machine. We then defined the operation 

semantic of VMs. Next, we described virtual resources of VMs and how they used virtual 

resources. The formal description of virtual resources can offer the potential to reason 

about the correctness of virtual resources management and manipulation.         

In the future, we plan to describe the virtual resources share behavior to avoid conflict. 

We also plan to use the operation semantic to describe Qos influence among VMs and 

provide Qos guarantee mechanism for VMs. 
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