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Abstract 

The distributed fusion filtering problem is studied for multi-rate sampling stochastic 

singular linear systems with multiple sensors and stochastic multiplicative noises. The system 

is described at the highest sampling rate and different sensors may have different lower 

sampling rates. The white noise in measurement matrix is introduced to describe the 

stochastic disturbance. Firstly, based on decomposition in canonical form, the original 

singular system is transformed into fast and slow two subsystems. For the two reduced-order 

subsystems, the local filters (LFs) are given based on the “dummy” random variables. The 

cross-covariance matrices between any two local filtering errors are derived. Further, the 

distributed fusion filter weighted by matrices (FFWM) is obtained for the original singular 

system based on the well-known fusion algorithm in the linear minimum variance sense. 

Simulation example verifies the correctness and feasibility of the proposed algorithm. 
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1. Introduction 

In recent years, the information fusion filtering problem for systems with multiple 

sensors has gained lots of attention due to the widely applications such as target 

tracking, single processing and robot navigation [1].  

When the stochastic system is measured by multiple sensors, there are two 

approaches to process the multiple measurements from different sensors. One is the 

centralized filter, the other is distributed fusion filter [2]. The centralized filter can give 

the global optimal estimation. However, it can result in high computational cost due to 

the high dimension augmented measurement. Recently, many researchers are focus on 

the distributed filter since it is easily for fault detection and isolation. There are many 

popular distributed fusion algorithms such as federated square-root filter [3], maximum 

likelihood fusion algorithm [4] and weighting fusion algorithms in the linear minimum 

variance sense [5]. However, the above algorithms are only suitable for single rate 

systems.  

For multi-rate systems, the first important study goes back to the switch 

decomposition technique proposed by Kranc [6]. Generally, there are two methods for 

the state estimation problem for multi-rate systems. One is based on multiscale system 

theory and the other is based on Kalman filtering theory. On the basis of multiscale 

system theory, many famous fusion strategies are proposed for multirate systems with 
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the sampling rate ratio being one or positive integer power to two. However, the state 

estimators are very complex and high computational burden. On the basis of Kalman 

filtering theory, many useful filtering strategies are proposed such as optimal signal 

reconstruction method [7], asynchronous centralized fusion algorithm [8], sequential 

filtering algorithm [9], and left synchronously lifting technology [10]. But, the 

computational cost of the above filtering strategies is high since they are given by 

state/measurement augmentation. In order to avoid the state augmentation, the multi-

rate fusion problem is transformed into an equivalent single rate fusion problem.  For 

non-uniform sampling systems, a distributed fusion filter is given [11], for uniform 

sampling systems, the corresponding distributed fusion filters are also given in [12-13]. 

However, the cross-covariance matrices are needed to obtain the fusion weights. 

Furthermore, the multi-rate fusion filters for systems with network constrains are 

studied in [14-16]. However, the state/measurement augmentation is not avoided. 

In a recent study [17], by introducing a group of “dummy” random variables with 

Bernoulli distribution, the multi-rate fusion problem is transformed into an equivalent 

single rate fusion problem. The FFWM with smaller computational burden is proposed. 

However, the present fusion filter is only suitable for normal systems not for singular 

systems. Further, the parameter disturbance is not considered. 

In this article, we study the filtering problem for multi-rate multi-sensor singular 

systems with parameter disturbance. Similar [17], the original multi-rate system is 

transformed into a single rate system with stochastic parameter by introducing random 

variables with Bernoulli distribution. Firstly, the LFs are proposed by projection theory. 

Then, the well-known weighting fusion algorithm by matrices is used to fuse all the LFs. 

The proposed LFs can reduce the computational cost since the state augmentation is 

avoided. Moreover, the proposed FFWM can give better performance than any LFs. 

 

2. Problem Formulation  

Consider the following linear discrete-time stochastic multi-rate singular systems measured 

by Q sensors 

( ) ( ) ( )A x tb b B x tb C w tb                                                      (1) 

( ) ( ( ) ) ( ) ( )
r r r r r r r r r

z k b D k b D x k b v k b    , {1, , }r Q                  (2) 

where ( )
n

x tb  is the state vector at tb time instant, ( ) r
n

r r
z k b  , {1, , }r Q are the 

measured outputs at 
r

k b  time instant where t denotes the t th state updating point and 

k denotes the k th measurement sampling point. A , B , C , 
r

D  and 
r

D {1, , }r Q are known 

constant matrices. ( )
q

w tb   and ( ) r
n

r r
v k b  , {1, , }r Q  are white noises. The state 

( )x tb is updated at the highest rate with a period b and the r th sensor measurement 

( ) r
n

r r
z k b  is sampled at a lower rate with a period 

r r
b c b  where 

r
c  is a positive integer. 

Multiplicative noises ( )
r r

kb are scalar white that are introduced to describe the structured 

perturbation in measurement matrices. They are of zero-mean with variance matrices 
r

R
 . 

Also, zero mean of ( )
r r

kb  means that parameter perturbations in both directions are equally 

likely. We assumed that ( )
r r

kb  are mutually uncorrelated and are independent of ( )
r

w kb  and 

( )
r r

v kb  , {1, , }r Q .  

Assumption 1  A is a singular square matrix, i.e., 
0

ran k ( )A n n  . 
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Assumption 2   System (1) is regular, i.e., d et( ) 0sA B  , s is an arbitrary complex 

variable. 

Assumption 3  ( )w tb and ( )
r r

v kb  are correlated white noises with zero means and variance 

matrices w
R , v

r
R and cross-covariance matrices are T

E [ ( ) ( ) ]
r r r r

w k b v k b S , T
E [ ( ) ( )]

r r l l
v k b v k b   

v

r l
R , , {1, , }r l Q , respectively. 

Assumption 4  The initial state vector (0 )x  is uncorrelated with ( )w tb  and ( )
r r

v kb , and 

satisfies E { (0 )} =x   and T
E { ( (0 ) )( (0 ) ) } =x x    . 

Our objective is to find the FFWM ˆ ( | )
o

x tb tb  at the highest rate based on the 

measurement information ( ( ), ( ), , (0 ))
r r r r r r

z kb z kb b z , {1, , }r Q .  

    From Assumptions 1-2, there exist nonsingular matrices M  and N  [18], such that  
(1 )

( 2 )

0

0

A
M A N

A

 
  
 

, 
( 1 )

( 2 ) ( 3 )

0B
M B N

B B

 
  
 

, 

 
(1 )

( 2 )

C
M C

C

 
  
 

, ( 1 ) ( 2 )

r r r
D N D D 

 
,  (1 ) ( 2 )

r r r
D N D D 

 
                         (3) 

where (1)
A is a nonsingular lower-triangular matrix with the dimension (1 ) (1 )

n n , (1 )
B is a 

quasi lower-triangular matrix with the dimension (1 ) (1 )
n n , ( 3 )

B is a nonsingular lower-

triangular matrix with the dimension ( 2 ) ( 2 )
n n . By introducing the transformation 

(1 ) T ( 2 ) T T
( ) [ ( ) , ( ) ]x tb N x tb x tb , where 

(1 ) ( 2 )
(1) ( 2 )

( ) , ( )
n n

x tb R x tb R  , then systems (1) and (2) can 

be transformed into the following systems 
(1 ) (1 )

(1 )

( ) ( ) ( )

( ) ( ( ) ) ( ) ( )
r r r r r r r r r

x tb b A x tb B w tb

z k b D k b D x k b v k b

   


  

                                   (4) 

        ( 2 ) (1 )
( ) ( ) ( )x tb U x tb R w tb                                                 (5) 

where (1 ) 1 (1 )
( )A A B


 , (1 ) 1 (1 )

( )B A C


 , (1 ) ( 2 )

r r r
D D D U  , ( 1 ) ( 2 )

r r r
D D D U  , 

( 3 ) 1 ( 2 ) (1 ) 1 (1 ) ( 3 ) 1 ( 2 )
( ) ( ) ( )U B A A B B B

  
  , ( ) ( ( ) ) ( ) ( )

r r r r r r r r r
v k b T k b T w k b v k b   ,  ( 2 )

r r
T D R ,  

( 2 )

r r
T D R , ( 3 ) 1 ( 2 ) ( 1 ) 1 ( 1 ) ( 3 ) 1 ( 2 )

( ) ( ) ( )R B A A C B C
  

  .  

Also, we have the following statistical property 

       T T
E [ ( ) ( ) ]

w

r r r r r r
w k b v k b R T S S   ,  

T T T T T
E [ ( ) ( )]

w v w v

r r r r r r r r r r r r r r r
v kb v kb T R T T S S T R R T R T R


      ,  

T T T T
E [ ( ) ( )]

w v v

r r l l r l r l r l r l r l
v k b v k b T R T T S S T R R                              (6) 

Now, system (4) is transformed into the normal system with multiple sampling rates, 

multiple sensors and multiplicative noises. In the following section, we shall derive the 

distributed FFWM based on the weighting fusion algorithm in the linear minimum 

variance sense.  

 

3. Distributed FFWM 

Firstly, we transform the multi-rate fusion estimation problem into a single rate fusion 

estimation problem. Similar [17], we introduce white Bernoulli distributed variables ( )
r

tb  

with 

1,          
( )

0 ,             e ls e          

r

r

tb k b
tb


 


 

Based on ( )
r

tb , we can define the following variables 
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( ) ,     ( ) 1
( )

0 ,              e ls e          

r r r

r

z k b tb
y tb

 
 


  , 
( ) ,     ( ) 1

( )
0 ,              e ls e          

r r r

r

v k b tb
v tb

 
 


, 
( ) ,     ( ) 1

( )
0 ,              e ls e          

r r r

r

k b tb
tb

 



 


, 

( ) ( )
r r r

F tb tb D , ( ) ( )
r r r

F tb tb D                                             (7) 

 From the above definition, we see that ( ) 1
r

tb   denotes ( ) ( )
r r

y tb z tb and ( ) 0
r

tb   

denotes ( ) 0
r

y tb  . Then system (4) can be transformed into the following single rate multi-

sensor system with multiplicative noise: 
(1 ) (1 )

( ) ( ) ( )x tb b A x tb B w tb                                               (8) 

(1 )
( ) ( ( ) ( ) ( )) ( ) ( )

r r r r r
y tb F tb tb F tb x tb v tb                                     (9) 

Next, we shall give the LFs (1 )
ˆ ( | )

r
x tb tb based on the random variables 

( ( ), ( ), , (0 ))
r r r

tb tb b    and measurements ( ( ), ( ) , (0 ))
r r r

y tb y tb b y , {1, , }r Q . 

 

3.1. Local filter 

Observe that systems (8) and (9) are transformed into the single rate systems. In the 

following, we will give the LFs (1 )
ˆ ( | )

r
x tb tb  and the corresponding estimation error variance 

matrices (1 )
( | )

r
P tb tb b  for the r th sensor subsystem by applying the classical Kalman filter. 

Theorem 1
  
Under Assumptions 1-4, the LFs for systems  (8) and (9) are computed by  

(1 ) (1 )
ˆ ˆ( | ) ( | ) ( ) ( ) ( )

r r r r r
x tb tb x tb tb b tb K tb tb                                             (10) 

(1 ) (1 )
ˆ ˆ( | ) ( | ) ( ) ( ) ( )

r r r r r
x tb b tb A x tb tb b tb L tb tb                                         (11) 

(1 )
ˆ( ) ( ) ( ) ( | )

r r r r
tb y tb F tb x tb tb b                                                        (12) 

(1) T 1
( ) ( | ) ( ) ( )

r
r r r

K tb P tb tb b F tb Q tb



                                                   (13) 

(1) T 1
( ) ( ( | ) ( ) ) ( )

r
r r r r

L tb A P tb tb b F tb B S Q tb



                                                (14) 

(1 ) T (1 ) T
( ) ( ) ( | ) ( ) ( ) ( ) ( )

r

v

r r r r r r r
Q tb F tb P tb tb b F tb R R F tb X tb F tb




                               (15) 

(1 ) (1 ) T T
( ) ( )

w
X tb b A X tb A B R B                                                    (16) 

(1) (1) T
( | ) ( | ) ( ) ( ) ( ) ( )

r
r r r r r

P tb tb P tb tb b tb K tb Q tb K tb


                             (17) 

(1 ) (1 )
( | ) ( ( ) ( ) ( )) ( | )

r r r r r
P tb b tb A tb L tb F tb P tb tb b     

T
( ( ) ( ) )

r r r
A tb L tb F 

T

T
[ ( ) ( ) ] [ ( ) ( ) ]

w

r

r r r rv

r r

R S
B tb L tb B tb L tb

S R
 

 
   

 

               (18) 

where ( )
r

tb is the innovation sequence with variance ( )
r

Q tb


, ( )
r

K tb is the filtering gain, 

( )
r

L tb is the one-step prediction gain, (1 )
( )X tb  is the state second-order moment matrix, 

(1)
( | )

r
P tb tb is the filtering error variance matrix, (1 )

( | )
r

P tb tb b is the one-step prediction error 

variance matrix. The initial values are (1 )
ˆ (0 | )

r
x b   , (1 )

1
( 0 )

r
X   and (1 )

1
( 0 | )

r
P b    where 

1
 is the first (1 ) (1 )

n n block of 1 T 1 T
( ) ( )N N  

 
 . 

Proof: This proof is analogous to [17]. 

Next, we shall derive ( 2 )
ˆ ( | )

r
x tb tb  based on (1 )

ˆ ( | )
r

x tb tb  and ( ( ), ( ), , (0 ))
r r r

tb tb b   . 

Theorem 2. Under Assumptions 1-4, the LFs for system  (5) are computed by 
( 2 ) (1 )

ˆ ˆ ˆ( | ) ( | ) ( | )
r r r

x tb tb U x tb tb R w tb tb                                              (19) 
1

ˆ ( | ) ( ) ( ) ( )
r

r r r r
w tb tb tb S Q tb tb


 


                                                 (20) 

( 2 ) (1 ) T T

T
( | ) ( ) ( | ) ( ) ( ) ( )

w

r

r r r r r rv

r r

R S
P tb tb G tb P tb tb b G tb H tb H tb

S R

 
    

 
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1 (1 ) T 1 T
( ) ( ( ) ( )) ( ) ( ) ( )( ( ) ( ))

r r
r r r r r r r r

tb R U K tb R S Q tb F tb X tb F tb U K tb R S Q tb


 


 
            (21) 

where 1
( ) ( )( ( ) ( )) ( )

r
r r r r r

G tb U tb U K tb R S Q tb F tb





   , 1
( ) [ ( )( ( ) ( ))]

r
r r r r

H tb R tb U K tb R S Q tb





   , 

ˆ ( | )
r

w t b t b is the white noise filter, ( 2 )
( | )

r
P tb tb is  the filtering error variance matrix for 

( 2 )
( )x tb .  

Proof: Taking projection of both sides of (19) onto the linear space ( ( ), , ( ))
r r

L y tb y b , 

we have (19). The white noise filter ˆ ( | )
r

w tb tb is obtained by applying the projection theory [2] 
T 1

ˆ ˆ( | ) ( | ) E[ ( ) ( )] ( ) ( )
r

r r r r
w tb tb w tb tb b w tb tb Q tb tb


 


                           (22) 

where the white noise one-step predictor ˆ ( | )
r

w tb tb b  is zero vector. Substituting (9) into (12) 

and using the definition of ( )
r

tb , the innovation sequences can be rewritten as  

(1 ) (1 )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( | )

r r r r r r r
tb tb v tb tb F tb x tb F tb x tb tb b                           (23) 

From (1 )
( ) ( )w tb x tb and (1 )

ˆ( ) ( | )
r

w tb x tb tb b  , we have 
T T

E [ ( ) ( )] ( ) E [ ( ) ( )] ( )
r r r r r

w tb tb tb w tb v tb tb S                                   (24) 

Substituting  (24) into (22), the (20) is obtained. 

    From (5) and (19), we have the filtering error equation for state ( 2 )
( )x tb   

( 2 ) (1 ) (1 )
ˆ ˆ( | ) ( ( ) ( | ) ) ( ( ) ( | ) )

r r r r
x tb tb U x tb x tb tb R w tb w tb tb                        (25) 

Substituting (10) and (20) into (25), and using 2
( ( ) ) ( )

r r
tb tb  , (25) can be rewritten as  

( 2 ) (1) 1
( | ) ( | ) ( ) ( )( ( ) ( )) ( )

r
r r r r r r

x tb tb U x tb tb b R w tb tb U K tb R S Q tb tb


 


                 (26) 

Substituting (23) into(26), the filtering error can be further rewritten as  
( 2 ) (1 ) T T T

( | ) ( ) ( | ) ( ) [ ( ) ( ) ]
r r r r r

x tb tb G tb x tb tb b H tb w tb v tb    

1 (1 )
( ) ( )( ( ) ( )) ( ) ( )

r
r r r r r

tb tb U K tb R S Q tb F tb x tb


 


                                (27) 

where ( )
r

G tb and ( )
r

H tb are defined as above. Substituting (27) into ( 2 )
( | )

r
P tb tb   

( 2 ) ( 2 ) T
E [ ( | ) ( | ) ]

r r
x tb tb x tb tb   and using E[ ( ) ( )] 0

r r
tb tb   , we have (21).  

 

3.2. Fusion filter 

Next, we will derive the cross-covariance matrices between any two LFs for the two 

reduced-order subsystems to obtain the fusion weights. 

Theorem 3.  For reduced-order subsystems (8)-(9) and subsystem (5), the filtering error 

cross-covariance matrices between the r th and the l th local filtering errors are computed by 
(1 ) (1 ) (1 ) T T

( | ) ( | ) ( ) ( | ) ( ) ( )
r l r l l r l l l

P tb tb P tb tb b tb P tb tb b F tb K tb     
(1) T

( ) ( ) ( ) ( | ) ( ) ( ) ( ) ( ) ( )
rl

r r r rl r l r l
tb K tb F tb P tb tb b tb tb K tb Q tb K tb


                      (28) 

(1 ) (1 ) T T
( | ) ( | )

w

r l r l
P tb b tb A P tb tb b A B R B   

(1 ) T T (1 ) T
( ) ( | ) ( ) ( ) ( ) ( ) ( ) ( | )

l r l l l r r r r l
tb A P tb tb b F tb L tb tb L tb F tb P tb tb b A      

  (1 ) T T
( ) ( ) ( ) ( ) ( | ) ( ) ( )

r l r r r l l l
tb tb L tb F tb P tb tb b F tb L tb    

T T
( ) ( ) ( ) ( )

r r r l l l
tb L tb S B tb B S L tb  

T
( ) ( ) ( ) ( )

v

r l r r l l
tb tb L tb R L tb                          (29) 

 (1) T
( ) ( ) ( | ) ( )

rl

v

r rl l r l
Q tb F tb P tb tb b F tb R


                                          (30) 

( 2 ) (1 ) T T

T
( | ) ( ) ( | ) ( ) ( ) ( )

w

l

r l r r l l r lv

r r l

R S
P tb tb G tb P tb tb b G tb H tb H tb

S R

 
    

 

                (31) 

(1 )

(12 ) (1) T
( | ) ( ( ) ( ) ( )) ( | ) ( )

rl r r r rl ln
P tb tb I tb K tb F tb P tb tb b G tb  

T T
( ) ( ) [ ] ( )

v

r r r r l l
tb K tb S R H tb   (32) 
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where ( )
r l

Q tb


is the innovation variance cross-covariance matrices. The initial values are 

(1 )

1
( 0 | )

r l
P b   . 

Proof: From [17], we have (28)-(30). Substituting (27) into ( 2 ) ( 2 ) ( 2 ) T
( | ) E [ ( | ) ( | ) ]

r l r l
P tb tb x tb tb x tb tb , 

we have (31). Subtracting (10) from (8), we have the filtering error equation of state 
(1 )

( | )x tb tb   

(1 )

(1) (1)
( | ) ( ( ) ( ) ( )) ( | )

r r r r rn
x tb tb I tb K tb F tb x tb tb b    

(1 )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

r r r r r r r
tb K tb v tb tb tb K tb F tb x tb                             (33) 

Substituting (33) and (27) into (1 2 ) (1 ) ( 2 ) T
( | ) E [ ( | ) ( | ) ]

r l r l
P tb tb x tb tb x tb tb , we have(32). 

Next, we shall give the following optimal FFWMs ( )
ˆ ( | )

q

o
x tb tb , {1, 2}q   by  using LFs and 

corresponding filtering error variance matrices and cross-covariance matrices 
( ) ( ) ( ) T ( ) 1

ˆ ( | ) ( | ) ( )
q q q q

o o
x tb tb P tb tb tb 




( ) T ( ) T ( ) T T

1 2
ˆ ˆ ˆ[ ( | ) , ( | ) , , ( | )] , {1, 2}

q q q

Q
x tb tb x tb tb x tb tb q      (34) 

where 
( ) ( )

( ) T
[ , , ]q q

q

n n
I I  are constant matrices with the dimensions ( ) ( )q q

n Q n . 

( ) ( )

( ) ( )
( ) ( ( | ) ) q q

q q

r l n Q n Q
tb P tb tb


 , , {1, , }r l Q are the matrices with the dimensions ( ) ( )q q

n Q n Q . 

( )
( | )

q

o
P tb tb , {1, 2}q  are the corresponding fusion filtering error variance and computed by  

( ) ( ) T ( ) 1 ( ) 1
( | ) ( ( ) )

q q q q

o
P tb tb tb  

 
   ,    {1, 2}q                                 (35) 

where (1 )
( | )

r l
P tb tb and ( 2 )

( | )
r l

P tb tb are given by Theorems 1-3, Further we have 
( ) ( )

( | ) ( | )
q q

o r
P tb tb P tb tb , {1, , }r Q , {1, 2}q  . 

Theorem 4 For the original multi-rate singular system (1)-(3), we have the following 

FFWM  
(1 ) T ( 2 ) T T

ˆ ˆ ˆ( | ) [ ( | ) ( | ) ]
o o o

x tb tb N x tb tb x tb tb                                             (36) 

The corresponding fusion filtering error variance matrix is computed by  
(1 ) (1 2 )

T

( 2 1 ) ( 2 )

( | ) ( | )
( | )

( | ) ( | )

o o

o

o o

P tb tb P tb tb
P tb tb N N

P tb tb P tb tb

 
  

 

                                       (37) 

where (1 2 )
( | )

o
P tb tb  is the cross-covariance matrix between the two reduced order subsystems 

and is computed by  
(1 2 ) (1 ) (1 ) T (1 ) 1 (1 2 ) 1 ( 2 ) 1 ( 2 ) ( 2 )

( | ) ( | ) ( ) ( ) ( ) ( | )
o o o

P tb tb P tb tb tb tb tb P tb tb    
  

            (38) 

where ( 1 ) ( 2 )

(1 2 ) (1 2 )
( ) ( ( | ) )

r l n Q n Q
tb P tb tb


 , ( 2 1 ) (1 2 ) T

( | ) ( | )
o o

P tb tb P tb tb . (1 )
( | )

o
P tb tb and ( 2 )

( | )
o

P tb tb is 

computed by (35), (1 2 )
( | )

r l
P tb tb  is given by Theorem 3.  

 

4. Simulation results 

Consider the multi-rate system (1)-(2) measured by two sensors, where
4

M N I  ，

(1 )
2 .1 3 0

1 0 .5
A

 
  
 

, 
( 2 )

1 0 .5

0 1
A

 
  

 

, 
(1 )

1 0 .2

0 .5 0
B

 
  

 

, 
( 2 )

1 0 .5

0 1
B

 
  

 

,
( 3 )

0 .5 0

1 2
B

 
  

 

, 

(1 )
0 .5 0

,
0 0 .8

C
 

  
 

( 2 )
0 .8 0

0 0 .6
C

 
  

 

, 
(1 )

1

1 0 .5

0 1
D

 
  
 

, 
( 2 )

1

1 0

0 1
D

 
  
 

, 
(1 )

2

1 0
,

0 0 .8
D

 
  
 

 
( 2 )

2

0 .5 1

1 0 .6
D

 
  
 

, 

(1 )

1

0 .1 0

0 0 .1
D

 
  
 

, 
( 2 )

1

0 .1 0

0 0 .2
D

 
  
 

, 
(1 )

2

0 .0 5 0
,

0 0 .0 8
D

 
  
 

 
( 2 )

2

0 0 .1

0 .1 0
D

 
  
 

. The system noise ( )w tb and 

observation noises ( )
r r

v kb , 
r r

b c b , 1, 2r   are white noises with mean-zero, variances w
R , 
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v

r
R . Our aim is to find the distributed optimal FFWM ˆ ( | )

o
x tb tb . In simulation, we set 

1
2c  , 

2
3c  , 

2

w
R I , 

1 2
4

v
R I , 

2 2
2

v
R I ,  (1 ) T

(0 ) [0 0 ]x  and 
0 1 2

0 .1P I .  

 

 

Figure 1. Comparison Curves of MSEs of FFWM and All LFs 

The comparison curves of the mean square error (MSE) of the FFWM and all LFs by 200 

times Monte Carlo tests are given in Figure 1. From Figure 1, we see that the proposed 

FFWM has the higher accuracy than any LFs.  

 

5. Conclusion 

In this paper a multi-rate multi-sensor distributed information fusion filtering problem for 

linear stochastic singular system with measurement multiplicative noise is studied. The LFs 

and corresponding filtering error variance matrices for the two reduced-order 

subsystems are derived. Furthermore, the FFWM for the original multi -rate stochastic 

singular system is obtained. Simulation results show better performance than any LFs. 
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