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Abstract 

A class of delayed ratio-dependent Gause-type predator-prey model is considered. Firstly, 

we study the eigenvalue problem for the linearized system at the coexisting equilibrium and a 

group of sufficient conditions for the existence of Hopf bifurcation are obtained. Secondly, the 

direction of the Hopf bifurcation and the stability of the bifurcated periodic solutions are 

determined by applying the normal form method and the center manifold theorem. Finally, 

some numerical simulations are carried out to illustrate the obtained results. 
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1. Introduction 

Not only in pure ecology, but also in mathematical biology, the importance of the 

relationship between predator and prey will continue to be widely studied [1-4]. It has 

attracted extensive studies on the dynamics of various multi-species predator-prey models. In 

the predator-prey model, Holling II response functions is what we say Michaelis-Menten type. 

The dynamics of models have been studied extensively. See [5-11]. 

In the study of predator-prey interactions with Michaelis-Menten type was the discovery of 

the well known`` paradox of enrichment "[7, 9]. Arditi and Ginzburg [3] put forward the 

following ratio dependent functional response: 
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， and studyed the 

predator-prey system with this functional response. Beretta and Kuang [5] gived some 

preliminary results and provided sufficient conditions for the positive equilibrium to be 

globally asymptotically by construct a Lyapunov function. In 2001, Xiao and Ruan [8] 

studied the qualitative properties near the origin and proved  0,0O  is a critical point. 

There are several different topological structures around it, including parabola, ellipse and the 

hyperbolic orbit. The existence conditions of limit cycle are given by numerical simulation. 

In nature, the population will generally experience some periodic oscillation. It can be 

regarded as by the impact of delay from a mathematical point. See [12-17]. In 1998, Beretta 

and Kuang lead a single discrete time delay to predator equation of the following model: 
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             （1.1） 

For this model, the authors studyed the stability of periodic solutions and the existence of 
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Hopf bifurcation in [18]. In order to prove the global asymptotic stability of the positive 

equilibrium, some sufficient conditions are given by constructing appropriate Lyapunov 

functions. 

The purpose of current work is to analysis the effect of delay on the dynamics for the 

following delay ratio-dependent food chain model: 
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       （1.2） 

Here z is top predator. fdmcKa ,,,,,  are positive constants whose biological meaning are 

obvious. esr ,,  are positive constants that stand for capturing rate, half capturing saturation 

constant, conversion rate, top-predator death rate, respectively. In [19], the authors reveal that 

Hopf bifurcation can occur as the delay crosses some critical values which lead to the 

existence of periodic solution that may conform to certain phenomena in ecosystem system. 

We still let   as the bifurcation parameter in this paper and consider the delay Gause-type 

predator-prey model with ratio-dependent functional response. 

 

2. Stability and Hopf Bifurcation of Coexisting Equilibrium 

For the sake of convenience, we non-dimensionalizes the Eq.(1.2), then the Eq.(1.2) takes 

the form: 

 











































))((

)()(

)(

1







tuyszz

z
txty

tqx
lyy

xy

pxy
xxx







  （2.1） 

which satisfies 0)()(
10

 x , 0)()(
20

 y , 0)()(
30

 z ,  0,  , 

0)0( x , 0)0( y , 0)0( z , )],0,1([),,()(
3

321
RC   , 

  0,:)(max   ,and   is any norm in 
3

R .Where 

ma

c
p  ,

a

f
q  ,

a

d
l  ,

m

ek
u  . 

Obviously, the delay can't change the number of equilibria and non-dimensionalizes can't 

change the properties of system. In the following, we always assume Eq.(2.1) has a positive 

equilibrium exists and denote it by  **,*, zyxE  with 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 10, No. 2 (2015) 

 

 

Copyright ⓒ 2015 SERSC  113 

2

/)1(4)1/()1/(
*

2
upsusus

x


 ,
u

s
y * , l

yx

qx
z 




**

*
*  

We consider the linearized system of (2.1) at E . The characteristic equation at E  is 

given by 
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If 0
11

m ,then all the eigenvalues of Eq.(2.2) have negative real parts when 0  by 

the Routh-Hurwitz criterion. Now we substitute  i ( 0 ) into Eq.(2.2), 

(1) when 0 , 0),0(
3223110

 nmmbD  ； 

(2) when 0 , 0])([)()(),(
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Separating the real and imaginary parts gives 

0cossincos
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Let l
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1202
2 bbbP   and 0
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 bP ,then Eq.(2.5) become  
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From Ruan and Wei [20], we have the following results on the distribution of roots of Eq. 

(2.6). 
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Because 0
2

03
 bP ,then we have the following Lemma: 

Lemma 2.1. When 03
2

2

1
 PP , 

(a) 0)(
1

lh , 0)(
2

lh ,then  Eq. (2.6) has one positive root, this implies that the 

characteristic Eq.(2.2) has only a pair of purely imaginary roots. 

(b) 0)(
1

lh , 0)(
2

lh ,then Eq. (2.6) has three positive roots, This implies that the 

haracteristic Eq.(2.2) has three pairs of purely imaginary roots. 
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Without loss of generality, we assume that it has three positive roots, denoted by 

1
l ,

2
l

3
l , respectively. Then Eq.(2.2) has three positive roots

ii
l (i=1,2,3). We can 

calculate 
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Define 
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Denoting )()()(    be the root of Eq.(2.2) satisfying 0)(
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.This is because 

Eq.(2.2) has the positive real part roots as 
0
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.This contradicts to 

the fact when  
0

,0    and  **,*, zyxE  is asymptotically stable. 

By Lemma 2.2 we have the following theorem. 

Theorem 2.1. Suppose that 0
11

m , If Lemma 2.1 holds, then the equilibrium 
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 **,*, zyxE  

of the delay model (1.2) is asymptotically stable when 
0

  ,and unstable when 

0
  ,where 

0
 is de_ned by (2.7). In addition,if 0)(

2

0
 h ,then Hopf bifurcation occurs 

when
0

  . 

 

3. Direction and Stability of Hopf Bifurcation 
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The system (1.2) is transformed into a functional di_erential equation (FDE) 

in )],0,1([
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RCC  , defining 
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Obviously 0  is a Hopf bifurcation point. So the system (3.1) can transform into an 

abstract functional differential equation: 
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In fact, we can choose  
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Then Eq.(3.3) is satisfied. For  )],0,1([
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RC  , we define 
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Consequently,
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g can be expressed explicitly by the parameters and delay in the system 

(3.1). Thus, we can compute the following values: 
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which determine the properties of bifurcating periodic solutions at the critical value 
0

 . That 

is, 
2

  determines the direction of Hopf bifurcation: if 0
2
 ( 0

2
 ), then Hopf 

bifurcation at
0

  is forward (or backward); 
2

 determines the stability of bifurcating 

periodic solutions: 0
2
  ( 0

2
 ) the bifurcating periodic solution is orbitally 

asymptotically stable (unstable); and 
2

T  determines the period of the bifurcating periodic 

solutions: the period increases (decreases) if 0
2
T  ( 0

2
T ). 
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4. Numerical Simulations and Discussions 

In this part, we perform some numerical simulations. We choose a set of parameter which 

satisfy the assumptions in Theorem 2.1. 

τ = 2.3767, p = 0.362, q = 0.199, l = 0.1182, s = 0.2145, u = 0.6209, l = 0.1500. 

Thus, all the conditions in Theorem 2.1 are satisfied. Through (2.7), we have 

0
  = 5.3774, 

0
  = 0.080 and )0(

1
c  = −0.4617 + i0.6024. Utilizing Theorem 2.1, we 

know the equilibrium of the delay model (2.1) is asymptotically stable when τ <
0

  

(see Figure 1). Hopf bifurcation occurs when τ = 
0

 , and the bifurcating periodic solution 

is orbitally asymptotically for τ >
0

  (see Figure 2). 

In addition, the periodic solution of system (2.1) still exists when τ is large. The numerical 

results show that the global existence of periodic solutions generated by the Hopf bifurcation. 

How to explain the phenomenon theoretically needs further researches. 

 

            

             

Figure 1. E(0.8995, 0.3455, 0.1047) is Asymptotically stable when = 2:3767
0

  

= 5:3774 
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Figure 2. A Stable Periodic Orbit of System (2.1) when = 7:8767
0

 = 5:3774 

5. Conclusion 

In this paper, we analyze the existence of Hopf bifurcation in a class of three-dimensional 

Gause-type delay ratio-dependent predator-prey model. We obtain the stability of this 

equilibrium E and also claim that the introduced delay changes its stability while a Hopf 

bifurcation occurs. The bifurcating periodic solution is asymptotically stable by using the 

center manifold theorem and the normal form method. The existence of the bifurcation 

periodic solutions for sufficiently large delay has been shown by numerical simulations. Our 

investigation shows that the oscillating modes in system (2.1) largely depend on the time 

delay. 
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