
International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015), pp. 137-152 

http://dx.doi.org/10.14257/ijmue.2015.10.2.13 

 

 

ISSN: 1975-0080 IJMUE 

Copyright ⓒ 2015 SERSC 

Research of the Interconnection of Workflow System Based on Web 

Service 
 

 

Gang Yuan
1
, Rui-zhi Sun

1
, Yong Xiang

2
 and Yin-xue Shi

1 

1
Key laboratory of Agricultural Information Acquisition Technology (Beijing), 

Ministry of Agriculture P. R. China, China Agricultural University, Beijing 100083 
2
Department of Computer Science and Technology, Tsinghua University, Beijing 

100084 

yuan7_7@163.com 

Abstract 

In order to achieve the interconnection between different workflow management systems, it 

was proposed that all the distributed workflow systems would be encapsulated as web 

services to perform the entire business process collaboratively by the way of processes’ 

composition in this paper. By analyzing the comparison between the composition of processes 

and ordinary Web service, we studied interactive control, the parameters required to be 

passed through the distributed workflow systems, the workflow system service’s interfaces 

and its packaging. Furthermore we put forward a general method of the workflow systems 

interactive interfaces’ extension and the way of the workflow service’s encapsulating and 

invoking. By this approach, it can easily combine the processes or process fragments which 

deployed on different workflow systems without other agents and components. It also 

provides support for the interconnection of the workflow systems in distributed environment, 

and ultimately achieves a coordinated operation between different workflow engines. 

 

Keywords: Workflow System, Interconnection, Web Service, Interface 

 

1. Introduction 

Workflow management systems have been widely used in all kinds of enterprises for 

their ability to describe and execute business processes in a way that make it easy to 

coordinate information and resources among person or groups as a sequence of 

operations. At present, there exist a variety of workflow products that vary in workflow 

model, process description language and the system’s functions [1]. On the other hand, 

the business processes of modern enterprises gradually reveal cross-sectoral, cross-

regional and even across different companies. In order to better support business process 

reengineering and improve the performance bottleneck of centralized workflow engine, 

we can increase or decrease the number of execution engine, personalize and optimize 

the performance of engine and define the business activities flexibly according to 

businesses’ needs. Therefore, a business process’ implementation will be interacted and 

collaborated between different workflow management systems of different departments or 

companies, it’s essential to execute the processes collaboratively and interactively between 

these systems and tools in a heterogeneous environment. 

 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015) 

 

 

138   Copyright ⓒ 2015 SERSC 

2. Related Work 

The combination of cross-system workflow business processes has been fully considered 

while the workflow management system was proposed. The Workflow Management 

Coalition (WFMC) defined the workflow engine could communicate with others 

collaboratively, and the interface 4 of its reference model is used for different workflow 

systems or engines’ interaction [2]. WFMC also proposed interconnection must have two 

main aspects: (1) the public explanation of process definition needs to be extended (2). It 

should support the conversion and transmission of different types of control information, 

workflow process data and application data between different execution servers. It mainly 

used the conversion of workflow language to unify the description of workflow process 

definition. Fernando [4] and Plankensteiner [12] mapped part or the whole process to IWRL 

which is a kind of formal intermediary language to realize the interoperability between 

different workflow systems. In the long run, considering the languages’ transmission for 

processes’ interaction during processes modeling will facilitate the combination of processes, 

the users can combine various existing processes and modify the process model at any time 

before the execution of the process. But there do not have a fully standardized workflow 

language that can be completely mapped with existing workflow languages.  

The workflow languages could not be completely standardized or unified, therefore 

workflow engines’ interaction can be seen as a key way to achieve different workflow 

systems’ interconnection. With the concepts’ put forward and technologies’ realization of 

SOA, grid and middleware, business processes’ integration and workflow systems’ 

interconnection based on Web Service become the main technical means. Jiang [10] set each 

enterprise as a child node of P2P network by a distributed workflow management system 

which based on P2P architecture, and each node could perform a process instance 

collaboratively with other nodes through JXTA network interface. Xu [11] used EAI 

technology to build dynamic interoperability between various heterogeneous processes based 

on subprocess model, multi-layer dynamic state transition model, communication and 

automatic monitoring components, but this method needs external components and channels. 

Pavlin [5] established communication among different packaged workflow services through 

each heterogeneous workflow system’s domain knowledge, the main consideration of 

services’ integration and heterogeneous data’s transmission was based on ontology. Zhen [13] 

proposed a Message-Oriented Middleware integration and SOA-based approach to solve the 

integration of business data and processes.  

During the process’ operation, a variety of information transfer between process services, 

including control information, workflow data and application data and so on. The caller of the 

service will do some response and handling according to the received information, and then 

realize the processes’ interaction. Therefore, the parameters’ type and category also need to 

be fully taken into account. Kukal [6] and Korkhov [9] established a link between each node 

of workflow engine service in grid system by considering the processes’ invocation mode and 

the way that the users could awake and invoke workflow systems which act as a web service. 

But this implementation in grid system also needs to rely on some components and agents. 

Alqaoud [7] built the interoperability during the workflow processes’ operation by 

notification message system based on web service, the main method is using publish-

subscribe mechanism to publish a workflow system which is in use for other workflow 

systems to subscribe and receive the returned message in the implementation of an event.  

In introducing their own methods of the research that mentioned above, they also need to 

rely on the third platform or components to realize the interaction between heterogeneous 

processes. In order to use a general method and other components would be used as little as 

possible, Yang [3] proposed to package each sub workflow system which is belong to a 

http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&q=%E6%8A%80%E6%9C%AF%E6%89%8B%E6%AE%B5
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&q=%E6%8A%80%E6%9C%AF%E6%89%8B%E6%AE%B5


International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015) 

 

 

Copyright ⓒ 2015 SERSC  139 

distributed workflow management system into web service and provide collaborative 

workflow model to other sub workflow systems. Our previous work [8] realized the 

interconnection between XPDL and BPEL by packaging the workflow engine’s start and 

running script into a service, but this method does not properly realize the parameters’ 

transferring between internal and external of the workflow system. 

The important aspect of workflow’s interconnection during the operation is to call and 

wake up the process instances which may be locate in other workflow systems. If we’ll 

integrate the workflows together which work in different environments, the communication 

between the client API and workflow execution service need to be standardized and unified, 

that means all the workflow products should have a similar interface and the sharing 

information between these interactive processes should be marked and classified clearly. 

Korkhov [9] classified the workflow engine’s interfaces and packaged them into web services 

for clients to invoke. It can’t fully meet the demand of data’s transferring and engines’ 

interaction in distributed network environment if we only use workflow engine’s original 

interfaces, so part of the interfaces’ function should be expanded. 

In order to integrate the process applications into the existing workflow systems and make 

the workflow systems’ function could be invoked by others, we also use services’ 

combination to achieve distributed execution of business processes in this paper. We 

have analyzed the parameters that needed to transmit between the interconnection 

systems. We also studied the workflow interactive interfaces’ unification, the difference 

between workflow system service’s encapsulation and invocation from general web 

service and so on. In this paper, it can easily combine the processes or process 

fragments which deployed on different workflow systems without the aid of other 

agents and components, ultimately realize the coordinated operations between different 

workflow engines. 

 

3. Interconnection of Workflow System Based on Web Service 

In order to achieve the full implementation of a process, we can combine the services 

which were packaged from processes or sub-processes. The implementation is similar to the 

service’s combination, but the manner that workflow service’s invoking and combination is 

somewhat different with general service, mainly in: (1) This service is corresponding to sub-

process or process fragments which should be performed by its own workflow engine. So we 

should consider how to start an off-site workflow engine and execute a process fragment (2). 

Since there is a close relationship between the data before and after the events in a workflow 

process, some parameters which actually pass between different workflow systems need to be 

introduced into the process fragment which we have invoked (3). The sub-processes or 

activities of a workflow process always execute in parallel, if the fragments were executed by 

different engines, the results used to return and the service requester waiting for a response 

need to be considered by the synchronous or asynchronous control strategy at the end of the 

process’ completion (4). In order to achieve the real-time optimal combination of process 

fragments, it also need to consider the discovery and management of the processes which 

located in different workflow systems that we can catch the right processes which are 

available in the runtime. This paper only research on the first three cases. 

 

3.1. Workflow Service Interface’s Definition and Function 

When a total process needs multiple distributed workflow systems to work collaboratively, 

the encapsulated process of each workflow system will act as one of the total process’ 

activities. So the total process’ activities may run in different workflow engines, and the 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015) 

 

 

140   Copyright ⓒ 2015 SERSC 

original simple data flow between the process’ activities would turn into complex data 

transformation between different workflow systems. 

The interactive data between workflow systems include process’ functional identification, 

workflow relevant data, the mode of process invocation, the result and state of a process’ 

completion and so on. The process’ functional identification will notify the current workflow 

engine to start and execute which process. Workflow relevant data is the data which needed 

to introduce into the executed process after the implementation of its former activity, 

including process-related data and some business data. Invocation mode is used to represent 

which mode the total process needs to be executed, synchronous or asynchronous mode. The 

result means the result of the implementation of the process should be returned back to the 

total process according to the client’s requirements. The completion status refers to the end of 

the process’ execution, which is normal or abnormal. 

Since it is convenient for web service to exchange data and communicate between different 

systems, this paper provided the functions of workflow system for client to invoke by 

encapsulating the workflow system’s interfaces. The main function of workflow service 

includes the following two aspects: (1) it provides the necessary interface for external 

applications, such as process definition’s modeling and deployment, process instances’ 

creation and start, and the historical data’s query and so on. (2) It provides data and services 

during the execution of the workflow engines when it need. Therefore, the packaged 

workflow service’s interfaces are designed as follows: 

 

Definition 1: The Definition of Workflow Service’s Interface 

Definition 1.1: （Workflow Service Input Parameters）WSIP=<pf, ts, bda> 

（1）“pf” indicates process definition’s information which demonstrates the functional 

factors of the process, and pf=<pid, pn, op, pd>. Among them, “pid” is identifier of process 

definition, “pn” is process’ name, “op” is process’ operator and “pd” is process’ description. 

（2）“ts” is the mode of service invocation, and ts=<syn OR asyn>. Among them, “syn” 

indicates synchronous mode and “asyn” indicates asynchronous mode. 

（3）“bda” is the relevant business data which introduced from the total process. 

Definition 1.2: （Workflow service output Parameters）WSOP=<ts, pr, es> 

（1）“ts” is the mode of service invocation, including synchronous and asynchronous mode. 

（2）“pr” is the result of process, and pr={pda, bda}, pda=<psid, psn, op>. Among them, 

“pda” is the data of process instances, including process instance’s ID, process instance’s 

name and process operator; “bda” is the business data. 

（3）“es” is completion status of the process, and es={ending, suspending, exception}， 

which indicates the processes’ normal completion, pausing, suspending and abnormal 

termination. We only did some research and experiment under the situation of normal 

completion in this paper. 

 

3.2. Design and Character’s Analysis of the Interactive Interface 

WFMC [2] has defined other workflow system’s interfaces besides supporting for 

collaborative work between different workflow systems, just as process definition’s import 

and export interface, workflow client interaction interface, workflow management and 

monitoring interface, and invoked application interface. 

It should use the same application data exchanged methods or gateway mechanisms to map 

the data between different workflow products when they are needed to work in coordination. 

Workflow applications or data exchanged methods are handled by three interfaces [2] which 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015) 

 

 

Copyright ⓒ 2015 SERSC  141 

are client interaction interface, invoked application interface and workflow collaboration 

interface. Therefore, workflow service would interact with other workflow systems through 

these three interfaces while the process is running. The workflow engine firstly call the client 

application interface to decide the processes and activities’ implementation according to the 

work items’ completion and the users’ choice, then the engine will call internal application 

interface and transfer the process into the appropriate steps based on the parameters of 

previous decisions. In a distributed workflow system, a total process is divided into activities 

and events, and its implementation will be promoted by several workflow engines’ working 

together and depend on the transfer of appropriate resource and parameters’ information 

between different engines. Because of the difference of the platforms, process standards, the 

data layer and communication protocols between different workflows, there exit a great 

difference in their internal and external interfaces and the workflow interfaces’ extension and 

encapsulation should be carried out in a unified way. The design of workflow interfaces’ 

extension and process services’ invocation that proposed in this paper is shown in Figure 1. 

 

 

Figure 1. Extension of Process Service’s Interactive Interface 

Workflow relevant data could be conversed and transferred through workflow’s read/write 

API, and also be stored in a shared object for delivering. The extended function of workflow 

system interface that we have proposed is mainly used for receiving the parameters passed 

from external workflow systems and handling the returned result. The workflow engine needs 

to identify the incoming data’s semantics when external data passed into its system, such as 

the data’s type, content and so on. It also needs to identify if the data is process relevant data 

or business data, the data which needed to be passed in corresponding process activities and 

which part of the data needed to be extracted to return back are according to users’ demands. 

Two parts of the workflow system interfaces were extended in this paper, one is the 

functional expansion based on the original workflow engine interfaces, and the other is 

adding a goal interface in which the global variables were set throughout the entire process’ 

execution that used to obtain the incoming and outgoing data. 
 

3.2.1. The Extension of the Workflow System Interface: The operating mechanism of 

traditional workflow engine mainly includes process’ creation, starting, completion and 

the messages’ sending and receiving and so on. The expansion of original workflow 

engine interfaces’ functions include the following aspects: 

(1) Create a process instance: The workflow engine generates the process instance’s 

information (such as process’ ID, name, operator and global variables) by the process’ 

definition, and the process instance is initialized. Then the state of the instance changes 

to running after inserting its information into database and loading into memory. Before 

the start of the instance, it introduces the above parameters and starts the first activity. 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015) 

 

 

142   Copyright ⓒ 2015 SERSC 

At the beginning of the start activity, if the mode of invocation is synchronous, it will 

wake up a thread after the process has finished. 

(2) Start and run a process instance: It will start and run the appropriate process according 

to the process instance’s ID, parse the needed parameters for the running activity instances 

from the global variables and deal with the work items. 

(3) Complete a process instance: When the process runs to the end activity, firstly the 

engine determines whether all the activities of the process are completed, and if it is a 

completion of the process. Secondly it will determine whether there exists a father process of 

the current process, if there has none, it will return corresponding parameters to the goal 

interface at the end of end activity. 

 

Definition 2: The Definition of Workflow Engine Interface’s Extended Functions 

interface-wfEngine=<enf, params, returnType, codeDef, description> 

（1）”enf” is original engine interface whose function are extended, and enf={create, start, 

complete}, including the interface of process’ creation, starting, execution and completion. 

（2）”params” is parameters of the interface, and params={pf, pda, gp}, pf=<pid, pn, op, 

pd>, pda=<psid, psn, op>. 

Among them, “pf” indicates the parameters which are related to the process definition, 

including process definition’s ID, process’ name, process’ operator and description of the 

process; “pda” indicates the data of process instance, including process instance’s ID, process 

instance’s name, process’ operator; “gp” is the data which is assembled by process global 

variables in a specific format, and process global variables including global variables of the 

process definition and parameters that passed between the workflow systems. Process data 

between different workflow systems would pass through the “gp” parameter. 

（3）”returnType” is the type of interface’s return value. 

（4）”codeDef” is the implementation of the interface. 

 

 
 

（5）”description” is description of the interface. 

External workflow system will call and start a workflow process via “create” and “start” 

interface. The process instance is executed by the invoked workflow system’s engine which 

1） interface  create(pf, gp){ 

pda created by pf    //generate process instance based on the process definition 

//load process instance’s information and global variables to the database and memory 

database,memory(pda, gp)     

statusrunning        //set the process instance with a status of running  

if  ts=syn    //awoke thread at the completion of the process if it is synchronous call mode 

   while status!=finished 

        Thread.sleep(INTERVAL)   

return  pda   } 

2） interface  start(pda, gp){ 

//parse and deliver goal global variables into activities 

activities.getbyprocessInsId(psid)Goal.parse(gp)     

handle workitems       //handle work items } 

3） interface  complete(pda, gp){ 

    if  activity.type=end && all activities finish  //run to end activity and all activities are completed 

       if  currentProcessIns.hasParentProcess=false  //current completed process has no parent process 

  statusfinished  

    //assemble the process’ result according to a certain format through goal interface 

gpGoal.generate(pr)     

return  gp   } 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015) 

 

 

Copyright ⓒ 2015 SERSC  143 

determines whether the process instances is performed completely and then return the result 

via “complete” interface. After the workflow engine interfaces’ extension, the process’ main 

execution is shown in Figure 2. 

 

 

Figure 2. Execution of Interfaces-extended Workflow Engine 

3.2.2. Unified Workflow Service Interface: Workflow collaboration interface [2] is similar 

to client application interface, it supports the exchange of different application data in 

different systems, and it also has the function of gateway. It relies on a specific collaborative 

workflow model from which an activity can be mapped as another activity or a new 

process/sub-process from workflow system A to system B, and establish a session between 

different workflow systems, so it can do some operation on workflow definition and its 

objects, process control, process status, event management and data handling. 

In order to pass all kinds of external parameters into current workflow system and facilitate 

different users have the access to the results they concern, in addition to the extension of 

original interfaces’ function, a goal interface is introduced between workflow engine and 

external applications. The main function of the goal interface is to receive and parse the 

client’s parameters, create a new link to the workflow engine service, receive and interpret 

the response of workflow engine service and then return the result back to client. The specific 

approach is to establish parameters’ mapping between the calling and called process, unify 

workflow systems’ requirements for different data formats, and assemble the required 

external data and parameters into a xml file which acts as one of the goal interface’s global 

variables. Firstly, the xml file would be parsed before a process’ execution, secondly, it will 

analysis and acquire the process data which needed by the follow-up activities. Finally, at the 

completion of the process, the operating results and other parameters will be assembled 

according to a uniform format for the caller to parse and then get the appropriate data.  

When the total process runs to the step that needs to call other workflow system’s process, 

it would go through the following steps: 

(1) The process data and business data of the total process would be stored in this process 

instance’s global variables, and a relation would be established between calling and called 

process by mapping the input and output parameters’ ID of goal interface with the bound 

process global variables’ ID which have the same name. 

(2) The parameters which needed to introduce into the called process would be assembled 

into an xml file and stored into goal’s global variables. The xml file would be transferred to 

the called process’ global variables through the relation of goal’s reference parameters’ ID 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015) 

 

 

144   Copyright ⓒ 2015 SERSC 

with the called process global variables’ ID, and then the called process would be started and 

executed, the parameters would be parsed and resolved when required in follow-up activities. 

(3) After the completion of the called process, the results which including process data and 

business data would be assembled into an xml file according to a certain format and stored 

into the process instance’s global variables, and then the xml which will be obtained and 

parsed by the service invocator would be returned back to goal interface by the mapping of 

goal reference parameters with this process instance. 

In order to match the input and output parameters of the workflow web service’s interface 

effectively, as a reference of Definition 1 which mentioned in the previous chapter, we have 

defined the goal interface and designed goal interface parameters’ schema as follows: 

 

Definition 3: The Definition of Goal Interface 

interface-Goal=<goalfunc, params, returnType, codeDef, description> 

(1) ”goalfunc” indicates the function of goal interface, and goalfunc=<generate, parse>. 

Among them, “generate” is used for assembling goal parameters into an xml file which 

follows the defined schema; “parse” is used for parsing xml file which is assembled by goal 

parameters. 

(2) ”params” is the input parameters of the function, and params={goalPara, xml-file, node-

name}. Among them, “goalPara” is the goal’s parameters, including the global variables of 

process definition, the variables which refer to result of process, and the parameters which 

introduced from external workflow systems. “goalPara.name” is name of goal’s parameters 

while “goalPara.value” is the value of it; “xml-file” is the xml file which assembled by the 

process’ “goalPara” according to the schema, and then transferred to “gp” of the engine’s 

interfaces; “node-name” is the node name of the xml file that used for parsing some certain 

kind parameter.  

(3) ”returnType” is the type of interface’s return value. 

(4) ”codeDef” is the implementation of the interface. 

 

 
(5) ”description” is description of the interface. 

 

interface  Goal{ 

1）generate(goalPara){    //assemble the data into a certain formatted xml file based on schema 

gpgenerate xml-file based Schema(goalPara.name, goalPara.value)   

return  gp 

} 

2）parse(xml-file, node-name){    //parse the xml file to get the desired process’ result 

        prparse xml-file by node-name 

return  pr 

}  



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015) 

 

 

Copyright ⓒ 2015 SERSC  145 

Figure 3. Goal Interface Parameters Schema 

3.3. Workflow Service’s Function and Encapsulation 

Since different process instances may correspond to different process definitions, the 

number and type of workflow services’ input/output parameters are not fixed, and the strong 

dependence on environmental resources of process’ implementation, the main functions of 

workflow service are as follows: (1) The workflow service should receive the incoming 

parameters from external workflow system, and pass the corresponding process and business’ 

information to workflow database through the internal database service. (2) The workflow 

service should return the results and state of the subscription process after its completion. In 

order to achieve these two functions, the service’s access address will be bound with available 

application interfaces, and the collection of its ports is defined as a workflow execution 

service. 

The design of workflow service’s packaging are as follows: (1) The service should provide 

the necessary interfaces for external applications, such as the process definitions’ deployment, 

process instances’ start and trigger, the historical data’s query and so on. (2) The workflow 

service should provide other required services during the engine’s scheduling process, such as 

database service and so on. (3) The service could set the global variable schema based on the 

decomposition of user’s demand for process services. (4) The extended interfaces are 

maintained consistency and opened to the users together with the original interfaces, and it 

won’t affect the client’s direct access to the original interfaces’ function.  

The method of workflow service’s encapsulation is shown as follows: 

 

Goal Interface Parameter XML Schema： 

<?xml version="1.0"?> 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

targetNamespace="http://test.com"  xmlns="http://test.com"> 

 

<xsd:element name="ProcessFunc" type="xsd:string"/>   <!-- Process Function Parameters --> 

<xsd:element name="name" type="xsd:string"/> 

<xsd:element name="parameter" type="xsd:string"/> 

 

<xsd:simpleType name="InvokeStyle">    <!-- the Mode of Service Invocation--> 

 <xsd:restriction base="xsd:string"> 

  <xsd:enumeration value="Synchronous"/>      <!-- Synchronous Mode --> 

  <xsd:enumeration value="Asynchronous"/>     <!-- Asynchronous Mode --> 

 </xsd:restriction> 

</xsd:simpleType> 

 

<xsd:complexType name="ProcessGoal">         <!-- Goal Parameters --> 

   <xsd:sequence> 

    <xsd:element ref="name"/> 

    <xsd:element ref="parameter" minOccurs="0" maxOccurs="unbound"/> 

    <xsd:element ref="result" minOccurs="0" maxOccurs="unbound"/> 

   </xsd:sequence> 

 </xsd:complexType> 

 

</xsd:schema> 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015) 

 

 

146   Copyright ⓒ 2015 SERSC 

 
 

The parameters of the service’s entrance are as follows: “Sflag” indicates invocation mode, 

“GoalName” is the goal’s name, and “goalPara” indicates parameters of the goal. For the 

non-service workflow system’s packaging, firstly we use Java to package the functional 

modules to meet JNI(Java Native Interface) calling specifications and develop the extend 

functions, secondly we add wrapping code through the development of local Java program, 

finally it will be packaged and deployed by Java as a standard Web Service. 

 

4. Case Study 

In this section, we will test the method which is described in the previous section through 

calling a process that exists in some workflow service by scientific workflow Kepler and 

public class getSynflowResult { 

  step 1  //define workflow system service’s common object 

         WFService_Obj{ MONITOR_RMI_ADDRESS,  //wf system’s  rmi remote call 

interface 

op,     //process operator 

RmiConnection,  //database rmi connection object 

ProcessMonitor,  //process monitor object 

psid,        //process instance’s ID 

pr, ……  //process instance’s result   

} 

  step 2  //package the workflow system service 

// input parameters: identification of synchronous or asynchronous, goal name and  

parameters 

public String ReceiveSynflowResult (String Sflag,String GoalName,String goalPara){   

getSynflowResult WfObj=new getSynflowResult(); 

    step 2.1  //get the process data from an external workflow system 

   OuterDataArray  (goalPara.name, goalPara.value)   //goal parameters 

       gp  WfObj.generate(OuterDataArray);      //assemble the external parameters 

step 2.2  //obtain the process definition and create a process instance 

//obtain workflow service’s rmi remote process monitor object 

pm  MonitorConnection.getProcessMonitor(MONITOR_RMI_ADDRESS); 

//return the process instance’s information 

s[]  pm.create (PROCESS_NO, PROCESS_XML, "Test", op, gp);     

psid  Integer.parseInt(s[0]);        //get the current process instance’s ID 

step 2.3  //start and execute a process instance 

pm.start (psid, op, gp); 

step 2.4  //waiting for the return of the workflow service’s result 

             //the flag of determining whether the process is completed and return the result 

flag  unfinished ;      

    while (!flag) { 

pservice  PropertyService.getPropertyService(); 

              rmiConnectName  pservice.getProperty("dbrmiconnect"); 

//call the database service, establish a connection with the business database 

conn  RmiConnection(rmiConnectName);   

    //parse the xml returned from  “complete” interface of the engine and get the 

process’ result 

pr  WfObj.parse(gp, ”Result”);      

         flag  finished;     

         }  

step 2.5  return pr;      //return the process’ result 

} 

} 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015) 

 

 

Copyright ⓒ 2015 SERSC  147 

open source workflow engine ODE. Firstly, we packaged this workflow system’s interfaces 

for external access and extended goal interface into web service through Axis2 and other 

components of the Web Service container. And then, we packaged and deployed non-

functional components of web services automatically as a standard service into Axis2 through 

the Ant tool’s commands which provided by Apache. 

There exists a Product Acceptance Process which is actually running in a certain workflow 

system. The product acceptance process is used to describe the leader issued the product 

detection forms to several departments, and then the forms would be distributed to some 

staffs and reviewed by the leader at last. The whole process is shown in Figure 4(a), M and N 

represent the number of department and person for distributed separately. 

 

 
 

Figure 4(a). Product Acceptance Process 

A process can be packaged into a service which acts as an activity of the total process, and 

it may be executed in another workflow engine. Figure 4(b) shows a Kepler process that will 

invoke the workflow service. There are four parameters in the kepler process, “Constant1” 

represents the mode of service invocation while “0” is asynchronous and “1” is synchronous; 

 

   

Start 

Distribute to Company 

Process： 

GetN Distribute to 

Person 
End 

Modify the 

Notificatio

n 

Company 

Audit 

 

Sub-process 

Activity  

Common 

Activity 

 

   
Start 

Product Acceptance 

Process： 
GetM Distribute to 

Company 
End 

 

   

Start 

Distribute to Personal 

Process： 

 

Fill the 

Form 

End 

Personal 

Audit 

Modify 

the Form 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015) 

 

 

148   Copyright ⓒ 2015 SERSC 

“Constant2” is the goal’s name; “Constant3” is goal parameters’ name which separated by 

commas; “Constant4” is goal parameters’ value, such as the string “2,3” represents there have 

two departments and each department has three person. The “WSWithComplexTypes” 

component of this Kepler process has been bound to the encapsulated engine service’s WSDL 

link as the dashed line① shown in Figure 4(b). When the Kepler process needs to call this 

product acceptance process, it will start the workflow service and then execute the process, 

and at the same time it will deliver the parameters that the process required into the workflow 

engine. As the dashed line② shown in Figure 4(b), after the completion of the product 

acceptance process, this workflow execution server will handle and return the process’ result 

according to the requirements for such as mode of invocation and so on, and then transfer the 

control back to Kepler engine and continue to execute the next activity of the total process. 

 

 
 

Figure 4(b). Kepler Invoke the Product Acceptance Process 

 

 

①
 

②
 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015) 

 

 

Copyright ⓒ 2015 SERSC  149 

 

 

 

 

Figure 4(c). ODE Invoke Product Acceptance Process 

Figure 4(c) shows a BPEL process that will invoke the workflow service. In this BPEL 

process, there has an activity called “InvokeSynFlow” which has been bound to the link of 

the encapsulated workflow service. The BPEL process assigns the process’ arguments to the 

service’s input parameters through the “Assign” activity to start a certain process instance 

which belongs to the workflow service, and the workflow service will return the result 

through “Assign1” activity after the completion of the Product Acceptance Process.  

It can be seen from the above examples that a workflow service could be invoked by two 

different workflow systems, the design of workflow interfaces and encapsulated method of 

the workflow service are reasonable and feasible. 

 

5. Conclusions and Future Work 

In this paper we present a general solution of workflow interoperability and sharing at the 

level of heterogeneous workflow processes’ integration based on Web Service. In order to 

ensure the consistency of business information, improve the workflow system’s scalability 

and enhance the compatibility with the combination of heterogeneous processes, we focused 

on the extension of workflow system’s interfaces and the method of workflow service’s 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015) 

 

 

150   Copyright ⓒ 2015 SERSC 

encapsulation while the workflow interoperability’s standards were explained according to 

WFMC. 

The variety of control, data elements, resource and other factors will continue being 

developed for various domains and guided by those domain’s needs. Therefore, the process 

services’ planning and selection, as well as the uncertainty and reliability of input/output 

parameters in a distributed environment are a research goal in the near future. 

Acknowledgements 

The presented work is partially supported by the National Science and Technology Support 

Program (2012BAK17B09), National Science and Technology Major Project of China 

(2012ZX01039-003 and 2012ZX01039-004-01-3). 

 

References 

[1] V. Curcin and M. Ghanem, “Scientific workflow systems-can one size fit all”, Proceedings of the Cairo 

International Biomedical Engineering Conference, (2008) December 18-20, Cairo, Egypt. 

[2] D. Hollingsworth, “The workflow reference model”, Workflow Management Coalition, (1995). 

[3] B. Yang, K. Yan, J. S. Jiang and G. Y. Hu, “Web Services architecture oriented cooperative workflow 

model”, Computer Engineering and Design, vol. 3, no. 32, (2011). 

[4] S. D. I. Fernando and A. C. Simpson, “Towards a formal framework for workflow interoperability”, Lecture 

Notes in Computer Science, vol. 5387, (2009). 

[5] G. Pavlin, M. Kamermans and M. Scafes, “Dynamic process integration framework”, Toward efficient 

information processing in complex distributed systems, Informatica, vol. 34, (2010). 

[6] T. Kukal, T. Kiss, G. Terstyanszky and P. Kacsuk, “A general and scalable solution for heterogeneous 

workflow invocation and nesting”, WORK’08 Proceedings of the 3th on Workflows in Support of Large-

Scale Science, (2008) November 17, Austin, USA. 

[7] A. Alqaoud, I. Taylor and A. Jones, “Publish/Subscribe as a model for scientific workflow interoperability, 

WORKS’09 Proceedings of the 4th Workshop on Workflows in Support of  Large-Scale Science”, (2009) 

November 16, Portland, USA. 

[8] D. Tang, R. Z. Sun, Y. Xiang and G. Yuan, “Interface design of heterogeneous workflow interconnection 

based on Web service”, Journal of Computer Applications, vol. 6, no. 33, (2013). 

[9] X. Guo and W. Huang, “Grid-based Region Management System based on SOA architecture research”, 

Information Engineering and Electronic Commerce, 2009, IEEC'09, International Symposium on (2009) May 

16-17, Ternopil, Ukraine. 

[10] P. Jiang, Y. Ding, L. Gao, X. Y. Shao and Y. D. Shen, “A distributed workflow management system for 

collaborative product development”, Proceedings of 2010 IEEE the 17th International Conference on 

Industrial Engineering and Engineering Management, (2010) December 7-10, Macau, China. 

[11] P. X. “A Design of Platform System Supporting Dynamic Workflow Interoperation and Enterprise 

Application Integration, Industrial Control and Electronics Engineering (ICICEE)”, 2012 International 

Conference on. (2012) August 23-25, Xian, China. 

[12] K. Plankensteiner, R. Prodan, M. Janetschek, T. Fahringer, J. Montagnat, D. Rogers, I. Harvey, I. Taylor, A. 

Balasko and P. Kacsuk, “Fine-Grain Interoperability of Scientific Workflows in Distributed Computing 

Infrastructures. Journal of grid computing”, vol. 3, no.11 (2013). 

[13] F. Zhen, M. Liu and M. Y. Dong, “SOA message-oriented middleware based system integration method for 

business process”, Computer Integrated Manufacturing Systems, vol. 5, no. 15, (2009). 

 

Authors 
 

Gang Yuan, working toward the PhD degree in the College of 

Information and Electrical Engineering, China Agricultural University. 

Her current research interests include workflow technologies and 

applications, business process management and web services. 

 

 

 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015) 

 

 

Copyright ⓒ 2015 SERSC  151 

 

 

 

 

 

Rui-zhi Sun, received his PhD degree (2003) in Tsinghua University. 

He is a Full Professor with the College of Information and Electrical 

Engineering, China Agricultural University. His research interests 

include computer network and applications, workflow management and 

cloud computing.  

 

 

 

 

 

Yong Xiang, received his PhD degree (1998) in Tsinghua University. 

He is an Associate Professor with the Department of Computer Science 

and Technology, Tsinghua University. His research interests include ad 

hoc network and computer supported cooperative work.  

 

 

 

 

 

 

Yin-xue Shi, working toward the PhD degree in the College of 

Information and Electrical Engineering, China Agricultural 

University. Her current research interests include business process 

management, workflow technologies and applications. 

 

 

 

 
 

 

 

 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015) 

 

 

152   Copyright ⓒ 2015 SERSC 

 


