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Abstract 

Cervical cancer is one of the main causes of death by disease worldwide. In Peru, it holds 

the first place in frequency and represents 8% of deaths caused by sickness. To detect the 

disease in the early stages, one of the most used screening tests is the cervix Papanicolaou 

test. Currently, digital images are increasingly being used to improve Pap test efficiency. This 

work develops an algorithm based on adaptive thresholds, which will be used in Pap smear 

assisted quality control software. The first stage of the method is a pre-processing step, in 

which noise and background removal is done. Next, a block is segmented for each one of the 

points selected as not background, and a local threshold per block is calculated to search for 

cell nuclei. If a nucleus is detected, an artifact rejection follows, where only cell nuclei and 

inflammatory cells are left for the doctors to interpret. The method was validated with a set of 

55 images containing 2317 cells. The algorithm successfully recognized 92.3% of the total 

nuclei in all images collected. 
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1. Introduction 

Cervical cancer is one of the main causes of morbi-mortality in women around the 

world, and it constitutes the second most frequent malignant tumor both in incidence 

and mortality in women from all ages. In Latin America, it is estimated that 63,608 

women are diagnosed with cervical cancer annually, while 29,222 deceases are recorded 

as consequence of this disease [1]. In Peru, cervical cancer holds the first place in 

frequency (14.9%), accounting for a total of 109,914 notified cases between 2006 and 

2011. Out of these, 5.6% were diagnosed through an early detection or screening 

program. Furthermore, the number of healthy life years lost to cancer was 418,960 in 

2008, which represented 8% of the national disease load [2]. Currently, 75% of the 

diagnostics are done when the disease is in an advanced stage [3]. Consequently, the 

application of a screening exam in the public health strategy is vital. The two most used tests 

are the conventional exfoliative cervicovaginal cytology (cervix Papanicolaou test) and 

Human Papiloma Virus (HPV) detection tests. Papanicolaou cytology has a sensitivity 

(probability to correctly identify a sick woman) of 44% to 86% and a specificity (probability 

to correctly identify a healthy woman) of 98% [4].  

Among the limitations of the Pap cervix, which contribute to its low sensitivity, are the 

difficulty to obtain an adequate sample, the bias between observers, and the 

misinterpretations. Even with adequate samples, a percentage of discrepancy between 9.8% 

and 15% has been observed in the cytological classification of the lesions [5]. To overcome 

these problems, there is nowadays an increasing use of digital image in cytopathology. The 

accessibility that digital cytology provides can improve the quality and efficiency of 
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cytopathology services. Some of the fields being exploited include tele-education, 

telecytology, quality assurance and automated/assisted screening of Pap test slides [6]. 

However, digital image brings with itself problems caused by the acquisition systems, such as 

non-uniform illumination or low contrast. Likewise, there are some problems caused by the 

stratified nature of the tissue, like folded and overlapped cells, and the common presence of 

mucus, blood cells and other artifacts that disturb the sample [7]. 

As for the illumination problem, there is a grey reescalation based on the gray weighted 

barycenter in [8], and a HSI color model approach in [9]. In [10], part of the preprocessing is 

edge sharpening and contrast enhancement, within the three RGB layers, using h-minima 

transform. On the other hand, [11] uses marker-based watershed segmentation to prevent 

oversegmentation and inaccurate boundary segmentation. Additionally, in [12] an overlapping 

cell segmentation algorithm is developed using a spatially adaptive active physical model. 

Finally, the area, elliptical shape, and texture/granularity are considered for artifact rejection 

in [13]. Regarding the detection algorithms previously developed, there have been several 

approaches, such as global and adaptive thresholds [8, 14], the watershed transform [11-13] 

and even a fuzzy logic based algorithm [9]. However, the thresholding algorithms lack 

robustness when faced to problems such as noise, uneven illumination and variations in 

staining intensity. Additionally, the watershed transform algorithms are prone to 

oversegmentation and inaccurate boundary segmentation [13, 15]. Finally, in most algorithms 

proposed there is a need for a larger and more diverse set of validation images, as the average 

number of images used in each project does not exceed twenty.  

The approach of this paper is to develop a simple and computationally inexpensive 

algorithm that can be used in assisted screening software for cytopathologist. For this  

purpose, the aforementioned problems related to thresholding algorithms shall be 

overcome. Additionally, an extensive set of images will be prepared to correctly 

evaluate the algorithm performance. 

 

2. Proposed Method 

The algorithm proposed is designed to detect and segment free-lying ectocervical cell 

nuclei, which are the most abundant on Pap smears. The approach chosen was a 

threshold-based algorithm. Thus, problems related to noise, uneven illumination and 

variations in staining intensity shall be overcome. In this manner, a point-to-point 

analysis, detailed in this paper, was developed. The general diagram is shown in Figure 

1. After image acquisition, the method is divided in three main stages: preprocessing, 

block analysis, and artifact rejection. Then, as shown in the diagram, a false color 

representation is elaborated with the results.  

The first step is image acquisition. The digital smear images used in this work were 

captured by a camera adapted to an optical microscope with a 40x magnification; while 

the storing was made with 4096x3084 pixels in format ORF. Then, the method is 

divided in three main stages: Preprocessing, Block analysis, and Artifact rejection. 
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Figure 1. Block Diagram of Proposed Method 

The Preprocessing stage deals with the problem of noise and makes a pre -selection of 

areas of interests, removing the background in order to improve the processing time. A 

for loop is made with all the pixels selected as area of interest and the Block Analysis is 

executed for each one. This approach was taken to overcome the aforementioned issues 

of uneven illumination and variations in staining intensity. If a potentially nuc leus is 

identified in the block, an Artifact Rejection step follows. Finally, as this project was 

intended for quality assurance assisted software, additionally to statistics, a false color 

representation was elaborated for each image in order to present results to the doctors. 

 

2.1. Preprocessing 

Acquired color image I (Figure 2) with RGB primary components 

IR(x, y), IG(x, y) and IB(x, y)) is converted to grayscale as follows: 

 

Id(x, y) = a1IR(x, y)+a2IG(x, y) + a3IB(x, y) (1) 

where 𝑎1 = 0.299  , 𝑎2 = 0.587  and   𝑎3 = 0.114 

 

 

Figure 2. Original Image 

A median filter is applied to remove the impulse noise inherent to all digital images. 

These filters have been widely used in the removal of salt -and-pepper type impulse 
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noise, due to its simplicity yet high effectiveness [16]. The resulting filtered image is 

defined as Ig(x, y). 

The histogram of Ig(x, y) is defined as hIg(r), where “r” is the shade of gray defined 

in the range [0,255] (Figure 3a). While the derivative of hIg(r) in absolute value (Figure 

3b) is obtained as follows: 

𝑑ℎ𝐼𝑔(𝑟) = |ℎ𝐼𝑔(𝑟) − ℎ𝐼𝑔(𝑟 − 1)| (2) 

From hIg(r) and dhIg(r), a global threshold is determined to segment the regions with 

presence of cell nuclei. The procedure is described below: 

1. dh′Ig(r) is defined as follows: 

dhIg
′ (r) {

0, 0 ≤ r ≤ 122

dhIg(r), otherwise  
(3) 

2. The value of r0 meeting the next condition is searched: 

dhIg
′ (r0) > dhIg

′ (r), for all r ≠ r0  

(4) 

3. Let rA = r0 and a temporal flag bu = 0 

4. “bu” is updated with the following expression: 

bu = {
1, dhIg

′ (rA) < 50 ∧  𝑑hIg
′ (rA − 1) < 50 ∧ dhIg

′ (rA − 2) < 50

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

5. If bu = 1, then the global threshold is set ug = rA; otherwise,   rA = rA − 1 and the 

procedure is repeated from step 4. 

Once ug is found, a thresholded image is obtained with the following expression:  

Iu(x, y) = {
0, Ig(x, y) ≥ ug 

100, Ig(x, y) < ug
 (6) 

The result of this stage is shown in Figure 4, where the pixels belonging to the 

background are black and will not be analyzed in the next parts. The rest, i.e. regions 

with potential cell nuclei, is gray. 

 

 
 

(a) Grayscale Histogram 

 
 

(b) Derivative of the Histogram 

Figure 3. Global Threshold Calculation 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015) 

 

 

Copyright ⓒ 2015 SERSC  41 

 

Figure 4. Result from the Global Threshold Clculation 𝐈𝐮(𝐱, 𝐲)  

2.2. Block Analysis 

With the thresholded image and the grayscale filtered image (Ig), a Block analysis 

follows. Image Iu(x, y)  is scanned from left to right and top to bottom to find the 

coordinates where Iu(x, y) = 100. The process is followed as described below: 

1. Iu(x0, y0) shall be defined as the first detected pixel with value 100. Then an image 

block is segmented, which is expressed as: 

Ib(x, y) = Ig (x + x0 −
M1

2
, y + y0 −

N1

2
) (7) 

where x = 0,1,2,… ,M1 and y = 0,1,2,… , N1. In this case, we consider  M1 = 300 

and N1 = 300. 

2. Row  M1/2 and column N1/2 of Ib(x, y) are extracted: 

Vh(y) = Ib (
M1

2
, y) , y = 0,1,2,… , N1 (8) 

Vv(x) = Ib (x,
N1

2
) , x = 0,1,2,… ,M1 (9) 

3. The derivative of Vh(x) is obtained: 

V ′
h(y) = Vh(y) − Vh(x − 1) (10) 

4. yA = N1/2 and a temporal flag bh = 0 are defined 

5. “bh” is updated with the following expression: 

bh = {

1, Vh
′ (yA) < −3 ∧ Vh

′ (yA − 1) < Vh
′ (yA)  ∧

Vh
′ (yA − 2) < Vh

′ (yA)  ∧  Vh
′ (yA + 2) < Vh

′ (yA)

0, otherwise

 (11) 

6. If bh = 1, then y1 = yA. Otherwise, yA = yA − 1 and the procedure is repeated from 

step 6. In case bh = 1 is never reached, the process ends and the next 100 value 

pixel is analyzed from step 2. 

7. bh = 0 again and yA = N1/2. 

8. Then, “bh” is updated with the following expression: 

bh = {

1, Vh
′ (yA) > 3 ∧  Vh

′ (yA − 1) > Vh
′ (yA)  ∧ Vh

′ (yA + 1) > Vh
′ (yA)  ∧

Vh
′ (yA − 2) > Vh

′ (yA)  ∧ Vh
′ (yA + 2) > Vh

′ (yA) 

0, otherwise

 (12) 
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9. If bh = 1, then y2 = yA. Otherwise, yA = yA + 1 and the procedure is repeated from 

step 9. In case bh = 1 is never reached, the process ends and the next 100 value 

pixel is analyzed from step 2. 

10. In the same manner, the process is repeated analogously for Vv(x) from step 4 to 

10. 

11. If coordinates x1,  x2, y1 and y2 are found, vectors Vv(x) and Vh(y) are segmented: 

Vvs(x) = Vv(x + x1) , x = 0,1, … , x2 − x1 (13) 

Vhs(y) = Vh(y + y1) , y = 0,1, … , y2 − y1 (14) 

In Figure 5a, there is an extracted block example, where the red circle indicates the 

position of the point being analyzed. The white line is the middle row being extracted 

for the derivative calculation and the black line represents the part of the row that 

belongs to a nucleus. In Figure 5b, the derivative is plotted, where the red lines indicate 

where cell nucleus limits were found. 

 

 
 

(a) Vector Analysis in the Block.  

 
 

(b) Derivative of Row Vector. 

Figure 5. Block Analysis 

12. The maximum Pmax value for both vectors Vvs y Vhs is obtained: 

Pmax = max (Vvs(xB), Vhs(yB)) (15) 

where 𝑉𝑣𝑠(𝑥𝐵)  and 𝑉ℎ𝑠(𝑦𝐵) meet the following conditions: 

Vvs(xB) ≥ Vvs(x) , for  x = 0,1, … , x2 − x1 (16) 

Vhs(yB) ≥ Vhs(y), for  y = 0,1,… , y2 − y1 (17) 

Function max (a, 𝑏) returns the largest value (a or b) 

13. Block Ib(x, y) is thresholded: 

Is(x, y) = {
255, Ib(x, y) < Pmax
0, otherwise

    (18) 

14. A labeling algorithm [17] is applied to the binary image Is(x, y , and IL(x, y)  is 

obtained (See Figure 6a). 

15. The object (label) almost centralized in the coordinates (x = M1/2, y = N1/2) is 
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extracted. 

16. I0(x, y) shall be defined as the binary image only containing the object segmented, 

which has dimensions M1 and N1 (See Figure 6b). 

 

2.3. Artifact Rejection I 

In order to obtain a good segmentation of nuclei and to discern between them and 

artifacts, a parameter extraction and evaluation is performed with I0(x, y). 
 

 
 

 

(a)  Image after Labeling. 
Each Color Represents a Different 

Object (label) 

(b)  Single Cell Extraction. 
Cell almost Centralized in  

(𝑥 = 𝑀1/2, 𝑦 = 𝑁1/2)  
 

Figure 6. Labeling Algorithm 

17. Area Ac shall be defined as the number of pixels meeting the condition  I0(x, y) =
255. In this case, Ac can be expressed as: 

Ac =
1

255
∑ ∑ I0(x, y)

N1−1

y=0

M1−1

x=0

 (19) 

18. Perimeter Pc  of  the extracted cell in I0(x, y)  is obtained through the following 

expression:  

Pc = ∑ ∑ Ip(x, y)

N1−1

y=0

M1−1

x=0

 (20) 

where: 

Ip(x, y) =

{
 

 
1, I0(x, y) = 255 ∧ {I0(x − 1, y) = 0 ∨ I0(x + 1, y) = 0 

∨ I0(x − 1, y − 1) = 0 ∨ I0(x, y − 1) = 0 ∨ I0(x + 1, y − 1) = 0

∨ I0(x − 1, y + 1) = 0 ∨ I0(x, y + 1) = 0 ∨ I0(x + 1, y + 1) = 0 
0, otherwise

 (21) 

19. The Quotient (used to determine whether the object has a regular elliptical shape or 

not) shall be defined as: 

Q = PC/AC (22) 

20. Once the parameters are calculated, a temporal flag is defined b0 = 0 

21. "b0" is updated with the following expression: 

b0 = {
1, AC < uA  ∧ Q < uQ
0, otherwise

 (23) 

Thresholds "uQ"  and "uA"  were obtained by experience.  "uQ"  had a value of 19; 

whereas uA  is image size dependent, the minimum area for the pictures used in this 
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work was 1000 pixels, but the developed software has an option to change this value 

depending on the image zoom. 

22. If b0 = 1, the pixels belonging to the cell nucleus are set to 255 in Iu(x, y), as 

shown in Figure 7b. Otherwise, the process ends and the next 100-value pixel is 

analyzed from step 2. 

 

 
 

(a) Original Image 

 
 

(b) False Color Image 𝑰𝒖(𝒙, 𝒚) 

Figure 7. Result from the Cell Nuclei Identification  

After all Iu(x, y) = 100 coordinates are analyzed, the same procedure from step 1 to 

25 at the block analysis is repeated, with the exception that in step 14 the threshold used 

is: 

P0 =
∑ Vhs(y)
y2−y1
y=0 + ∑ Vvs(x)

x2−x1
x=0

(y2 − y1) + (x2 − x1) + 2
 (24) 

This step was included in order to detect some cell nuclei too close to each other or 

not well defined. 

2.4.  Artifact Rejection II (Inflammatory cells) 

Some of the images presented inflammatory cells, which were similar in size and 

shape to the smallest cell nuclei. Thus, to be considered a cell nucleus, each identified 

object needed to be surrounded by cytoplasm or not-background, i.e., surrounded by 

pixels Iu(x, y) = 100. 

The labeling algorithm is applied to Iu(x, y), where Iu(x, y) = 255. Then, for each 

identified object, the following procedure is done: 

1. The first object is segmented from Iu(x, y), and I1(x, y) is obtained (see Figure 8a). 

2. The minimum vertical coordinate, where I1(x, y) = 255, is defined as xmin. In the 

same manner, the minimum horizontal coordinate ymin is determined. 

3. The maximum vertical coordinate, where I1(x, y) = 255, is defined as xmax. Under 

the same condition, the maximum horizontal coordinate ymax is determined. 

4. From Iu(x, y), an image block is segmented (see Figure 8b), which is defined as: 

I2(x, y) = Iu(x − xmin, y − ymin) (25) 

where: x = 0,1,2,… , xmax − xmin and y = 0,1,2,… , ymax − ymin 
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(a) Segmented Cell Nucleus 𝐼1(𝑥, 𝑦) 

 
 

(b) Segmented Block 𝐼2(𝑥, 𝑦) from 𝐼𝑢(𝑥, 𝑦) 

Figure 8. Inflammatory Cell Rejection 

5. The segmented object is set as a true nucleus if: 

I2(x, y) ≥ 100 (26) 

For all points in: 

x = 0,1,2,… , xmax − xmin 

y = 0,1,2, … , ymax − ymin 

Finally, the false color image 𝐅  with primary components   FR(x, y) , FG(x, y)  and 

FB(x, y) was made fromIu(x, y), as shown by Figure 9b (considering Figure 9a as the 

original input image). In this case, the following conditions were applied:  

 FR(x, y)= FG(x, y) = FB(x, y) = 255,   if  Iu(x, y) = 0. 

 FR(x, y)= FG(x, y) = FB(x, y) = 100,   if  Iu(x, y) = 100. 

 FR(x, y)=  FB(x, y) = 0 and FG(x, y) = 255  ,   if  Iu(x, y) = 255  and belongs to a 

nucleus. 

 FR(x, y)= FG(x, y) = FB(x, y) = 0, if Iu(x, y) = 255 and belongs to inflammatory cells. 

 

 
 

(a) Original Input Image 

 
 

(b) Output False Color Image 𝐼𝐹(𝑥, 𝑦)  

Figure 9. False Color Image Formation 

3. Results and Discussion 

In total, 9 different Pap smear samples from 9 different patients from two different 

medical institutions were collected, with a total of 55 medical images. In those images, 
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there were 2317 cells in average, both normal and atypical. The slides were analyzed by 

four independent pathologists from three different medical institutions, who studied and 

identified the cell nuclei in the images. 

The evaluation of the algorithm performance was carried out by comparing the 

doctors’ evaluation with the results from the software. In this manner, the next 

quantities were defined: 

 𝐷𝑖𝑗 : Number of cell nuclei identified by Doctor "i" in Sample "j".  

 Sij: Number of cell nuclei identified by both the software and Doctor "i" in 

Sample "j" . 
 Eij:  Nuclei detection efficacy in Sample  "j"  evaluated by Doctor "i"  (Figure 

10). 

Eij = (
Sij

Dij
) × 100% (27) 

 ET: Nuclei detection efficacy for the total of samples and Doctors. 

ET = (
∑ ∑ Sij

9
j=1

4
i=1

∑ ∑ Dij
9
j=1

4
i=1

) × 100% (28) 

  

 The algorithm successfully recognized 92.3% (ET) of the total nuclei identified by 

the doctors in all images. In Figure 10, the percentage of cell nuclei identified (Eij) 

versus the Sample for each one of the four Doctors is plotted. The algorithm works in 

samples from different patients and even from different hospitals, notwithstanding some 

noise and illumination problems. However, some true nuclei are missing due to faintly 

staining and little edge contrast. Furthermore, most nuclei tend to not be recognized 

when too close to each other. In Figure 11, there is a group of suspicious cells nuclei 

that failed to be segmented as their boundaries are not well defined.  

 

 

Figure 10. Table of Results 
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(a) Original Image 

 
 

(b) Output False Color Image 𝐼𝐹(𝑥, 𝑦) 
 

Figure 11. Cell Nuclei Misdetection 

5. Conclusion and Future Work 

In summary, the high cervical cancer rate in Peru demands that screening tests for early 

detection – such as the Pap test – are established as routine procedure. However, this test 

shows some efficacy problems that require proper technological assistance to improve. In this 

manner, this paper has worked on an algorithm intended for assisted quality assurance 

software. 

The method has proved to be efficient and computationally inexpensive in detecting cell 

nuclei. The method overcomes issues related to thresholding algorithms, such as uneven 

illumination and variations in staining intensity, with a point-to-point analysis. Furthermore, 

the algorithm successfully detected 92.3% of the cell nuclei in all the samples, which were not 

only from different patients but from different hospitals as well. In future work, 

complementing the detection algorithm with a cell classification part will be required to 

complete the quality assurance software. Additionally, all the thresholds involved might 

become adaptive, i.e. the thresholds in the artifact rejection part. An algorithm based on size 

histograms per sample was developed, but it did not produce the expected results, as it failed 

when there were very few cells or only atypical ones in the images. Furthermore, it may be 

possible to add more complex thresholding algorithms, as Otsu's used in [14].  
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