
International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 2 (2015), pp. 371-382

http://dx.doi.org/10.14257/ijmue.2015.10.2.34

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2015 SERSC

City-Wide Smart Healthcare Appointment Systems Based on Cloud

Data Virtualization PaaS

Ping He
1
, Penghai Wang

2
, Jiechun Gao

3
 and Bingyong Tang

4
,
*

1
College of Business Administration, Donghua University, Shanghai 200051;

Shanghai Hospital Development Center, China
2
Shanghai IntelRay Information Technology Co., LTD, China

3
Shanghai Hospital Development Center, China

4
College of Business Administration, Donghua University, Shanghai 200051, China

Abstract

While the cloud computing benefits healthcare IT modernization, it introduces new

challenges for data integration, which is crucial for information sharing, data mining and

business intelligence applications. Data virtualization brings a new strategy and related

technologies to cope with these challenges, particularly suitable for cloud data services and

SaaS (Software-as-a-Service) applications. The paper discussed a unique architecture and

related technologies to implement the data virtualization for cloud data. The paper also

demonstrated how this technology can be used in the real-world applications, and a city-wide

healthcare appointment system has been implemented for example.

Keywords: Cloud Computing, Data Virtualization, Smart Healthcare, Appointment System,

PaaS, SaaS

1. Introduction

Increasing healthcare challenges (such as rising cost, shortage of resources and inefficient

services) become a global issue, and these challenges become main driving forces for the

healthcare reform and modernization. It is certain that the healthcare IT (Information

Technology) modernization plays a key role in the processes. The reduced cost can enable the

limited resources to be wisely used, making the citizen access of the medical care and the

protective health service easier. All of these goals are strongly dependent upon a modernized

healthcare IT infrastructure, and some emerging technologies such as the cloud computing

bring new possibilities to the healthcare.

In order to cope with the increasing healthcare challenges, the city of Shanghai has

continuously supported some healthcare IT modernization projects in the past decade. In

2010, the project of Shanghai Health Cloud was granted and started to speed up its ambitious

modernization process by leveraging cloud computing technologies. The healthcare

appointment system is one of main sub-projects, and it is targeting to a city-wide, scalable,

high performance system to serve 2400 million citizens. The goal of this project is to

effectively and wisely use the limited healthcare resources.

The Health Cloud project planned to build 19 cloud data centers geologically located over

18 districts in Shanghai, China, where there are 600 hospitals, thousands of primary care

centers or clinics. More than six thousands medical specialists are providing daily out-patient

*
 Corresponding Author

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 2 (2015)

372 Copyright ⓒ 2015 SERSC

services and other cares. Without a city-wide healthcare appointment system, patients will

keep blindly rushing to large hospitals. Some of patients even need to spent many hours in the

long queue to compete few out-patient visiting opportunities. Available resources in these big

hospitals are seriously mismatched to the demand of the services. However, there are a lot of

healthcare resources are idle in smaller hospitals and primary care centers. A city-wide

healthcare appointment system is expected to balance the increasing demand and limited

healthcare resources.

Certainly, building a city-wide appointment system for 30 million citizens is not a trivial

work. It is a challenge to synchronize high concurrent appointment requests with the

dynamic work schedule of thousands of medical specialists in a transactional manner. It is

more complex and problematic to integrate with hundreds of hospital scheduling system.

Obviously, the scalability of the system is crucial. Capable to handle very high concurrent

requests in the peak time is challenge as well.

New types of data integration challenges are emerging while enterprise applications

started to move into cloud [1]. Before organizations realize these new integrations

issues they may wind up with multiple SaaS (Software-as-a-Service) application silos,

which will be more difficult to be integrated by traditional methodology and integration

tools widely used today. Besides, numerous reasons make traditional data integration

technologies invalid for many application scenarios. Integration of Big Data is an example

[2].

OLAP (Online Analytic Processing) and BI (Business Intelligence) applications are often

requiring data integration from discrete data sources or heterogeneous information silos to

build a data warehouse. Most popular methodology often called ETL, stands for Extract,

Transform and Load. When data becomes too big to ETL, when data in a cloud which not

support ETL, when data is in other organizations which not allow to ETL, when the analytic

application requires “real-time” data integration but ETL is not capable to meet the agility

requirements, Data Virtualization is an appropriate technology for dealing with above issues

[3, 4].

Data Virtualization is originally defined as an alternative data integration technology for

some specific integration scenarios. However, today, it is not limited on data integration

anymore. Data Virtualization is a virtualization technology to hide the complexity of real

data, no matter the virtualized data coming from multiple data sources or sub-setting from a

big data store. Data Virtualization provides client applications a transparent data access

mechanism, which can significantly decouple the applications from the data complexity. As

an alternative data integration technology, the data virtualization technology is not new. It has

been around for many years. Originally, it was innovated as an alternative approach of data

integration or data federation for data warehousing or BI (Business Intelligence) applications.

This technology didn’t gain broad attentions until new integration demand is emerged,

particularly because the cloud computing and Big Data applications, which has become more

popular recently.

Typical Data Virtualization was implemented as a middleware [5, 6]. A complete data

virtualization platform may include an integrated development environment (IDE), a data

virtualization server and a set of management tools. IDE provides user-friendly developing

environment for modeling and mapping virtualized data model to discrete data sources. The

data virtualization server is responsible for executing run-time queries from client

applications. The query engine within the server, which is specifically designed to process

federated queries across multiple sources in a wide-area network, optimizes and executes

queries across one or more data sources as defined by the view or data service. Cost- and

rule-based optimizers automatically calculate the best query plan for each individual query

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 2 (2015)

Copyright ⓒ 2015 SERSC 373

from a wide variety of supported join techniques. Parallel processing, predicate push-down,

scan multiplexing and constraint propagation techniques optimize database and network

resources [4]. Data virtualization has been widely used in BI data federation, data warehouse

extension, enterprise data virtualization, and other data integration fields [7]. Besides, a cloud

data virtualization service, Connection Cloud, has on production recently for data integration

of SaaS applications [1].

The organization of this paper is as follows. Section 2 introduced a unique architecture to

implement cloud data virtualization as a PaaS (Platform-as-a-Service). Section 3 designed the

cloud data virtualization PaaS particularly with some key components, i.e. the virtual SQL

engine and the data grid bus, a distributed computing infrastructure for the cloud data

virtualization. In the section 4, implementation of a city-wide healthcare appointment system

based on the cloud data virtualization PaaS is demonstrated. Section 5 made a conclusion and

discussed the future works.

2. Architecture of Cloud Data Virtualization PaaS

As a PaaS, it is crucial to make development support and run-time data services

highly transparent, scalable and simple. At the architecture level, the Cloud Data

Virtualization PaaS (CDV PaaS) introduced the following two key technologies to

achieve its simplicity, high scalability and transparency.

(1) Virtual SQL engine;

(2) Data Grid distributed computing infrastructure.

Based on this distributed computing architecture, the CDV PaaS turns the discrete

data sources into the data grid nodes. Different from other data integration approaches,

the data grid moves necessary computing works to the location where data resides,

rather moving the data to a centralized server for processing. Therefore, integrating a

new discrete data source into CDV PaaS is equivalent to extend the data grid with a

new data and computing node. For instance, there are databases and applications in the

“Site 2”, as shown in Figure 1, which needs to be integrated by CDV PaaS. A CDV

PaaS client agent, marked as “Client Node 2”, can be installed and configured inside of

Site 2, either on an existing local computer or an new exclusive server machine. This

CDV PaaS client agent enables application to use CDV PaaS data services just like

connecting to another relational database. Meanwhile, properly mapping the local

database(s) into CDV PaaS makes loacl data sources being integrated into CDV PaaS’s

virtual data services.

As shown in Figure 1, the CDV PaaS is composed of one master node and n client

nodes. All nodes are interconnected via a unique bus based on shared JVM (Java

Virtual Machine) technology on the top of TCP/IP network stack. Shared JVM

architecture enables the data grid nodes working in one virtual machine environment.

This architecture also greatly simplifies the implementation of CDV PaaS as a parallel

and distributed computing machine.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 2 (2015)

374 Copyright ⓒ 2015 SERSC

Figure 1. Architecture of Cloud Data Virtualization PaaS

The master node is the core of CDV PaaS and this node is composed of the following

four main functional units.

(1) Virtual SQL engine, which supports a full-blown SQL relational database with

extended capabilities to handle cloud data virtualization, including virtual data

modeling, mapping discrete data sources to the virtual data models, processing queries

from client applications based on virtual data models, etc.;

(2) CDV PaaS execution engine, which is responsible for building distributed jobs,

managing execution of jobs over the data grid, monitoring job execution and handling

exceptions and errors, aggregating final results and returning to the caller application;

(3) Local database storage engine, which provides data storage services for both

virtual and concrete data storage;

(4) Data Grid servers, which is the core of distributed computing bus. The data grid

servers provide an infrastructure to cluster all data grid nodes via shared JVM. This

mechanism enables all data grid nodes communicating just like inter -thread

communication in a single Java virtual machine.

Importantly, a CDV PaaS client node, also known as the data grid agent, is

responsible for processing CDV jobs which related to the data located in the client site.

These works will be carried out by the Job Executer unit in the CDV PaaS client node.

Meanwhile, a CDV PaaS client node also works as one connection server for

applications in the local client site, the Remote Session Manager in the agent enables

client applications to establish a connection to the CDV PaaS via the LAN, or even

local machine if the CDV PaaS agent is installed and configured on the machine.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 2 (2015)

Copyright ⓒ 2015 SERSC 375

Besides, a data grid agent also share extra responsibilities of CDV, handling “reducing”

jobs by the Result Reducer unit for aggregating results in parallel is an example.

3. Design of CDV PaaS

As one of core Big Data technologies, the MapReduce Model is a proven

programming model to streamline the distributed computing with commodity servers

[8]. Although target problems of CDV PaaS are different from the Big Data

technologies, the scalability requirements, the capability for high concurrent requests

are similar. The principle and strategy of MapReduce technology can be borrowed to

simplify the implementation of CDV PaaS distributed computing infrastructure. The

lifecycle of processing a typical query request in CDV PaaS is comprised of four main

phases:

(1) Parse and analyze the query statement(s);

(2) Map the query to corresponding executable jobs for each related data grid node;

(3) Execute jobs by corresponding data grid agents in parallel;

(4) Reduce output results to aggregated final results by data grid agents in parallel.

3.1. Virtual SQL Engine for Parsing and Mapping

First two processing phases, parsing and mapping are carried out by the Virtual SQL

engine in the master node, following execution of jobs, and reducing results are

performed by the data grid client agents in parallel. Figure 2 exhibited the workflow of

CDV PaaS query processes.

The Virtual SQL engine is one of core units in the CDV PaaS and this unit is

comprised of the following two key components.

(1) SQL parser with data virtualization extensions;

(2) Mapper for transforming a virtual query into node-specific executable jobs.

CDV PaaS has selected a SQL engine to manage the virtual data models. Meanwhile,

a standard-compliant SQL API can be utilized as the primary API of CDV PaaS.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 2 (2015)

376 Copyright ⓒ 2015 SERSC

Figure 2. Query Processing Workflow in CDV PaaS

The SQL API makes existing applications easy to be migrated into cloud. This

strategy could significantly lower the learning curve for adoption of CDV PaaS by

traditional enterprise users. DDL (Data Definition Language) of the SQL engine has

been extended for data virtualization. For instance, to create a virtual Table, a new DDL

command, CREATE VTABLE can be used. A regular table also can be altered to a

virtual Table by ALTER <table_name> INTO VIRTUAL command. CDV PaaS kept the

DML (Data Manipulate Language) unchanged to minimize the effort for migrating

applications on CDV PaaS.

Another key component in the virtual SQL engine is the Mapper. It is responsible for

transforming a SQL query against the virtual data model into corresponding executable

jobs to run on each mapped data source. As shown in Figure 2, the mapping SQL query

statements into executable jobs includes following four main steps:

Step 1 Retrieve mapping information for all tables and columns appeared in the

query statement. Each virtual table might map to n concrete tables, each column in the

virtual table mapped to n columns in the corresponding concrete tables. Mapping

information should be captured when a new data source was mapped to the CDV PaaS.

Mapping information is persisted in the internal database of the CDV PaaS;

Step 2 Conduct semantic analysis for each segment of parsed query statement, apply

semantic rules if need, prepare required information to map each virtual table to the

concrete tables, map each virtual column to real columns.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 2 (2015)

Copyright ⓒ 2015 SERSC 377

Step 3 Map the virtual query to concrete queries. Each concrete query object

represents a query which is executable for mapped data source. If the mapped data

source is an HBase data store, the concrete query will be mapped to a series of HBase

API calls in a Java class.

Step 4 Build executable jobs for CDV PaaS client agent based on each concrete

query object. Then, add these executable job objects into the New Job Queue for

execution by corresponding client agent.

3.2 Distributed Computing Infrastructure for Parallel Job Execution and Reducing

The infrastructure to support distributed query job execution is another core unit of

CDV PaaS. This infrastructure is called Data Grid Bus in CDV PaaS, or short for DG

BUS. The DG BUS is built on the shared Java virtual machine technology. This

technology enables Java objects can be shared between connected CDV PaaS nodes

seamlessly. Figure 3 demonstrated how the CDV PaaS master node and client agents

communicate each other via this mechanism.

Figure 3. Architecture of CDV PaaS Data Grid Bus

Because the DG BUS is built on a shared JVM, the shared Java objects, such as the

“New Job Queue” in above diagram can be treated as an inter -thread shared object in a

single JVM. This mechanism substantially simplified the communication and

collaboration among nodes and parallel computing processes. Although DG BUS is

built on shared JVM, only necessary objects are shared among CDV PaaS nodes. This

“Share-something” architecture can minimize the network traffic. There are the

following three types of objects are shared via DG BUS.

(1) Job objects and their Queue container, including the new job queues and the

processing job queues. Each query statement will have its own job queues.

(2) Results objects from job executions. Usually, a job execution may return a

ResultSet object in which contains multiple Rows. A virtual query may produce n

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 2 (2015)

378 Copyright ⓒ 2015 SERSC

ResultSet objects from n client agents. These ResultSet objects need to be aggregated

based on GROUP BY or ORDER BY conditions via multiple reducing jobs.

(3) DG BUS employed a “hart-beating” mechanism to keep monitoring the important

life-index of each node and all network components. The life-index objects for each

node are shared.

The work flow diagram in Figure 4 demonstrated how to map, build and initiate a

new virtual query via DG BUS. After a new virtual query is parsed, analyzed and

mapped to the concrete query objects, the execution engine in the CDV PaaS will create

a new job queue in the DG BUS for the query. The execution engine then build the

executable jobs based on each concrete query and add jobs into the new job queue. The

client nodes will be notified when a new job added into the queue.

Figure 4. Map, Build and Initiate Distributed Jobs

A client agent keeps checking if there is any query job for it. If so, the job will be

removed from the new job queue by the client agent and add it into the processing job

queue, then execute it. The processing status of the job is being monitored by the

execution engine. The workflow is shown in Figure 5. After the job execution is

completed successfully, the job will be removed from the processing job queue. The

output results and reducing job will be created and added into the reducing queue.

When an exception is thrown during job execution, the job may be retried if the

exception is retrievable. If a fetal error encountered, the whole query may be aborted

the job on the particular client site may be ignored based on if the query is a

“transactional” or not. DG BUS has sophisticated mechanism to cope with any node

failing, rebooting and other infrastructural exceptions to ensure the jobs are not lost or

run into inconsistent status.

Figure 5. Workflow of Job Execution

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 2 (2015)

Copyright ⓒ 2015 SERSC 379

Before the results can be returned back to the caller application, the results firstly

need to be converted to unified data types for each column, because the data types in

the results returned from each client agent may be different. Then, the results need to be

aggregated into one result set. Usually, the query comes with GROUP BY and ORDER

BY clauses, processing a lot of rows with GROUP BY or ORDER BY is computing

intensive. CDV PaaS leverages its parallel computing power and utilizes the “Reduce”

technique to accomplish results aggregation and other necessary processing in parallel.

In Figure 6, the client agents are responsible for execution of reducing jobs.

Figure 6. Workflow of Reducing

A reduce job always take two result sets. The result sets can be the results output

from a query job execution, or an intermediate result set from previous reducing jobs. A

client agent pick one reduce job from the queue, check if it is capable to execute the

job. If the job is workable, the reduce job will be removed from the queue and executed.

Otherwise, it will try next job until no more job available.

4. City-wide Healthcare Appointment System Based on CDV PaaS

It is very challenge to make the limited healthcare resources utilized wisely in a

world-largest city populated with more than 30 million people. A city-wide

appointment system to facilitate patients finding a medical specialist in convenient time

and location is an essential application of Shanghai Health Cloud project. The

appointment system is a large-scale, public-facing, real-time and mission-critical

information system which serves up to a million of requests in a single day. The major

challenges include the following two ones:

(1) Scalability challenge: step by step add over 600 hospitals and thousands of

primary care providers into the system;

(2) Performance and availability challenges: ensure the system is capable to handle

very high concurrent load in the peak time, also capable to effectively utilize computing

resources during non-peak time.

Due to variety of reasons, a centralized SaaS architecture is not an option for this

city-wide healthcare appointment system. The districts in the city have built their own

healthcare appointment applications which better fit their customized requirements.

Therefore, a distributed architecture based on CDV PaaS becomes an appropriate

choice. First, the city-wide appointment system on the CDV PaaS can simply grow and

scale out by adding new district-centric appointment applications in the district cloud

centers. The district-centric appointment application can be customized to meet the

special requirements uniquely for the health care services in the district. Second, the

high concurrent request load can be distributed into multiple appointment applications,

which increased the scalability for increasing the request load and enhanced the overall

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 2 (2015)

380 Copyright ⓒ 2015 SERSC

availability of the system, so that the failure of one district-centric appointment

application will not affect the entire network.

The diagram in Figure 7 exhibits the architecture of the appointment system. With

this architecture, it becomes fully transparent for users to access whole city’s data

without knowing the complexity. Users can find available medical specialist in

expected region and time frame in entire city. For instance, to find a diabetes expert

who has available slot in current week, all specialists who are the expert of diabetes

will be searched in each site in parallel via CDV PaaS. A district-centric appointment

application can be built in the local Health Cloud center, as shown in Figure 7. The

application server(s), web server, including CDV client agent are deployed in an elastic

computing IaaS (Infrastructure-as-a-Service) bucket, which provides elastic computing

power and network bandwidth for effective resource demands. A dedicated IaaS bucket

is used for databases, which guarantees exclusive computing resources always available

for the databases. A CDV PaaS client agent is deployed in the local (same network

segment or even local server machine) of district-centric appointment application. The

CDV PaaS is running on the dedicated network which interconnects the Health Cloud

centers. This makes the district-centric appointment application to access data resides in

other Health Cloud centers as accessing another local relational database. The

significance of this architecture is its scalability. It enables the system seamlessly

expending its geological coverage without suffering from customization limitations

commonly existing in SaaS applications.

Figure 7. Architecture of Appointment System

Adding a new district-centric appointment application is relatively independent on

others, this enables the system is easily built to cover one district by another. The

distributed architecture is also benefit to cope with soaring up higher concurrent request

load. Beside those patients who knows which doctor they want to make an appointment

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 2 (2015)

Copyright ⓒ 2015 SERSC 381

with, a large portion of patients have to find out which medical doctor or specialist is

better to fit their needs. Find a suitable and available specialist may take 70% of time to

make an appointment. Figure 8 demonstrated a workflow to find available medical

specialists by given disease type.

Figure 8. Find Available Medical Specialists by Disease Type

When a patient logins to the appointment system, no matter which district

appointment application is routed to, the patient is able to access all medical specialists

in other districts once the sites join the CDV PaaS network. As the example workflow

shown in the Figure 5.2, searching available medical specialists by given a disease type

will go through the local database and the CDV PaaS network respectively. Same query

statements will be issued to the local database and the CDV PaaS client agent, the

search will be executed in parallel, the aggregated results after multiple reducing will

be returned just like returning from the local database.

5. Conclusions

Emerging new IT technologies, including cloud computing, big data, make data

integration and data virtualization more complex and cost. The paper introduced a new

approach to implement data virtualization for cloud data services and simplify data

access for SaaS applications. By combining a virtualized SQL engine with a data grid

style distributed computing mechanism, the data virtualization technology is

successfully extended to cope with data integration challenges directly or indirectly

caused by cloud computing and big data technologies. The technology introduced in the

paper has been implemented as a PaaS platform, called CDV PaaS. CDV PaaS makes

distributed cloud data in multiple cloud data centers can be virtualized as a single

relational database. This technology substantially simplified the data service for any

SaaS application which needs to access multiple data sources discrete in different cloud

International Journal of Multimedia and Ubiquitous Engineering

Vol. 10, No. 2 (2015)

382 Copyright ⓒ 2015 SERSC

data centers. This technology makes a large-scale, federated application can simply

grow and scale. A city-wide health care appoint appointment system has been designed

and implemented based on CDV PaaS.

Acknowledgements

We sincerely thank good advice from the reviewers and the financial support of the grants

from the “scientific and technological innovation action plan” major project of the Science

and Technology Commission of Shanghai (Shanghai health cloud application demonstration

project, Project No.: 11DZ 1500100).

References

[1] M. Vizard, “The Role of Data Virtualization in Cloud Programming Web”, (2012),

http://blog.programmableweb, com/2012/07/31/the-rise-of-data-virtualization-in-the-cloud/.

[2] S. Yaskin, “Thoughts on Big data and Data Virtualization,” Cloud Computing Journal, (2012),

http://cloudcomputing, sys-con.com/node/1803581.

[3] L. F. Rick, “Data Virtualization for Business Intelligence Agility,” (2012),

http://purl.manticoretechnology.com/ MTC_Common/mtcURLSrv.aspx?ID=12917&Key=FE72CA6B-

C6D6-4DA1-91D6-5CDE20B85E33& URLID=17966.

[4] J. R. Davis and R. Eve, “Data Virtualization”, Going Beyond Traditional Data Integration to Achieve

Business Agility, Nine Five One Press, (2011).

[5] R. V. D. Lans, “Data Virtualization for Business Intelligence Systems”, Revolutionizing Data Integration for

Data Warehouses, Morgan Kaufmann Publishers In, (2012).

[6] L. Weng, G. Agrrawal and U. Catalyurek, et al., “An Approach for Automatic Data Virtualization,”

Proceedings. 13th IEEE International Symposium on High performance Distributed Computing, (2004), pp.

24-33.

[7] R. Lawrence, “Integration and Virtualization of Relational SQL and NoSQL Systems Including MySQL and

MongoDB,” Proceedings of 2014 International Conference on Computational Science and Computational

Intelligence, (2014), pp. 285-290.

[8] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” Proceedings of 6th

Symposium on Operating Systems Design and Implementation, (2004), pp. 137-150.

Author

Ping He, she is a Ph.D. student at Donghua University. Her

interests of research include cloud computing, Smart Healthcare

Appointment Systems, etc.

