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Abstract 

We propose ensemble-based modeling for classifying streaming data with concept 

drift. The concept drift is a phenomenon in which the distribution of streaming data 

changes. In this paper, the types of the concept drift are categorized into the change of 

data distribution and the change of class distribution. The proposed ensemble modeling 

generates a meta-ensemble which consists of ensembles of classifiers. Whenever a change 

of class distribution occurs in streaming data, our modeling builds a new classifier of an 

existing ensemble and whenever a change of data distribution occurs, it builds a new 

ensemble which consists of an only one classifier. In our approach, new classifiers of a 

meta-ensemble on streaming data will be generated dynamically according to the 

estimated distribution of streaming data. We compared the results of our approach and of 

the chunk-based ensemble approach, which builds new classifiers of an ensemble 

periodically. In experiments with 13 benchmark data sets, our approach produced an 

average of 21.95% higher classification accuracy generating an average of 61.7% fewer 

new classifiers of an ensemble than the chunk-based ensemble method using partially 

labeled samples. We also examine that the time points when our approach builds new 

classifiers are appropriate for maintaining performance of an ensemble. 
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1. Introduction 

Many companies which deal with customer’s preferences or life styles provide reliable 

services using a prediction/classification model management method. Those models have 

to predict/classify something from streaming data in real time [1]. A major characteristic 

of streaming data is to be changed in data distribution according to data generation status. 

Usually prediction/classification models are periodically updated, and those methods have 

the following disadvantages [2]. First, if the accuracy of a classifier is high, the classifier 

does not need to be updated. However, even in this case, the classifier is updated because 

of the update period. Second, if the current time doesn’t reaches a period setting value, the 

classifier would not be updated even though the distribution of streaming data is changed 

within the update period. Third, human experts should label all samples, and then evaluate 

or refine the current classifier using them. In a real-world application, it is very 

impractical process that a human expert gives the classifier feedback on its decision for 

every single sample. 

The conventional ensemble approach works on the assumption that all streaming data 

have correct labels. It usually adds new classifiers to an ensemble based on regular time 

intervals or fixed number of streaming samples called chunk. To deal with concept drift 

the conventional ensemble approach assigns a new weight to each classifier of an 

ensemble [2, 3] or builds new classifiers for an ensemble using cross-validation [4, 5] 

whenever a new chunk is coming. Chu et al., [6] and Zhang et al., [3] used the weighted 

samples when a new classifier for an ensemble are built from a chunk. For tracking a 

recurrent concept drift, Katakis et al., [7] transforms a chunk as a “conceptual vector” 
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when correct classes for each sample within the chunk are available. Zhang et al., [8] 

proposed an aggregate ensemble framework where different classifiers are built by each 

different learning algorithm from a chunk including noisy data. Wei et al., [9] proposed 

an ensemble approach for multi-label classification problems in streaming data where 

each sample can be classified into more than one category (e.g., multiple illnesses and 

interesting topics at the same time). However, it is impractical in the real-world 

applications that human experts product correct labels on all streaming data. Recently, 

some researchers have recognized that it is not reasonable in practice to manually label all 

samples within a chunk for building a new classifier of an ensemble [10, 11]. 

We propose an efficient ensemble-based modeling approach for classifying data 

streams with concept drift. Our approach is able to dynamically generate new classifiers 

for an ensemble on streaming data. It decides if streaming samples should be selected for 

building new classifiers not according to a time interval, but according to a change in the 

estimated distribution of streaming data. In addition, our ensemble approach can handle 

concept drift in an online process.  

This paper is organized as follows. Section 2 introduces the categorization of concept 

drift to be used in this paper. The proposed meta-ensemble modeling is described in 

Section 3. We report experimental results in Section 4 where our approach is compared 

with traditional methodologies using real data sets, while conclusions and future works 

are presented in Section 5. 

 

2. Changes in Distribution of Streaming Data 

A data stream is a continuous and infinite sequence of data, which makes either 

storing or scanning all the historical data nearly impossible [12]. Moreover, 

streaming data often evolve considerably over time. The change in streaming data 

distribution is referred to as concept drift. Types of the concept drift are categorized 

into (a) the change of data distribution or (b) the change of class distribution 

according to change in streaming data distribution. The numbers in Figure 1 represent 

sequence of streaming samples. The four samples belonging to a class distribution 

different from the previous one occurred after the 11
st
 sample. Figure 1 also shows that 

the current data distribution is changing from the 15
th
 sample. 

 

 

Figure 1. Categorization of Concept Drifts According to Change in 
Streaming Data Distribution 

3. Ensemble-based Modeling for Data Streams with Concept Drift 

We propose a more flexible approach which does not build a new classifier 

periodically in a fixed interval of time. Our ensemble approach decides dynamically when 

to build a new classifier and which samples should be used as a training data set 

according to changes in the distribution of streaming data. 
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Our ensemble modeling method adopts the concept of training data areas in order to 

estimate the current data distribution. A training data area is defined the mean vector 

(center) and the standard deviation of training data from which a classifier is built. If the 

coming streaming data do not belong to any of training data areas and the streaming data 

are near to each other, we can assume that a change in the current data distribution occurs. 

Using such an assumption, a methodology of maintaining the performance of an ensemble 

classifier in streaming data was proposed and its validity was showed by experiments with 

ten benchmark data sets [13]. However, the previous our methodology proposed by [13] 

suffers from changes of class distribution occurring within training data areas. We 

complement the previous our methodology to overcome its shortcoming. 

 

3.1. Building New Classifiers of a Meta-ensemble 

By the method proposed in [13] a meta-ensemble builds a new classifier whenever a 

change of the estimated data distribution occurs. The meta-ensemble also estimates the 

current class distribution in order to deal with changes of class distribution in streaming 

data. In other words, the meta-ensemble also builds a new classifier whenever a change of 

the estimated class distribution occurs.  

The class distribution of training data is represented by a classifier which is generated 

from them. If new streaming data do not belong to the class distribution of training data, a 

classifier generated from the training data will incorrectly predict their class labels. 

Therefore, the meta-ensemble modeling compares the accuracy of a classifier on training 

data with its accuracy on test data. If the difference between the two accuracies is 

statistically significant, we believe that a change of class distribution occurs. The test data 

set consists of data which randomly selected from new streaming data belonging to the 

same training data area. 

Figure 2 shows the meta-ensemble modeling process. In Figure 2, σi denotes the radius 

of the i-th training data area (the standard deviation of the training data). α is the 

probability of selecting a sample as a test datum from streaming samples which belong to 

the same training data area. If a random value is less than α, the input streaming sample 

generated at the time is selected as a test datum. θk denote the radius of the k-th neighbor 

area where the user-defined labels of all suspicious samples are required to build a new 

classifier. Streaming data which do not belong to any of training data areas are called 

suspicious samples. The suspicious samples belonging to a neighbor area are close each 

other. The meta-ensemble modeling uses the minimum number (θm) of neighboring 

suspicious samples as a trigger for finding out whether the change of class distribution 

inside the training data area occurs or not. In our experiments, θk was defined as 2×σ0(the 

standard deviation of the initial training data) and θm the number of initial training data.  

Our approach is divided into an off-line process and an on-line process. In the off-line 

process, we label the selected streaming data manually and build new classifiers of a 

meta-ensemble from the labeled data. In the on-line process, a meta-ensemble selects 

useful streaming samples for maintaining its performance from streaming data. The 

suspicious samples are useful samples for dealing with changes of data distribution. 

Useful samples for dealing with changes of class distribution are samples belonging to the 

same training data area when the difference of the two accuracies on training data and on 

the samples is statistically significant. The statistical hypothesis testing is applied in order 

to decide whether the comparison result is statistically significant or not. We use the 

Fisher’s Exact Test or the chi-square test as the method of statistical hypothesis testing. 

The Fisher’s Exact Test is used when the size of a training data set is small, the chi-square 

test when the size of a training data set is large. In our experiments, the Fisher’s Exact 

Test was used because the size of a training data set was defined as 300. 
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Figure 2. Meta-ensemble Modeling Process 

Figure 3 shows the structure of a meta-ensemble. The meta-ensemble builds an 

ensemble with an only one classifier whenever the change of the estimated data 

distribution occurs, and a new classifier of the ensemble corresponding to a training data 

area whenever the change of the estimated class distribution occurs within the training 

data area.  The change of streaming data distribution in Figure 3 has happened four times 

so far. The change of data distribution has happened one time and the change of class 

distribution three times. 

 

 

Figure 3. Structure of a Meta-ensemble Generated by the Proposed 
Approach 

3.2. Classifying Streaming Data in a Meta-ensemble 

When the meta-ensemble classifies a coming streaming datum, if the datum belongs to 

a training data area as shown in (a) of Figure 4, it is classified by the only ensemble 

corresponding to the training data area. The final output value of an ensemble is decided 

by the simple majority voting method. If the datum does not belong to any of training data 

areas as shown in (b) of Figure 4, the meta-ensemble classifies the datum using all 

ensembles. The final output value of the meta-ensemble is decided by the weighted 

majority voting method as shown in equation (1).  
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𝑦𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑘∈𝐶𝐿𝐴𝑆𝑆 (∑ 𝑤𝑡𝑗𝑃𝑗(𝑦𝑘|𝑺𝑡)
𝑛

𝑗=1
) (1) 

-  𝑃𝑗(𝑦𝑘|𝑺𝑡) is the probability of the class 𝒚𝑘  predicted by the j-th ensemble of a 

meta- ensemble. 

- 𝑤𝑡𝑗 is a weight value of the j-th ensemble on the new samples 𝑺𝑡.  

- n is the total number of ensembles in a meta-ensemble, and  

- CLASS denotes the set of classes. 

The weight values of each ensemble in a meta-ensemble are calculated by the 

membership function used in Fuzzy C-means as shown in equation (2).  

 

𝑤𝑡𝑗 =
1

∑ ((
𝑑𝑖𝑠𝑡(𝑺𝑡 , 𝑴𝑗)

𝜎𝑗
) / (

𝑑𝑖𝑠𝑡(𝑺𝑡 , 𝑴𝑘)
𝜎𝑘

))

2

𝑛
𝑘=1

 
(2) 

- 𝑤𝑡𝑗 is a weight value of the j-th ensemble of a meta-ensemble on a new sample St. 

Mj and σj denote the mean vector and the standard deviation of the training data 

area representing j-th ensemble of a meta-ensemble.  

- n is the total number of ensembles of a meta-ensemble. 

- dist(St, Mj) denotes the distance between a new sample vector St and the mean 

vector Mj of the training data area of the j-th ensemble. 

 

 

Figure 4. Mechanism of the Meta-ensemble for Classifying Streaming Data 

4. Experiments 

We evaluated the proposed ensemble approach using real data sets from the UCI data 

repository, three streaming data sets from Wikipedia under the keyword “concept drift”, 

and the click data set which is generated by the click fraud detection system, NetMosaics, 

as shown in Table 1. These sets have various numbers of classes and various types of 

attributes. In particular, some of the data sets have the class distribution which is not 

uniform among the classes. 

The original “Electricity market” data set has samples with missing values for some 

numerical attributes. We removed those samples from the original data sets. The 

“Mushroom” and “Adult” data sets also have missing values for some categorical 

attributes. We replaced these missing values in each sample with the new, categorical 

“NULL” value. 

We divided each data set into an initial training data set and a streaming data set. The 

initial training data set was used for building an initial classifier of an ensemble, and the 

streaming data set was used as a test data set for evaluating ensemble approaches. The 
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first 300 samples were used as the initial training data. The remaining samples were used 

as a streaming data. 

Table 1. Real Data Sets Used in Experiments 

Data #data #attributes #classes Rate of each class (%) 

Landsat 

Satellite 
6,435 37 6 

C1(23.8), C2(10.9), C3(21.1), 

C4(9.7), C5(11.0), C6(23.4) 

Mushroom 8,124 23 2 C1(51.8), C2(48.2) 

Nursery 12,960 10 5 
C1(33.3), C2(0.015), 

C3(2.5),C4(32.9),C5(31.2) 

MAGIC 19,020 11 2 C1(64.8), C2(35.2) 

Click Data 24,537 14 2 C1(63.6),C2(36.4) 

EM 27,549 7 2 C1(41.5), C2(58.5) 

Adult 48,842 15 2 C1(23.9), C2(76.1) 

PAKDD2009 50,000 24 2 C1(80.3), C2(19.7) 

Shuttle 57,800 9 7 

C1(78.60), C2(0.09), C3(0.29), 

C4(15.35), C5(5.63), C6(0.02), 

C7(0.02) 

MiniBoone 129,596 51 2 C1(28.2), C2(71.8) 

Census 299,285 37 2 C1(93.8), C2(6.2) 

KDDCup1999 494,021 42 2 C1(19.7), C2(80.3) 

Covertype 581,012 55 7 
C1(36.5), C2(48.8), C3(6.2), 

C4(0.5), C5(1.6), C6(3.0), C7(3.5) 

 

We used the following three performance measures for evaluation of approaches of 

modeling for classifying data streams 

The total number of new classifiers (TC) is a count of generated new classifiers for an 

ensemble over streaming data (after manually labeling samples in an offline process). 

Suppose that two ensemble methods use the same total number of labeled samples for 

building each classifiers over a stream data, and their classification accuracies on the data 

stream are the same. If one ensemble method builds more new classifiers than the other, 

that method requires more interactions with a human expert because of more intensive 

labeling process. Accordingly, an ensemble method with less new classifiers is more 

efficient methodology for real world problems where systematic human labeling is not 

feasible. 

The labeled sample rate (LR) is the proportion of the labeled samples used for building 

new classifiers for an ensemble in a data stream. Suppose that two ensemble methods 

built the same number of new classifiers from a data stream and they produced the same 

classification accuracy on the data stream.  If one ensemble method uses fewer labeled 

samples than the other, that ensemble method is more efficient because human labeling is 

less required. 

The weighted sum of F-measures for all classes (WSF) is an appropriate measure for an 

ensemble accuracy applied for streaming data. The ordinary classification accuracy, 

defined as the rate of correctly classified samples, is inadequate in our experiments 

because most of the real data sets have large differences among the numbers of samples 

belonging to each class. Such a skewed class distribution means that the samples in the 

majority class dominate the results when using the ordinary classification accuracy 

measure. For example, if an ensemble with an initial classifier predicts the classes of all 

streaming data as class 1(C1) in the “Census” data set, then the classification accuracy of 

the ensemble becomes 93.8%. Classifiers dealing with the skewed class distribution have 

been evaluated using a cost matrix or a confusion matrix. In the cost matrix, a cost is the 
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penalty for incorrectly classifying a sample. Each cost of classes is predefined by a 

domain expert according to the significance of a class in the domain. If such costs are 

unavailable, performance measures such as precision, recall, etc. derived from the 

confusion matrix can be used. However, those measures have been used to evaluate the 

classifiers for a binary classification problem with the skewed class distribution. Since 

some of our real data sets have more than two classes, we define the weighted sum of f-

measure F(ci) for all  classes as follows: 

𝑊𝑆𝐹 = ∑ 𝑤𝑖𝐹(𝑐𝑖)

𝑐𝑖∈𝐶𝐿𝐴𝑆𝑆

 (3) 

𝐹(𝑐𝑖) =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑐𝑖)  × 𝑅𝑒𝑐𝑎𝑙𝑙(𝑐𝑖)

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛(𝑐𝑖) + 𝑅𝑒𝑐𝑎𝑙𝑙(𝑐𝑖)
 (4) 

where CLASS denotes the set of classes, and F(ci) is the harmonic mean of the precision 

and the recall of ci class. Each weight wi of classes is attached according to the proportion 

of the corresponding class ci in a streaming data set. If the proportion of a class is large, a 

small 𝑤𝑖 value is assigned to the class’s weight maintaining the balance of influence on 

the final WSF parameter. Conversely, if the proportion is small, the class’s weight 

becomes a large value. 

Formally, we determined the weight wi of a class ci using equation (5), where N is the 

number of streaming data, and ni is the number of samples belonging to ci class in the 

streaming data. 

A weight value according to the proportion of a class was divided by |CLASS|-1 so that 

the sum of weights of the classes becomes normalized to 1.  

𝑤𝑖 =
1

|𝐶𝐿𝐴𝑆𝑆| − 1
× (1 −

𝑛𝑖

𝑁
) (5) 

 

4.1. Comparison with the Chunk-based Ensemble Approaches using Partially 

Labeled Sample 

We implemented simple voting ensemble (SVE-P) and weighted ensemble (WE-P) 

methods as the chunk-based ensemble approach to show that our approach efficiently 

maintains performance of an ensemble. Both the SVE-P and WE-P methods periodically 

build new classifiers for an ensemble using samples which are randomly selected within 

each chunk. The SVE-P method combined results of classifiers in an ensemble by the 

majority voting method. WE-P used the weighted majority voting method as the 

combining method for classification.  

Each classifier weight in the SVE-P method was predefined as equal to 1.0. In the 

weighted ensemble method WE-P, each classifier weight was determined using the most 

recent chunk according to the method presented by Wang et al. [2]. If a classifier in an 

ensemble provides the highest accuracy on the samples of the most recent chunk, the 

largest value will be attached to the classifier weight. Classifiers’ weights are maintained 

until the next new classifier for the ensemble is built. 
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Table 2. Comparison with TC and LR of SVE-P and WE-P 

Data 

Meta-ensemble 

(θm =300, α =0.04) 

SVE-P 

(chunk size = 3000) 

WE-P 

 (chunk size = 3000) 

TC RL(%) TC RL(%) TC RL(%) 

Landsat Satellite 5 19.5 3 9.7 3 9.7 

Mushroom 11 38.3 3 7.6 3 7.6 

Nursery 5 9.4 5 9.4 5 9.4 

MAGIC 7 9.6 7 9.6 7 9.6 

Click Data 8 8.6 9 9.9 9 9.9 

EM 9 8.8 10 9.9 10 9.9 

Adult 8 6.1 17 9.8 17 9.8 

PAKDD2009 13 8.4 17 9.7 17 9.7 

Shuttle 2 3.6 20 9.8 20 9.8 

MiniBoone 21 4.8 44 9.9 44 9.9 

Census 16 4.6 100 9.9 100 9.9 

KDDCup1999 28 5.1 165 10.0 165 10.0 

Covertype 94 4.8 194 10.0 194 10.0 

Average 17.46 10.12 45.69 9.63 45.69 9.63 

Table 3. Comparison with WSF of SVE-P and WE-P 

Data 
Meta-ensemble 

 (θm =300, α =0.04) 

SVE-P 

 (chunk size = 3000) 

WE-P  

(chunk size = 3000) 

Landsat Satellite 0.591 0.440±0.005 0.516±0.040 

Mushroom 0.898 0.532±0.128 0.816±0.095 

Nursery 0.515 0.441±0.008 0.473±0.020 

MAGIC 0.742 0.712±0.004 0.722±0.007 

Click Data 0.688 0.643±0.007 0.675±0.009 

EM 0.670 0.641±0.010 0.608±0.015 

Adult 0.532 0.599±0.036 0.527±0.031 

PAKDD2009 0.275 0.181±0.005 0.367±0.017 

Shuttle 0.129 0.031±0.000 0.161±0.050 

MiniBoone 0.817 0.822±0.003 0.589±0.018 

Census 0.215 0.061±0.004 0.162±0.054 

KDDCup1999 0.982 0.666±0.009 0.547±0.033 

Covertype 0.386 0.182±0.014 0.115±0.018 

We defined the chunk size as 3,000 samples and used 10% labeled samples that were 

randomly selected in each chunk. Table 2 shows the total number of new classifiers 

generated by each method, and the rate of labeled samples used by each method. Table 3 

shows WSF values of Meta-ensemble, SVE-P and WE-P. A set of ten experiments was 

performed for both SVE-P and WE-P with different random seeds for selecting 300 

samples to be labeled in each chunk. The meta-ensemble generated 61.7% fewer new 

classifiers than the chunk-based ensemble approach using partially labeled samples, and 

used an average of 10% labeled samples for the 13 data sets. The meta-ensemble 

produced an average of 0.572. This average is 25.2% higher than the average WSF of 

SVE-P and 18.7% higher than the average WSF of WE-P. Each of these differences is 

statistically significant (Wilcoxon’s test, significant level=0.05).  
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4.2. Comparison with the Initial Classifier 

We look into the accuracy of the initial classifier which was built from the initial 

training data. The initial classifier predicted the labels of streaming data without the 

process of relearning it. We can evaluate efficiency of the proposed approach through 

comparing it’s accuracy with the accuracy of the initial classifier. Table 4 shows the 

classification accuracies of the initial classifier and of the meta-ensemble generated by 

our approach. The numbers in Table 4 represent values of WSF. The meta-ensemble 

produced an average of 41.6% higher WSF measure value than the initial classifier. In 

particular, its WSF value is bigger than one of the initial classifier for all data sets. 

Table 4. Comparison with WSF of the One Single Classifier 

Data Meta-ensemble (θm=300, α=0.04) Initial classifier 

Landsat Satellite 0.591 0.476 

Mushroom 0.898 0.393 

Nursery 0.515 0.445 

MAGIC 0.742 0.725 

Click Data 0.688 0.669 

EM 0.670 0.633 

Adult 0.532 0.508 

PAKDD2009 0.275 0.175 

Shuttle 0.129 0.031 

MiniBoone 0.817 0.758 

Census 0.215 0.060 

KDDCup1999 0.982 0.263 

Covertype 0.386 0.126 

Average 0.572 0.404 

 

To verify that the meta-ensemble is built new classifiers at reasonable time points, we 

included some specific analyses and interpretations of the classification in a time domain. 

Figure 4 and Figure 5 show variations in prequencial errors of the meta-ensemble and the 

initial classifier. As in work by Gama et al.[14], the prequencial error is calculated by a 

forgetting mechanism using fading factors( = 0.975). The vertical lines in Figure 4 and 

Figure 5 shows points in time where a new classifier for a meta-ensemble is built.  

In Figure 4, the error rate of the meta-ensemble is lower than the initial classifier after a 

new classifier is added to the meta-ensemble at the time when the 1125
th
 sample is 

generated. The error rate of the meta-ensemble in Figure 6 decreased after the 3602
nd

 

sample and the 3738
th
 sample, whereas one of the initial classifier increased. This analysis 

in time shows how real time adjustments in the ensemble influence the quality of 

classification results for streaming data. 
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Figure 5. Variations in Errors, and Time Points when Classifiers are Built in 
the Landsat Satellite Dataset  

 

Figure 6. Variations in Errors, and Time Points when Classifiers are Built in 
the Mushroom Dataset 

4.3. Comparison among Proposed Approaches using Different Classification 

Algorithms 

We used decision trees as classifiers of an ensemble for the experiments so far. The 

decision tree was generated with J48 decision tree (C4.5 algorithm) from Weka 

(http://www.cs.waikato.ac.nz/ml/weka/). However, our ensemble approach does not 

depend on a specific classification algorithm for building a classifier of an ensemble. To 

prove that, we carried out experiments on 13 real data sets with four other classification 

algorithms: SVM(Support Vector Machine), MLP(Multilayer Perceptron), NB(Naïve 

Bayesian), and LR(Logistic Regression). The four kinds of classifier were also built with 

each algorithm provided by Weka. 
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Table 5 shows WSF values produced when each algorithm was used. To use the 

Friedman Test as in Demšar [15] the algorithms achieved their ranks according to WSF 

values for each data set separately. Numbers in parentheses in Table 5 denote ranks of 

algorithms. In this test, the null-hypothesis is that all the classifiers perform the same and 

the observed differences are merely random. With five algorithms and 13 data sets, 

FF=2.11 is distributed according to the F distribution with 5-1=4 and (5-1)×(13-1)=48 

degree of freedom. The critical value of F(4,48) for α=0.05 is 2.57, so we accept the null-

hypothesis. 

Table 5. Comparison of WSF for Meta-ensembles with Each of Five 
Classification Algorithms; Numbers in the Parentheses Denote Ranks of the 

Algorithms 

Data 
Meta-ensemble 

with DT with SVM with NN with NB with LR 

Landsat Satellite 0.591 (4) 0.608 (3) 0.612 (2) 0.628 (1) 0.544 (5) 

Mushroom 0.898 (1) 0.843 (4) 0.842 (5) 0.858 (3) 0.870 (2) 

Nursery 0.515 (4) 0.595 (2) 0.615 (1) 0.480 (5) 0.561 (3) 

MAGIC 0.742 (2) 0.718 (4) 0.778 (1) 0.635 (5) 0.720 (3) 

Click Data 0.688 (4) 0.717 (2) 0.752 (1) 0.644 (5) 0.705 (3) 

EM 0.670 (2) 0.650 (5) 0.669 (3) 0.662 (4) 0.674 (1) 

Adult 0.532 (5) 0.617 (4) 0.635 (2) 0.627 (3) 0.638 (1) 

PAKDD2009 0.275 (3) 0.175 (5) 0.343 (2) 0.403 (1) 0.180 (4) 

Shuttle 0.129 (1) 0.033 (5) 0.127 (2) 0.118 (4) 0.123 (3) 

MiniBoone 0.817 (3) 0.841 (2) 0.856 (1) 0.786 (5) 0.816 (4) 

Census 0.215 (5) 0.386 (2) 0.288 (4) 0.435 (1) 0.364 (3) 

KDDCup1999 0.982 (2) 0.961 (5) 0.985 (1) 0.979 (3) 0.977 (4) 

Covertype 0.386 (2) 0.326 (4) 0.414 (1) 0.358 (3) 0.310 (5) 

 

5. Conclusions 

This paper presents a new ensemble-based modeling approach for classifying data 

streams with concept drift. The methodology is based dynamic extension of the 

ensemble of classifiers according to changes in streaming data distribution. We 

categorize the concept drift into the change of data distribution and the change of 

class distribution. In order to deal with concept drift the data distribution is 

estimated using training data and the class distribution is estimated using classifiers. 

Our approach generates a meta-ensemble where new ensembles, each of which 

consists of an only one classifier, are built whenever changes of the estimated data 

distribution occur and new classifiers of an ensemble are built whenever changes of 

the estimated class distribution occur. The proposed ensemble-based modeling has 

the following main characteristics: (1) Our ensemble approach is able to select the 

most promising samples in an online process which should be labeled; (2) Our 

approach is able to build a smaller number of classifiers than the chunk-based 

ensemble approaches; (3) Our approach is able to build new classifiers for an 

ensemble when the new classifier is necessary, not systematically in time intervals 

for a fixed number of streaming samples; (4) Our approach is able to dynamically 

accommodate each ensemble weight for every new sample to be classified, unlike 

the existing methods where an ensemble keeps classifier weights fixed until the next 

new classifier is built. (5) We confirmed that our approach is independent of a 

specific classification algorithm for building new classifiers of an ensemble. 

Our ensemble approach was compared with the chunk-based ensemble approach using 

partially labeled samples. On 13 real data sets, our approach generated an average of 
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61.7% fewer new classifier of an ensemble than the chunk-based ensemble approach. We 

implemented two types (SVE-P and WE-P) of the chunk-based ensemble approach using 

partially labeled samples. SVE-P used the simple majority voting method as the 

combining method of an ensemble for classification. WE-P used the weighted majority 

voting method where the each weight of classifiers was calculated according to the 

method presented by Wang et al. [2]. Our approach produced an average of 25.2% higher 

classification accuracy than SVE-P and an average of 18.7% higher classification 

accuracy than WE-P. We showed that these two differences are statistically significant 

through Wilcoxon’s test. We also showed that our approach can build new classifiers at 

reasonable time points through comparison of the classification accuracy for our meta-

ensemble and a single classifier in a time domain.  

We are planning to address the problem of maintaining reasonable number of 

classifiers, including a process to delete classifiers in an ensemble over streaming 

data. We assume that the deleting mechanism should be designed according to the 

characteristics of an application. However, Most of the existing ensemble methods 

delete the oldest classifier in an ensemble when the number of classifiers in the 

ensemble is larger than the predefined maximum number. We believe that this 

approach is oversimplified and not appropriate for many real world applications. We 

are also planning to apply our ensemble-based modeling method to the system 

recognizing human activities in a smartphone using the smartphone’s accelerometer.  
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