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Abstract

A class of delayed ratio-dependent Gause-type predator-prey model is considered. Firstly,
we study the eigenvalue problem for the linearized system at the coexisting equilibrium and a
group of sufficient conditions for the existence of Hopf bifurcation are obtained. Secondly, the
direction of the Hopf bifurcation and the stability of the bifurcated periodic solutions are
determined by applying the normal form method and the center manifold theorem. Finally,
some numerical simulations are carried out to illustrate the obtained results.

Keywords: Gause-type model, Ratio-dependent, Hopf bifurcation

1. Introduction

Not only in pure ecology, but also in mathematical biology, the importance of the
relationship between predator and prey will continue to be widely studied [1-4]. It has
attracted extensive studies on the dynamics of various multi-species predator-prey models. In
the predator-prey model, Holling Il response functions is what we say Michaelis-Menten type.
The dynamics of models have been studied extensively. See [5-11].

In the study of predator-prey interactions with Michaelis-Menten type was the discovery of
the well known™ paradox of enrichment "[7, 9]. Arditi and Ginzburg [3] put forward the

. . . /
following ratio dependent functional response: p[iJz XY and studyed the
y m+ x/y
predator-prey system with this functional response. Beretta and Kuang [5] gived some
preliminary results and provided sufficient conditions for the positive equilibrium to be

globally asymptotically by construct a Lyapunov function. In 2001, Xiao and Ruan [8]
studied the qualitative properties near the origin and proved 0(0, 0) is a critical point.

There are several different topological structures around it, including parabola, ellipse and the
hyperbolic orbit. The existence conditions of limit cycle are given by numerical simulation.

In nature, the population will generally experience some periodic oscillation. It can be
regarded as by the impact of delay from a mathematical point. See [12-17]. In 1998, Beretta
and Kuang lead a single discrete time delay to predator equation of the following model:

[X:axfl—i)—cx—y

J L K ) my +x

| ; y[ | fX(t - 1) (1.1
= —-d+

| my (t —z)+ x(t —7)

For this model, the authors studyed the stability of periodic solutions and the existence of
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Hopf bifurcation in [18]. In order to prove the global asymptotic stability of the positive
equilibrium, some sufficient conditions are given by constructing appropriate Lyapunov
functions.

The purpose of current work is to analysis the effect of delay on the dynamics for the
following delay ratio-dependent food chain model:

[X:ax(l—LW— oy

| L K)J) my +x

ly= y[—d + (=) -1z (1.2)
| my (t—z)+ x(t-r17)

|

Z=z2(-s+ey(t-1))

Here z istop predator. a,K,c,m,d, f are positive constants whose biological meaning are
obvious. r,s,e are positive constants that stand for capturing rate, half capturing saturation
constant, conversion rate, top-predator death rate, respectively. In [19], the authors reveal that
Hopf bifurcation can occur as the delay crosses some critical values which lead to the
existence of periodic solution that may conform to certain phenomena in ecosystem system.
We still let - as the bifurcation parameter in this paper and consider the delay Gause-type
predator-prey model with ratio-dependent functional response.

2. Stability and Hopf Bifurcation of Coexisting Equilibrium

For the sake of convenience, we non-dimensionalizes the Eq.(1.2), then the Eq.(1.2) takes
the form:

‘(x x(1-x)- Py

| Yy + X

J y = [ e t-r) -z 2.0
‘ y(t—7)+ x(t-r1)

|2 =z(-s+uy(t-r1))

which satisfies x,(0) = ¢,(0) >0, y, (8)=¢,(0)>0,z,(0)=¢,(0)>0,0 € [-7,0],
x(0) > 0,y(0)>0,2(0) > 0,4(0) = (4,.4,.¢,) € C([-1,0], R*),
|| = max {¢(0)|:6 e [~ <. 0]} .and |g| isanynormin R*.Where

c ek

f d
p:_’q:_’lz_lu:
a a

ma m

Obviously, the delay can't change the number of equilibria and non-dimensionalizes can't
change the properties of system. In the following, we always assume Eq.(2.1) has a positive

equilibrium exists and denote it by E(x*, y* z*) with
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S gx *
yr= = 2t |
u X*¥+y*

(s/u—1)1\/(s/u—1)2+4s(p—1)/u
X* =
2

We consider the linearized system of (2.1) at E . The characteristic equation at E s
given by

D(Z,7)=4"+a,2" +(b,2° +ba+b)e ™ =0, (22)

Where a, =-m,,b, =-n, >0’b1:m11n22 — My — My, and bo =MyMmyng,.
*2 *2
X
PSP, A SR P
(x*+y*) (x*+y>)
ay ** ax *y*
n, =——>0,n, =——-—<0,n, =uz*>0.

22 32

U (xr ey (x*+y%)?

If m, < o,then all the eigenvalues of Eq.(2.2) have negative real parts when =0 by
the Routh-Hurwitz criterion. Now we substitute 1 = io (o > 0) into Eq.(2.2),
(1) when @ =0,D(0,7) = b,=m ,m,n, =#0;

23732

(2)when ® =0, D(iw,7) = (i0)’ +a,(io)’ +[b,(io)* +bjio +b,Je =0.
Separating the real and imaginary parts gives

~a,0’ —b,w’cos wr +b,wsin @z +b, cos oz =0 (2.3)
and
~»’ +b,0°sin @r +b,wcos wr —b, sin wr =0 (2.4)
We get
o°+(a, -b)o" +(2b,b, -b/ o’ b =0 (2.5)
2 2 2 2 2
Let o =1,P =a, -b,,P,=2bb,-b° and P, = -b; < 0 then Eq.(2.5) become

1°+PI*+Pl+P, =0 (2.6)

From Ruan and Wei [20], we have the following results on the distribution of roots of Eq.
(2.6).
P, ++/P, -3P, and 1. - — P, —+/P - 3P,

3 3

< 0 ,then we have the following Lemma:

3 2
Denote h(l) = 1"+ P,1" + P,1 + P,,I =

2
0

Because P, = -b
Lemma 2.1. When P’ -3P, >0,

(@ h(@,)>0,h(1,) <0 then Eq. (2.6) has one positive root, this implies that the
characteristic Eq.(2.2) has only a pair of purely imaginary roots.

(b) nh(1,) <0,h(1,)> 0 ,then Eq. (2.6) has three positive roots, This implies that the

haracteristic Eq.(2.2) has three pairs of purely imaginary roots.
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Without loss of generality, we assume that it has three positive roots, denoted by
I,,1,1,, respectively. Then Eq.(2.2) has three positive rootse, = \/I_ (i=1,2,3). We can

1772 "3
calculate
1 [ bo'+®aol-b)-a,0)
r, = —]arccos o +(22w° 20)( azzw')}, i=1,2,3
o, | (b, —=b,)" +b,o, ]
Define
T, =7, = min {ri}, w, =0o,, 2.7)
Denoting A(r) = a(z) + B(r) be the root of Eq.(2.2) satisfying «(z,) =0,
B(r,) = »,, we have the following lemma.
dRe 4
Lemma2.2.If h'(w’) = 0, we have e—(T)> 0
dr
Proof. Assume
h(o;)=w, +(a, -b,)o, +(2bb, -b o, —b, =0,
Because
~ TdRe A(z)]  TdRe A(r)]
sgn | — =sgn | ——— ’
T e )|
[dRe A(r)] [ (32% +2a,4)e” | [ 2b,2+b, ]
_— =Re| . | +Re| . |
L dr J |Ab,A" +Db A +Dby) i | A0 ,A" +b,2+by) i
3w, +2(a; -b o +(2b,b, b))
- bw! + (b, ~b,0’) o
h'(@,)
Cbiel+ (b, -b,0}) 0]
We have
dRe A(r)]
sign [dRe 2(z) ] =sign (h'(@.)) .
TR
dRe 2 dRe 4
If h'(w.) =0 then —e—(r)—;t 0 .There must be —e—(r)—>0 .This is because
dr dr
dRe A(7)

Eq.(2.2) has the positive real part roots as r <z if < 0 .This contradicts to

dr

T=1,

the fact when - < [0, 7,) and E(x*, y* z*) isasymptotically stable.
By Lemma 2.2 we have the following theorem.
Theorem 2.1. Suppose that m, < 0, If Lemma 2.1 holds, then the equilibrium
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E(X*, y*’ 7 *)
of the delay model (1.2) is asymptotically stable when r < z_,and unstable when
r >z, Where ¢ isde_ned by (2.7). In addition,if h'(w,) = 0 then Hopf bifurcation occurs

whenz = Ty

3. Direction and Stability of Hopf Bifurcation

Let x, (t) = x(t) = x ,x, (1) = y(t) =y ,x,(t) = z(t) -z , X, (t) = x, (zt) (i=1,2,3),
T=7r,+u,4eR and

The system (1.2) is transformed into a functional di_erential equation (FDE)
inc =c(-1,0], R®), defining

L, ()= (z, + u1)B,4(0) + (r, + u)B,p(-1), (3.1)

Where ¢ = (4,.4,.4,)" e C([-1,0], R*).And the nonlinear term is

( 0,6,(0)¢,(0)+ 0,6, (0)+ g, 8, (0) + - - l
| = ¢,(0)4,(0) + 9,,6,(0)8,(-1) + g,,¢,(0)¢, (1) + 9,,4,(-1)¢,(-1) |
f(u @)= (v, + u) ) 2 |
+gZS¢1 (_1)+g25¢2 (_1)+ """
L U¢3(0)¢2(—1)+ ...... J
Where gu:_”x—’wi,913:L3,1,gM:L3 :LZ,
(X *+y* (X*+y% (x*+y*% (X*+y%
ax * q(x*-y» ay * gx *y*
9y =~ 9% =7 o 9s =77 9% =" -
(x*+y*% (X*+y% (x*+y*% (X*+y*%

Obviously x =0 is a Hopf bifurcation point. So the system (3.1) can transform into an
abstract functional differential equation:

v(t) =L, (v)+ f(u,v,) 3.2)

Where v(t) = (x,(t), x, (1), x,(t)) " e R’.
There exists a 3x3 matrix »(6,ux) (-1<6 <0), whose elements are of bounded
variation functions such that

L @)= [dn@. o), for g<c(-10]R"). (3:3)

In fact, we can choose
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[ (r, +u) B, 6 =0
n(@,u)=10, 0 e (-1,0) (3.4)
t(ro-r,u) B, 6 =-1

Then Eq.(3.3) is satisfied. For ¢  c ([-1, 0], R®), we define

fd¢(9)’ 0 c[-10)
A(u)p(9) = J 0!)9 (3.5
| [ldnc mb@),  e=o0
and
( 0, 0 e [-1,0),
R(u)g(6) =4 (3.6)
[ f(u.d) 0 =0

So Eq.(3.3) is equivalent to the following abstract equation
X, = A(u)x, + R(u)x,, 3.7)

Where x = (x,,x,,x;)" .and  x (t) = x(t + ) for 6  [-1,0].
For w e c'([041], R%), we define
f_dl//(s), se[-10)
Aty =] s (38)
| [y adnE0),  s=o0

and a bilinear form

o ¢ —

W ($).$(0) =¥ 06(0) - [ [ v (&-0)dn(0)p()ae,

wheren () = 7(0,0) .Then A(0) and A=* are adjoint operators. We know that +iw z
are eigen values of A(0) and therefore they are also eigenvalues of A*(0). The vectors

a(0) = (a,1,q,) e (0 <[-101)and q*(s) = D(q,*%1,q,9e""" (s e[-1,0])are
the eigenvectors of A(0) and A* corresponding to the eigenvalue iw 7, and -io 7,
respectively, satisfying (g * (s), q(8)) = 1,(q * (s), q_(¢9)> = 0 with

m n g ' n g ' m
lZTO 3210 ZlTO T

g, =—"—"— , g, = ————— , q*=——"—— , g,*=-—"> and
iw, -m 7, o, o, —m, 7, o,

- 1 . .

D = .Following the same algorithms as

00, +1+a,a, + (N0, + N, +n5,0;)r.e
Hassard, Kazarinoff and Wan [21], we can obtain the coefficients which will be used to
determine the important quantities:

—_ _ _—

9, =2D7,[0,0,d, +9,0,0, +0,0, —2d,+ (9,0, + g, +2uq.q,)e

To

+(9, 0,
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2 2io 7,

+gz5q1 +gze)e ]’

—io 7,

9, =2D7,[0,9,9, + 9,,0,4, + 9,0, — 20, + (9,0, + ,, +ug,q,)e + (9,0,

—2iow 7,

2
T 9,504, +gze)e ]’

—io 1,

9, = 2Dz [g, Re{ q,}q, + 9,,4,4,4, + 9,4, - 2Re{ q,}+ (g,, Re{ q,e }

9,1,

io 7,

+9,Ref  ‘}+g, Ref{d}+0,0,9,+09, +2uRefq,e

9, = Dr,l(9,,9,d, +29,,0, — 20, + g€

“q,d, + 9,9, —d,

11

gzz_imr gz3 w7

qle 00+T 00)W20

1 + gl3q q )W20(0)+(glzq1 +2913q q )

o7 i

“q, - 2)Wlf(0)+ (ue ™ ;—1)W22 (0) + (g, +2g,e "+ 2uq:q3 +

—iw,t

W, (0)) + (2ue

g 24 —-iw, 7 I(u T T« g 24 o, 7
—q,e °° ’+ug,q, + q W, (~1) + (g
2 1 2 3 3 2 20 22

11

—iwy7, g —lw 070 - —iwy7, * g IwOTD
+20,0,¢ 22 1 +uq,Qq, + 224 )Wzo( 1)]

26

Since there are w,  (¢) and Wu(e) in g, ,we still need to compute them. From [21], we
have:

W (0) = 2 q(0) + — 2= q(o) + E,e ™"

®,7, 3w,7,

According to

0
[2iw,z,| - Iildn(e)ez“”“”]E fo

where
2
( 02y + 05,0, + Oy )
—iw,7, —iw,7, 2 —2iwgrg ~2iwgrg
. :|_2q3+gzzq1e + 0558 + 00,8 T 05%¢ r
| e |
\ 9 )

5o 24aY :
where E’ = —(i=1,2,3) with
A

1

T

We have E, = (E/”,E/” E[?)

_ . . . —2iwyty . —2iwg7,
A =2io,2Qior, - m, )2io,r, - n,e ) - 4io,r ,m,n,e
—2iw,7, —2iw,7,
-m,n,e (2ie -m.)
1 _ 2 2 - —2iwy7, —2iwy7, . 2wy
Al - (_460070 - Zmzzworo)e —Myung,e€ (glqu + 913q1 + 914) »l€
—2iw,7, —2iwg7, 2 “2iwgr, —2iw,7, —2iwg7y,
(=29, + 9,,q,8 +g,,© +0,0,€ + 0,8 )+ 2um m_.q.e
(2) - —2iwyr, 2 - - —iwgyr, —iwyr,
Ay = -2in,e (95,0, + 95,0y +9y,) + 20,7, (2iw,7, — My, )(~20; + 9,,0,8 T8¢ *
2 -2ic ~2i ) _oi
9,0, T +g,e ) -m,(Riw,r, —m,)2uge 7
(3) —4iw,t 2 —2iwgr —iw,r —iw,r
A1 =NyuNg,e u0(912q1+913q1"'glzt)_nze DO(lef _m11)( 2q3+gzzqe UU"'9236 Tt
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2 “2iwgt, 72i1uoru)

925q1e +gZSe

2wyt —2iw,t,

0" o
-m,n,e )2uq e

And similarly,

—2iw,7,

Riw,ry—m N2iw,r, —n,e

ig ig, —
Wll(g):_Aq(e)-k = q(9)+E2

®,7, 3,7,

According to

Uidn(e)jE2 =—f-,

Where
( 9,,(q, +9,) +29,,9,0, + 29,, )
f-= | —4Re{ q,}+2g,, Re{ qe """} +29,,cos( @,7,) +20,.9,0, + 29,, cos( w,z,) |,
4uRe{ q,e™"}
. A )
We have E, = (E”,E ES)T where E[” = —2 (i =1,2,3) with
A

2

2 1°°32

Q= -n,m,l9,,(q, +0,)+29,,0,9, + 29,1+ 4um ,m_, Re{ q,e" "},

(2) _ w7,
A, =4m, ,m_uRe{ q,e ¥

A,=m n_m,_,
A

AT =0,y [0, (0, + ) + 20,0, + 29,1+ myn, [-4Re{ a.} + 29, Re{ e "}
+29,,€08( @,7,) +20,0,0, + 29, cos( @,7,)] +4u(m n, —m_n, )Re{ q,e "}, .
Consequently, g, can be expressed explicitly by the parameters and delay in the system
(3.1). Thus, we can compute the following values:
2
2 |g 02 | w 9

Zono[gllgzo _2|gll| - 3 J+ 2 !
Re( ¢, (0))
Re( 1'(z,))
Imc (0)+ u, Im A'(z,)
2 = )
a)OTO
B, = 2Re( ¢, (0)) ,
which determine the properties of bifurcating periodic solutions at the critical value - . That

¢, (0) =

H, = —

is, u, determines the direction of Hopf bifurcation: if x, >0 (u, <0 ), then Hopf
bifurcation atz, is forward (or backward); g, determines the stability of bifurcating
periodic solutions: B, <0 ( g, >0 ) the bifurcating periodic solution is orbitally
asymptotically stable (unstable); and T, determines the period of the bifurcating periodic
solutions: the period increases (decreases) ifT, > 0 (T, <0).
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4. Numerical Simulations and Discussions

In this part, we perform some numerical simulations. We choose a set of parameter which
satisfy the assumptions in Theorem 2.1.

r=2.3767, p =0.362, q = 0.199, | = 0.1182, s = 0.2145, u = 0.6209, | = 0.1500.

Thus, all the conditions in Theorem 2.1 are satisfied. Through (2.7), we have

r, =53774, o, =0.080and c (0) =-0.4617 +i0.6024. Utilizing Theorem 2.1, we

know the equilibrium of the delay model (2.1) is asymptotically stable when 7 <z

(see Figure 1). Hopf bifurcation occurs when z = 7, and the bifurcating periodic solution
is orbitally asymptotically for >z~ (see Figure 2).

In addition, the periodic solution of system (2.1) still exists when z is large. The numerical
results show that the global existence of periodic solutions generated by the Hopf bifurcation.
How to explain the phenomenon theoretically needs further researches.

500 1000 1500 2000 2500

Figure 1. E(0.8995, 0.3455, 0.1047) is Asymptotically stable whenr = 2:3767< ¢
=5:3774

14 07

1 08

05

04

092 03

02

01
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Figure 2. A Stable Periodic Orbit of System (2.1) whenr = 7:8767> = 5:3774

5. Conclusion

In this paper, we analyze the existence of Hopf bifurcation in a class of three-dimensional
Gause-type delay ratio-dependent predator-prey model. We obtain the stability of this
equilibrium E and also claim that the introduced delay changes its stability while a Hopf
bifurcation occurs. The bifurcating periodic solution is asymptotically stable by using the
center manifold theorem and the normal form method. The existence of the bifurcation
periodic solutions for sufficiently large delay has been shown by numerical simulations. Our
investigation shows that the oscillating modes in system (2.1) largely depend on the time
delay.

Acknowledgments

The work is supported by the Heilongjiang Provincial Natural Science Foundation
(No.A201313).

References

[1] A. A. Berryman, Ecology, vol. 1, no. 73 (1992).

[2] H. I. Freedman, “Deterministic Mathematical Models in Population Ecology”, Marcel Dekker Incorporated,
New York, (1980).

[3] R. Arditi and L. R. Ginzburg and J. Theor, Biol., vol. 1, no. 139, (1989).

[4] L.J.Chen and F.D. Chen, Int. J. Biomath, vol. 2, no. 3 (2010).

[5] E. Berettaand Y. Kuang, J. Math, Anal. Appl, vol. 3, no. 204 (1996).

[6] Y. Kuang and H. I. Freedman, Math. Biosci. vol. 1, no. 88, (1988).

[7]1 R. Arditi and A. A. Berryman, Trends Ecol. Evol., vol. 1, no. 6 (1991).

[8] D. M. Xiao, S. G. Ruan and J. Differ, Equations, vol. 1, n0.176 (2001).

[9] I.Hanski, “Tree”, vol. 6, (1991).

[10] Y. H. Xia, J. D. Cao and S. S. Cheng, Appl. Math, Model, vol. 9, no. 31, (2007).

[11] S. Sarwardi, M. Haque and P. K. Mandal, Nonlinear Dynam, vol. 3, no. 69, (2012).

[12] M. Haque, B. Math. Biol., vol. 2, no. 71, (2009).

[13] Q. T. Gan, R. Xu and P. H. Yang, Chaos Soliton Fract, vol. 4, no. 39 (2009).

[14] D. M. Xiao and W. X. Li and P. Edinburgh, Math. Soc. Vol. 1, no. 46, (2003).

[15] W. H. Jiang, H. B. Wang and J.J. Wei, Chaos Soliton Fract, vol. 3, no. 36, (2008).

[16] Y. Kuang, “Delay Differential Equations with Applications in Population Dynamics”, Academic Press,
Boston, (1993).

[17] W. M. Getz, J. Theor. Biol., vol. 108, (1984).

[18] Y. Kuang and E. Beretta, J. Math. Biol., vol. 4, no. 36, (1998).

[19] S. Guo and W. H. Jiang, J. Appl. Math. ID: 260798, (2012).

[20] S. G. Ruan and J. J. Wei, J. Math. Appl. Med. Biol., vol. 1, no. 18 (2001).

[21] B. Hassard, N. Kazarinoff and Y. H. Wan, “Theory of Application of Hopf Bifurcation”, Cambridge,
Cambridge University, London Math, Society Lecture Notes, Series, (1981).

120 Copyright © 2015 SERSC



