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Abstract 

Measuring image similarity is important for a number of image processing applications. 

The goal of research in objective image similarity assessment is to develop quantitative 

measures that can automatically predict perceived image similarity. In this paper, we 

propose a new objective approach of measuring image similarity based on shape context. 

We take the geometric structures of objects into account during measuring the image 

similarity by virtue of shape context which is a robust and compact, yet highly 

discriminative descriptor. Firstly we find visual salient regions of images by virtue of a 

regional contrast based saliency extraction algorithm and employ shape context to 

describe the shape of visual salient region. Then we detect shape deformations of visual 

salient regions between two images through estimating shape context distances, and 

accordingly compute the image similarity values. Real data have been used to test the 

proposed approach and very good results have been achieved, validating it. 
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1. Introduction 

Measuring the distance or similarity between images is a fundamental and open problem 

in a large number of image processing and computer vision applications, which include 

image coding, restoration, denoising, halftoning, segmentation, communication, target 

detection, image registration, and object recognition. For applications in which images are 

ultimately to be viewed by human beings, an obvious and accurate method of measuring 

image similarity is the subjective evaluation based on the human perception. In practice, 

however, subjective evaluation is usually too inconvenient, time-consuming and expensive. 

It is necessary to use an objective measure to evaluate image similarity.  

Objective image similarity metrics can be roughly classified into intensity-based metrics 

and geometry-based metrics [1]. Intensity-based similarity metrics assume that the images 

being compared are at the same scale and are perfectly registered, and their similarity is 

determined from a comparison of the corresponding pixel intensities. As for this category 

of metrics, the most commonly used metric is Euclidean distance, which converts images 

into vectors according to gray levels of each pixel, and then compares intensity differences 

pixel by pixel. Since Euclidean distance discards image structures, it cannot properly 

represent the real similarity between images. If a small variation occurs in similar images, 

a large Euclidean distance between the images could arise. Another commonly used 

intensity-based metrics are mean squared error (MSE) and peak signal-to-noise ratio 

(PSNR). It has been shown that MSE and PSNR lack a critical feature: the ability to assess 

image similarity across distortion types. Generally, a common drawback of existing 

intensity-based metrics is their high sensitivity to geometric and scale distortions. This 

becomes a big problem when there are small translations, rotations, or scale differences 

between the images being compared.  

All the intensity-based metrics described above are point operations. In other words, the 

similarity evaluation at one pixel is independent of all other pixels in the image. However, 
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neighboring image pixels are highly correlated with each other. To take advantage of such 

correlations, geometry-based metrics establish pixel correspondences between the images 

based on intensity, and then determine similarity by comparing the geometric 

transformations between corresponding pixels. Recently, the structural similarity (SSIM) 

[2] was introduced by Wang, Bovik, et al that also accounts for spatial correlations. In 

SSIM, the structural information of an image is defined as those attributes that represent 

the structures of the objects in the visual scene, apart from the mean intensity and contrast. 

Thus, the SSIM metric compares local patterns of pixel intensities that have been 

normalized for mean intensity and contrast, and measures similarity across distortion types. 

In addition, some geometry-based similarity metrics compare edge images. These involve 

Pixel Correspondence Metric (PCM) [3], Closest Distance Metric (CDM) [3, 4], Figure of 

Merit (FOM) [5] and Partial Hausdorff Distance Metric (PHDM) [6] etc. All of these 

metrics allow for small localization errors between the structures being compared. Most of 

these metrics operate in the spatial domain. For these geometry-based methods, 

correspondences between pairs of pixels in the two images is not assumed, but is 

established before the metric is computed. This process can be computationally complex.  

Intensity-based similarity metrics are common, but they have limited performance 

within a distortion type. Geometry-based metrics measure similarity with greater accuracy 

and across distortion types, but incur greater computational cost. 

According to the human perception, the human visual system is very sensitive to shape 

variations of some visual salient regions when two images are compared. Thus, for 

measuring the similarity between two images, we should pay more attention to shape 

preservation of visual salient regions. Therefore, we may take the geometric structures of 

objects into account during measuring the image similarity as the same way in geometry-

based similarity metrics, but we have no need to establish the correspondences between 

pairs of pixels, since we mainly focus on visual salient regions. As a favorable result, the 

lower computational cost as well as the better accuracy is expected to achieve.  

From the above idea, this paper proposes a novel approach of measuring image 

similarity based on shape context. Shape context is a more robust and compact, yet highly 

discriminative descriptor [7]. We employ shape context to describe the shape of visual 

salient region. We will detect shape deformations of visual salient regions between two 

images through estimating shape context distances, and accordingly compute the image 

similarity values. The remainder of this paper is organized as follows. Section 2 illustrates 

the flowchart of the proposed image similarity measure based on shape context. Section 3 

explores how to detect visual salient regions of image. Section 4 introduces shape context 

and measuring shape context distance. Section 5 elaborates how to determine the proposed 

image similarity measure based on shape context. Section 6 provides the experimental 

results. Finally, the paper is concluded in Section 7. 

 

2. Flowchart of the Proposed Approach 
 

 

Figure 1. Flowchart of the Proposed Approach on Measuring Image 
Similarity 

We illustrate the flowchart of image similarity measure based on shape context 

proposed by us in Figure 1.  

As we can see from Figure 1, the proposed similarity measure based on shape context 

mainly involves the following steps. After two images to be compared are inputted, their 

visual salient regions are detected. Then edge detection for two images is conducted, so as 
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to build shape context of visual salient regions. Next, we compute shape context distance 

for the visual salient regions between two images. At last, the image similarity is measured 

according to the shape context distance of visual salient regions. The detailed procedure of 

the approach is as follows. 

 

3. Detecting Visual Salient Regions 

In the proposed approach, we detect visual salient regions by virtue of a regional 

contrast based saliency extraction algorithm, which is simple, efficient, and yields full 

resolution saliency maps and outperforms existing saliency detection methods [8]. In the 

first step of this algorithm, the input image is segmented into regions using a graph-based 

image segmentation method [9], then the color histogram for each region is built. For a 

region 
k

r , its saliency value is calculated by measuring its color contrast to all other regions 

in the image as follows, 

  
i k

k i r i k

r r

S (r )= w (r )D (r ,r )



  (1) 

where 
i

w (r )  is the weight of region 
i

r  and 
i k

D (r ,r )  is the color distance metric between the 

two regions.  Here the number of pixels in 
i

r  is used as 
i

w (r )  to emphasize color contrast to 

bigger regions. The color distance between two regions 
1

r  and 
2

r  is defined as, 

  
1 2

n n

r 1 2 1 ,i 2 ,j 1 ,i 2 ,j

i= 1 j= 1

D (r ,r )= f (c )f (c )D (c ,c )   (2) 

where 
k ,i

f (c )  is the probability of the i-th color 
k ,i

c  among all 
k

n  colors in the k-th region 

k
r , k=1, 2. The probability of a color in the probability density function (i.e. normalized 

color histogram) of the region is used as the weight for this color to emphasize more the 

color differences between dominant colors. 

In the second step of saliency extraction, spatial information is incorporated by 

introducing a spatial weighting term in Equation 1 to increase the effects of closer regions 

and decrease the effects of farther regions. Specifically, for any region 
k

r , the spatially 

weighted region contrast based saliency is defined as [8]: 

  
i k

2

k s i k s i r i k

r r

S (r )= e x p (D (r ,r ) / δ )w (r )D (r ,r )



  (3) 

where 
s i k

D (r ,r )  is the spatial distance between regions 
i

r  and 
k

r , and 
s

δ  controls the 

strength of spatial weighting. Larger values of 
s

δ  reduce the effect of spatial weighting so 

that contrast to farther regions would contribute more to the saliency of the current region. 

The spatial distance between two regions is defined as the Euclidean distance between 

their centroids. 

 

4. Computing Shape Context Distance 

Shape context is a shape descriptor that is applicable for shape or region matching [7]. 

 

4.1. Edge Detection for Shape Context 

For shape context, an object is treated as a possibly infinite point set and the shape of an 

object is essentially assumed to be captured by a finite subset of its points. More 

practically, a shape is represented by a discrete set of points sampled from the internal or 

external contours on the object. These can be obtained as locations of edge pixels as found 

by an edge detector, giving us a set 
1 2 n

P { p , p , .... . . , p } , 2

i
p R , of n points. The shape can be 

sampled with roughly uniform spacing. Assuming contours are piecewise smooth, a good 
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approximation to the underlying continuous shapes can be obtained by picking n to be 

sufficiently large. 

 

4.2. Shape Context 

Consider the set of vectors originating from a point to all other sample points on a shape. 

These vectors express the configuration of the entire shape relative to the reference point.  

Based on this, Belongie [7] defined shape context as the distribution over relative positions, 

and identified it as a more robust and compact, yet highly discriminative descriptor. For a 

point 
i

p  on the shape, a coarse histogram 
i

h  of the relative coordinates of the remaining n-

1 points is computed as follows. 

  
i i i

h (k) # {q p : (q p ) b in (k)}     (4) 

This histogram is defined to be the shape context of 
i

p . In log-polar space the uniform 

bins are used to make the descriptor more sensitive to positions of nearby sample points 

than to those of points farther away. Consider a point 
i

p  on the first shape and a point 
j

q  

on the second shape. Let 
ij i j

C = C (p , q )  denote the cost of matching these two points. As shape 

contexts are distributions represented as histograms, it is natural to use the 2
χ  test statistic: 

  
2K

i j

ij i j

k = 1 i j

[h (k ) -h (k ) ]1
C = C (p , q )

2 h (k )+ h (k )
   (5) 

where 
i

h (k )  and 
j

h (k )  denote  the  K-bin  normalized histogram at 
i

p  and 
j

q , respectively. 

Given the set of costs 
ij

C  between all pairs of points 
i

p  on the first shape and 
j

q  on the 

second shape, bipartite graph matching is conducted [7], so as to minimize the total cost of 

matching, 

  
i π ( i)

i

H (π )= C (p ,q )  (6) 

subject to the constraint that the matching be one-to-one, i.e π  is a permutation. This is an 

instance of the square assignment (or weighted bipartite matching) problem, which can be 

solved in 3
O (N )  time using the Hungarian method [10]. The input to the assignment 

problem is a square cost matrix with entries 
ij

C . The result is a permutation π ( i)  such that 

(6) is minimized. When the number of sample points on two shapes is not equal, the cost 

matrix can be made square by adding dummy nodes to the smaller point set. In this case, a 

point will be matched to a “dummy” whenever there is no real match available at smaller 

cost than a constant matching cost of 
d

ε . As illustrated in [7], shape context matching is 

proven to be invariant under scaling and translation, and robust under small geometrical 

distortions, occlusion and presence of outliers.  

 

4.3. Measuring Shape Distance 

After shape matching, shape distance is estimated as the weighted sum of three terms: 

shape context distance, image appearance distance, and bending energy [7]. Shape context 

distance 
sc

D (P ,Q )  between shapes P  and Q  is measured as the symmetric sum of shape 

context matching costs over best matching points, i.e., 

  
sc

q Q p Pp P q Q

1 1
D (P ,Q )= a rg m in C (p ,T (q )) + a rg m in C (p ,T (q ))

n m  

   (7) 
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where T ( )  denotes the estimated shape transformation of thin plate spline. Image 

appearance distance 
a c

D (P ,Q )  is defined as the sum of squared brightness differences in 

Gaussian windows around corresponding image points, 

  
2

n

2

a c P i Q π (i)

i= 1 Δ Z

1
D (P ,Q )= G (Δ )[I (p +Δ )-I (T (q )+Δ )]

n


   (8) 

where 
P

I  and 
Q

I  are the gray-level images corresponding to P  and Q , respectively. Δ  

denotes some differential vector offset and G  is a windowing function typically chosen to 

be a Gaussian, thus putting emphasis to pixels nearby. Thus through summing over 

squared differences in windows around corresponding points, score the weighted gray-

level similarity. This score is computed after the thin plate spline transformation T has 

been applied to best warp the images into alignment. The third term 
b e

D (P ,Q )  corresponds to 

the "amount" of transformation necessary to align the shapes. In the case of thin plate 

spline the bending energy is a natural measure [11]. 

 

5. Measuring Image Similarity Based on Shape Context 

We assume that the image similarity is measured between the image I1 and the image I2, 

and after the visual salient regions are detected from these two images, S1 represents the set 

of visual salient regions of I1, and S2 means the set of visual salient regions of I2. Let 

1 1 2 m
S = { P , P ,  , P }  and 

2 1 2 n
S = { Q , Q ,  ,  Q } . We compute shape distance for the visual salient 

regions between two images, and accordingly obtain the image similarity values. The 

details are as follows. 

Step 1. For every visual salient region Pi (i=1,…,m) in S1, we search the nearest 

neighbor Qnn in the set S2 of visual salient regions of I2, which has the shortest shape 

distance to Pi according to the shape distance in Section 4.3. 

Step 2. For the visual salient region Qnn in S2, we search the nearest neighbor Pnn in the 

set S1 of visual salient regions of I1, which has the shortest shape distance to Qnn.  

Step 3. Compare Pi and Pnn, to see if they are the same visual salient region of I1. If so, it 

proves that the shape of Pi is still well maintained. Otherwise, it means that the severe 

shape deformation of Pi has occurred, so that we cannot find the right corresponding region 

in S2 for Pi. 

Step 4. We count the shape-maintained regions between these two images on the basis 

of Step 3, accordingly measure the similarity between these two images. 

 

6. Experimental Results 

To validate the proposed similarity measure, we took real images to confront it with the 

real world. The image dataset in our experiment is picked from the COREL database with 

10,000 images, in which the images belong to 100 semantic categories, each of which has 

100 images. 

As shown in Figures 2-7, we select six typical cases of image similarity measure in the 

paper due to space limitation, which involve different scenes including “horse”, “cruise”, 

“flower”, “cascade”, “bus” and “sunset” for illustrating the extensive application of our 

method. In every case, we measure the image similarity between the first image I1 and each 

of the remaining images I2, I3, I4, I5 and I6 using our proposed method. Then the remaining 

images are ranked according to their similarity to the first image I1 and the top ranked 

image is considered the most similar to the first one. In detail, we use the algorithm in 

Section 5 to calculate the above image similarity measures. The calculated results of 

similarity measure are summarized by Table 1 where “Rank 1” means that the 

corresponding image has the maximum similarity to the reference image I1, and “Rank 5” 

indicates that the corresponding image has the minimum similarity to the reference image 
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I1. According to the obtained results in Table 1, the images I4, I2, I4, I5, I5 and I3 are 

respectively marked as the most similar to the leftmost one in Figures 2-7. We can figure 

out that the achieved similarity results in Figures 2-7 approximate the subjective human 

choices and are consistent as well as accurate. Thus our proposed method about similarity 

measure based on shape context has been validated. 

 

 

Figure 2. Image Case 1 Involving “Horse” Scene where these Images are 
Named as I1, I2, I3, I4, I5 and I6 from Left to Right, the First Image I1 is the 

Reference 

 

Figure 3. Image Case 2 Involving “Cruise” Scene where these Images are 
Named as I1, I2, I3, I4, I5 and I6 from Left to Right, the First Image I1 is the 

Reference 

 

Figure 4. Image Case 3 Involving  “Flower” Scene where these Images are 
Named as I1, I2, I3, I4, I5 and I6 from Left to Right, the First Image I1 is the 

Reference 

 

Figure 5. Image Case 4 Involving “Cascade” Scene where these Images are 
Named as I1, I2, I3, I4, I5 and I6 from Left to Right, the First Image I1 is the 

Reference 

 

Figure 6. Image Case 5 Involving  “Bus” Scene where these Images are 
Named as I1, I2, I3, I4, I5 and I6 from Left to Right, the First Image I1 is the 

Reference 
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Figure 7. Image Case 6 Involving “Sunset” Scene where these Images are 
Named as I1, I2, I3, I4, I5 and I6 from Left to Right, the First Image I1 is the 

Reference 

Table 1. The Calculated Rank Results of Similarity Measure for Every Case 
using the Proposed Approach in Figures 2-7 

Similarity 

Rank 
Reference Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 

horse I1 I4 I5 I6 I2 I3 

cruise I1 I2 I4 I3 I6 I5 

flower I1 I4 I2 I6 I3 I5 

cascade I1 I5 I6 I3 I2 I4 

bus I1 I5 I6 I4 I3 I2 

sunset I1 I3 I2 I6 I4 I5 

 

7. Conclusion 

In this paper, we proposed an image similarity measure based on shape context. The 

proposed approach on image similarity measure mainly involves the following steps. In the 

first, the visual salient regions are detected from two images to be compared through a 

regional contrast based saliency extraction algorithm. Then we build shape context of 

visual salient regions. Next, we compute shape context distance for the visual salient 

regions between two images. Finally, the image similarity is measured according to the 

shape distance of visual salient regions. Experimental results showed that the achieved 

similarity ranks for real images closely match the subjective human choices and are 

consistent as well as accurate. The good results from the experiments illustrated the 

practicability and effectiveness of our proposed measure approach, validating it. 
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