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Abstract 

Single Image Dehazing technology is widely needed in many fields. In order to solve 

the problem, we propose an improved and modified framework for estimating the optical 

transmission t in hazy scenes in a given single input image. At first, a novel formulation to 

the t estimation is presented with the combination of constant albedo and dark channel 

prior knowledge. Later, we introduce the watershed segmentation methodology into the 

algorithm to separate the image into some gray level consistent parts based on the 

original image’s color distribution and feature difference. As a result, we could estimate 

the atmospheric light A better and avoid the important drawback of artifacts 

phenomenon. At last, through this effective estimation to t and A, the scene visibility is 

largely increased and the haze-free scene contrasts can be better recovered. The 

experimental analysis shows that compared with other state-of-the-art algorithms, our 

proposed algorithm can provide promising results to dark channel prior and get 

corresponding reliable estimation value t with the advantage of minimal halo artifacts 

and fewer unreal details. Our method is more effective and robust. 
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1. Introduction 

Image dehazing as one of the most important research areas and basic issues in the 

community of image processing and pattern analysis, the ultimate image dehazing goal 

can be summarized as two aspects. One is creating visually pleasing images suitable for 

human visual perception whereas the other is to improve the interpretability of images for 

computer vision and preprocessing tasks. Therefore, effective and robust algorithms and 

techniques for image dehazing are urgently needed. Due to the presence of aerosols such 

as dust, mist, and fumes which deflect light from its original course of propagation, the 

light reflected from a surface is scattered in the atmosphere before it reaches the camera in 

almost every practical scenario. Furthermore, the degradation would be more serious with 

increasing of the distance between camera and object. Removing haze can not only 

significantly increase the visibility of the scene and correct the color shift caused by the 

atmospheric light, which makes the image much more visually pleasuring, it can also be 

used for computer vision algorithms to analyze low-level image and high-level object 

recognition. Besides, in many computer vision algorithms and advanced image editing, 

haze removal can play an important role in producing depth information. Thus, haze 

removal has been more and more highly valued recently. However, single image haze 

removal is a challenging problem because it is very difficult to get depth from a single 

image. 

However, single image haze removal is a challenging problem because it is very 

difficult to get depth from a single image. Some methods are proposed using multiple 

images [1,2,3,4,5]. The basic idea is to exploit the differences between multiple images 
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captured for the same scene under different atmosphere. A single image dehazing research 

has made significant progress in recent years. Dong Nan [10] proposed a novel Bayesian 

framework for single image dehazing considering noise, at first the Bayesian framework 

is transformed to meet the dehazing algorithm. Then, the probability density function of 

the improved atmospheric scattering model is estimated by using the statistical prior and 

objective assumption of degraded image. Finally, the reflectance image is achieved by an 

iterative approach with feedback to reach the balance between dehazing and denoising. R. 

Tan [6] pointed out that the haze-free image must have a higher contrast ratio and input 

image of haze. He removes the haze, maximize the local contrast of image. In addition, he 

also puts forward the assumption adjacent pixels suffer the same degradation, and the 

optimal method based on markov random field is used to eliminate the haze. The method 

in practice, however, may lead to the over - enhanced image. Under the assumption that 

the transmission and surface shading are locally uncorrelated, Fattal [7] uses Independent 

Component Analysis to estimate the transmission, and then infers the medium 

transmission and the color of the whole image by MRF. Fattal’s approach is physically 

sound and can produce impressive results, but has difficulty with scenes involving fog, as 

the magnitude of the surface reflectance is much smaller than that of the atmospheric light 

when the fog is suitably thick. In fact, when the assumption is broken, this method may be 

failed. Schechner’s approach [8]focuses on the analysis of images taken through a 

polarizer. Polarization filtering has long been used in photography through haze [5]. 

However, it is restrictive to rely only on optical filtering because it can work well on clear 

days. In the situations with weak light scattering (mainly due to air molecules), 

photographers set the polarization filter at an orientation that best improves image 

contrast. In general, however, polarization filtering alone cannot remove the haze from 

images well. According to dark channel prior and a common haze imaging model, Long 

[11] use a low-pass Gaussian filter to refine the coarse estimated atmospheric veil. Later, 

redefine the transmission, with the aim of preventing the color distortion of the recovered 

images. The main advantage of the proposed algorithm is its fast speed, while it can also 

achieve good results.  Based on the statistics of haze-free outdoor images, He et al. [9] 

employs a dark channel prior which assumes some pixels (called ”dark pixels”) have very 

low intensity in at least one color (RGB) channel in most of the local regions which do 

not cover the sky. A soft matting algorithm is used to refine the transmission. Although it 

is computational expensive, it work well in the final result. This approach is physically 

valid and is able to handle distant objects even in the heavy haze image. It does not rely 

on significant variance on transmission or surface shading in the input image. However, 

the result contains few halo artifacts. Furthermore, in the situation that the scene object is 

inherently similar to the atmospheric light over a large local region, especially when no 

shadow is cast on the object, the color of the output images is likely to be changed, which 

is a weakness of this approach. 

 

2. The Current Models 
 
2.1. The Optical Model 

    In surveillance, intelligent vehicles and remote sensing systems, the image appearance 

is subject to weather conditions such as the influences of haze, fog and smoke. On a gray 

level image, the optical model is established by Koschmieder as the following relationship 

[12] based on physical properties of light transmission in atmosphere.  

        1I x J x t x A t x                                                                                          

(1) 
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Where  I x  represents the apparent luminance at the pixel x  and    d
t x e

 
  is the 

transmission process of the map.  d  is the distance of the corresponding object with 

intrinsic luminance  J x . A  is the luminance of the sky and   denotes the extinction 

coefficient of the atmosphere. In Equation (1), the first term    J x t x  is called direct 

attenuation, and the second term   1A t x  is called atmospheric light. This Optical 

model is directly extended to each RGB component of a color image by assuming a 

camera with a linear response. 

 

2.2. The Dark Channel Prior Model 

According to the literature report [9], based on the observation on haze-free 

outdoor images, in most of the non-sky patches, at least one color channel has very 

low intensity at some pixels, which is called the dark channel prior  (DCP). In 

another word, the minimum intensity in such a patch should have a very low value. 

The general definition and principle of the dark channel prior used for image 

dehazing is formulated as the following: 

 
   

 

 . , , ,

, ,
, min min

x
D

k l m n c r g b

x k j c
m n

a c


 

 
  

 
 

                                                                  

(2) 

Therefore, the dark channel prior gets the least distance to the L¨owner-John 

ellipsoid which could be defined as the following formula 3. 

 
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1

arg min

, 0

1

c z c
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D c c
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z y

m n subject to z e

and y A y
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



                                                           

(3) 

The 
ce denoted as the unit vector is the representative of the normal to one of the 

3-dimensional color regulation within the color cube of RGB, A as the parameter of 

specific matrix comes from the L¨owner- John ellipsoid. On the condition that the 

light is colorless, 1 ,for 0 1pa     , we could therefore get the revised version 

of formula 2 as the following: 

 
   

 
. , , ,

1
, min min , ,

x
D

k l m n c r g b
m n x k j c

  

   
 

                                                                

(4) 

As far as the transmission is concerned, the following formulas express the 

detailed procedure: 

       ', 1 , 1 , ,D D E Et m n w m n w m n t m n                                                   

(5) 

Dt and Et denoted as the function of transmission are the EP and dark channel 

prior estimation of transmission constructed in the same fashion with the weighting 

value parameter set to w = 0.95, respectively. 
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2.3. The Constant Albedo Model 

According to [7], Fattal assumes the unknown image J as a pixel wise product of 

surface albedo coefficients and a shading factor, where is a three-channel RGB 

vector of surface reflectance coefficients and is a scalar describing the light 

reflected from the surface. The model is refined by assuming that is piecewise 

constant. At these pixels, the optical model becomes: 

 ( ) ( ) ( ) 1 ( )I x t x l x R A t x                                                                                   

(6) 

Then he proceeds by breaking R into a sum of two components, one parallel to the 

atmospheric light A and a residual vector .A In terms of these normalized components, he 

projects the input image along and perpendicular to the atmospheric light vector, which 

results in a scalar given by 

 ( ) ( ) '( ) 1 ( )AI x t x l x t x A                                                                               

(7) 

( ) ( ) '( )AI x t x l x                                                                                                      

(8) 

( )AI x and ( )RI x are the representation of components parallel and vertical to 

atmospheric light and generally ( , ) ( , )A RC I h C I h   . With the above discussion 

and analysis, we can define the transmission function as: 

 
1

( ) 1 ( ) ( )A Rt x I x I x
A

                                                                                   

(9) 

 

3. The Proposed Model 
 
3.1. The Estimation of Transmission 

According to He and Fattal’s assumptions: 

 
 

 
 

, , ( ) , , ( )
( ) Min Min ( ) Min Min ( )dark c

c r g b y x c r g b y x
J x J y l y R

   

    
      

                                     

(10) 

And combine with formula 6, the following equation could be derived: 

 
 

 
 

 
 

, , ( ) , , ( ) , , ( )
Min Min ( ) Min Min ( ) Min ( ) Min ( ) 0c

c r g b y x c r g b y x c r g b y x
J y l y R R l y

     

     
      

            

(11) 

Then the equation 11 can be classified into the following two different conditions.  

 

3.1.1. The Condition One 

Generally, ' .l R l and, As we have known that ( )AI x
 
and ( )RI x are scalars. Therefore 

it can be inferred that:  

 
( ) ( )

min ( ) min 1 ( )A
y x y x

I y t y A
 

                                                                                     

(12) 
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 
( ) ( )

min ( ) min ( ) '( ) 0R
y x y x

I x t x l x
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(13) 

 
, , ( )

1 ( )
I A A J t x

t x A
A A

   
                                                                         

(14) 

And then we can further assume that the transmission in a local patch ( )x is constant. 

Then we get an estimation of transmission:  

2

( ),
( ) 1

I x A
t x

A

 
                                                                                                       

(15) 

Since the haze exists in practice, especially when we look at distant objects. It is 

reasonable to add some haze in the final result to make the image more natural. Thus the 

transmission can be refined as: 

2

( ),
( ) 1

I x A
t x w

A

 
                                                                                                     

(16) 
Where (0 1)w w  is a constant. The value of w is based on application. In this paper, 

we fix it to 0.95 in most of the results.  
 

3.1.2. The Condition Two 

In the condition, the prior requirement is that: 

min{ | { , , }} 0.cR c r g b                                                                                               

(17) 

Since is constant in local patches, this condition can only be discussed in some special 

situations such as the reflection of grass. 

 

3.2. The Halo Artifacts Removal with Image Segmentation 

As described previously, the transmission map can be obtained by specifying the global 

atmospheric light. In this paper, we adopt the approach in the previous discussion to 

estimate A. With the transmission map, the haze-free image can be recovered according to 

equation (1). However, a problem is found that there are halo artifacts at the depth-

discontinuous edges as shown in Figure 1(b). Since the depth is usually assumed to be the 

same in every given 15*15 patch, halo artifacts is unavoidable because in the patch there 

are always erupt changes of color in the same patch. Thus the selection of patch region is 

unreasonable.  

In this paper, we introduce the watershed segmentation to solve the problem instead 

of dealing with it by dividing the whole image into some 15*15 patches as shown in 

Figure 1(d). By using the watershed segmentation algorithm, we can calculate the 

atmospheric light and dark-channel of input image and the transmission (Figure 1(c)) is 

assumed to be a constant in regions of segmentation. This method can reduce the erupt 

changes in depth-discontinuous edges which result in halo artifacts. In many cases, the 

region, may produce too much calculation produces a great burden. Control the amount of 

calculation, we introduce several parameters:  and min, where is the Watershed ridge 

pixels that control segmentation and min is the minimum size of each patch. 
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Figure 1. (a) The Input Image (b) Segmentation Result with the Scene  

(c) Segmentation Result without the Scene (d) He’s Result (e) Fattal’s Result 
(f) Our result 

 

3.3. Estimating the Atmospheric Light 

In this paper, we improve He’s approach to estimate atmospheric light A. 

According to He’s algorithm, his approach works well when/based on the 

assumption that there is some sky region which is used to estimate the A and the 

magnitude of area of sky cannot be very large in the given image. Follow the above 

assumptions, the top part of the picture, we think that can better estimate the 

atmospheric light, because if there is the sky area image, it is always in the part of 

the image, and if not, we can estimate the atmospheric light the sky area does not 

exist. So if we estimate the atmospheric light and the whole image, it may affect the 

outcome. In addition, it also can reduce the amount of calculation.  However, the 

atmospheric light color can also be changed in the image if the range of vision is too 

large. In such situations, the segmentation in the previous section can be adopted to 

solve the problem. We divide the whole image into several parts and estimate the 

atmospheric light in the top area (as shown in Figure 1 (c)). By this approach, the 

dehazing result can be improved. 

To control the result of division, there are several parameters: max and ,k wheremax is 

the maximum number of all parts and k is a constant to constrain the area of top part. 

From each area of the segmentation, we pick the top 0.1% brightest pixels in the dark 

channel. Then we compute their average as the value of the atmospheric light A in the 

whole image. 

 

4. The Experimental Analysis 

    In our proposed method, we introduce the Watershed algorithm [9] to conduct region 

division to single hazy image. And use the transmission map to calculate the transmission 

values of different regions. Our method mainly includes the following four steps: region 

division, computing transmission map, atmospheric light estimation and image dehazing. 

Parameters in the algorithm are initialized as follows:  The algorithm is implemented on a 

P4-4GHz PC with 2 GB RAM. It takes about 10-20seconds to process a 600*400 pixels 

image. Fig. 2 (e) and (f) show our haze removal results with different. The atmospheric 

lights in the input image are estimated by using our proposed method described in Section 
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3.3. From fig. 2(f), it can be seen that our method significantly overcomes the dense fog 

and recovers most detail. Besides, the estimated depth maps are sharp and consistent with 

the input images. Compared with He’s results in Figure 1, our approach performs better in 

halo artifacts. It is shown that the light is clearer when 0.9   or 0.95 . 

In Figure 3, we compare our approach with Tan’s work. The colors of his result are 
often over saturated, since his algorithm is not based on physical and may underestimate 
the transmission. Our method recovers the structures without sacrificing the fidelity of the 
colors (e.g., the swans in the image). Although in some part of the image, the details 
((e.g., the trees in the right of image)) cannot be recovered totally, the color of the whole 
image is more real in our result. Fig. 4 (b-e) stands for haze removal results by Fattal, Tan, 
Koph and our method, respectively. Fig. 4 (f) is the revised transmission map of the input 
image. From Fig.4 (b), Due to Fattal’s method is based on statistics results and requires 
sufficient color information especially variance of color, Fattal’s approach has some 
difficulties in recovering the hazy image under the dense haze. With the dense haze, the 
color of the hazy image is basically uniform and its variance is not high enough, which 
make it difficult to reliably estimate the transmission. Besides, in Fig.4 (c), Tan’s result 
shows the problem of over saturating. In comparison, our approach can recover more 
details of scenarios as shown in Fig. 4(e). 

The comparison result with Koph’s is shown in Fig.4(d). Koph’s method, which 

incorporates the 3D geography information, can perform well in the recovery of the hazy 

image, but it cannot be applied widely Because of its requirement of a huge amount of 

information. On the contrary, our result can recover sufficient details and use less 

information. 

 

 

Figure 2. (a) The Input Image (b) Fattal's Result (c) The Revised 
Transmission Map (d) Segmentation with the Scene  (e,f) Our Results 

app:ds:requirement
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Figure 3. Comparison with Tan's Work  

 

 

Figure 4. (a) The Input Image (b) Fattal's Result (c) Tan’s Result (d) Koph et 
al.’s Result (e) Our Result with  (f) The Revised Transmission Map 

5. Conclusion and Summary 

This paper presents a new approach to estimate transmission by combining statistical 

results and dark-channel. This approach enables dehazing when the problem cannot be 

solved by optics alone. In addition to statistical results and optics, segmentation is proved 

a better way to divide the whole image than a 15*15 patch region. Our method is based on 

the partial estimation of atmospheric light. Therefore, its stability will decrease as the 

accuracy of segmentation decreases. For instance, the method may fail in situations of fog 

or very dense haze since in such situation it may be difficult to divide the image 

accurately. Besides, since the errors in the dark channel prior still remains, our method 

can only solve the problem to some extent when color of the scene object is similar to the 

atmospheric light. Future work will try to figure out a better way to estimate atmospheric 

light to solve the problem that the color of the image is changed to some extent (e.g., 

Figure 4 (e)). In addition, some reverse problem based mathematical tools are still needed 

such as the literatures of [13-20]. Image dehazing issue in urgently needed to be dealt 

with and find out for a more robust and effective solution. 
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