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Abstract 

In order to provide a scientific decisions for prospect new oil formation and reduce 

production costs, this paper proposed reservoir identification model based on Smap-ED. 

Using the actual seismic attribute data as the research object, the principles are analyzed 

to explore the reservoir recognition model , Through the experimental analysis of model 

of effectiveness evaluation indexes , the five models of applicability and effectiveness was 

comparative study from the relative index, external index and running time. The 

experimental results show model based on Smap-ED of seismic attribute data clustering 

effect is better than model based on S-Map and the running time of algorithm close to 

model based on SOM, this model can provide more effective support for scientific 

decision-making. 
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1. Introduction 

Oil deposit exploration industry is a industry that have enormous data information[1], 

the research on the dispose of seismic attribute data is closely related to the requirement 

and the evolution of oil exploration and development, so we need to use the subtle 

reservoir description, discriminatory treatment, classified implementation, and we can 

unearth the potential of oil well specifically, exploit each oil well scientifically and 

reasonably, then can achieve the optimization of social and economic benefit [2]. Cluster 

analysis is a effective data mining method that can achieve distinguishing the geological 

categories. 

SOM form topological mapping from the input layer to output layer, now it has 

achieved a great success in many fields [3]. However, this algorithm is still essentially 

existing the following deficiencies [4]: A density model is not defined in data space; the 

self-organizing feature map training process is not working by optimizing the objective 

function, learning training process cannot ensure convergence. 

GTM model clustering effect for seismic attribute data is better than SOM, but the 

running time of this algorithm costs longer than SOM. GTM-ED model clustering effect 

is slightly better than the original GTM model, and the running time of algorithm is 

within the acceptable range 

For seismic attribute data, S-map can get a better clustering effect, and the running 

time of the algorithm is close to SOM, so it has realized the high efficiency and high 

quality of clustering.  
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2. Methodology 

 

Figure 1. Smap - ED Algorithm Flow 
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It is similar to GTM - ED model, when Smap -ED decides divide data into groups 

in the end, it classifies the data by the value of 
t

i
 , at the moment you can choose 

two of the largest activated value for comparison, if this difference is within a certain 

range, data is marked but not classified. After the classification of all datas is completed, 

according to the center of each group and the group numbers that has two of the largest 

activated value, then reclassify it. The algorithm process is shown in Figure 1. 

The code is that the Smap - ED model is marked the data which cannot be 

classified, and other data is classified and determined the type. In the code input 

parameter data means training data set, N means the amount of training data set,  K 

means number of clusters, fi_w means Mapping parameter matrix after training, td 

means threshold of the biggest difference of the two probabilities, output result 

typeNo means category number of each data. 

 

function typeNo = index_of_closest(data, N, K,fi_w, td) 

typeNo = zeros(N,1); 

count=0; 

for i = 1:N 

     lamda_cvector = exp( fi_w * x(i,:)' ); 

     max_p = max (max(lamda_cvector)); % maximum probability 

     [r_1,c_1] = find(lamda_cvector== max_p);% The location of maximum probability 

     r=r_1(1);c=c_1(1); 

     lamda_cvector(r,c)=0; 

     max2_p=max(max(lamda_cvector));% The second large probability 

     [r_2,c_2] = find(lamda_cvector == max2_p);% Position 

     r2=r_2(1);c2=c_2(1); 

     max_12=max_p-max2_p; 

     if max_12>td % The difference of two large probability > td，then normal distribute 

category number normally 

 typeNo(i) = (c-1) *sqrt(K) + r; 

     else  

        count=count+1; 

        typeNo(i)=0; 

        x1=(c-1) *sqrt(K) + r; 

        x2=(c2-1) *sqrt(K) + r2; 

% Record corresponding category numbers which the number of inputs have two of the 

largest probability value 

 

        cluster_num(count,:)=[x1 x2];  

    end  

end 

meanCenter= zeros(K,size(data,2)); 

for i = 1:K% Circular clustering number 

   rnum = find(typeNo == i); 

   for ii =1:size(rnum,1) 

      meanCenter(i,:)=meanCenter(i,:)+data(rnum(ii),:); 

   end 

   meanCenter(i,:)=meanCenter(i,:)./size(rnum,1); 

end 

undefinedNode=find(typeNo == 0); % take out the marked and unclassified data 

for i=1:size(undefinedNode,1)  mark1=sum( (data(undefinedNode(i),:)-

meanCenter(cluster_num(i,1),:)).^2 );  mark2=sum( (data(undefinedNode(i),:)-

meanCenter(cluster_num(i,2),:)).^2 ); 

     if(mark1<mark2) 

         typeNo(undefinedNode(i))=cluster_num(i,1); 
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     else 

         typeNo(undefinedNode(i))=cluster_num(i,2); 

     end 

end 

 

3. Experiment 
 

3.1. The Best Cluster Number for Seismic Attribute Data Set 

According to the general situation, select value to input from different model 

parameter which cluster number is between 4 to 9. According to the running result , 

using the evaluation indexes algorithm calculates the evaluation results are shown in 

Table 1 below, in the Table parameter is set successively: number of clusters, 

maximum cycle times, initial value of learning rate, width of primary 

function(output unit connection weights gaussian function standard deviation), 

initial value of Gaussian function mapping variance reciprocal, maximum 

differential activation value threshold. 

Table 1. Smap - ED model Results of Relative Index Table 

number 

of 

clusters 

Parameter setting Dunn CH(E+05) I DB
-1

 

4 

4,300,0.8,0.1,1.5,0.2 0.935757 2.350481 0.51501 0.895121 

4,300,0.8,0.01,1.5,0.2 0.933253 2.245722 0.52003 0.803822 

4,300,0.5,0.1,1.5,0.2 0.924541 2.295728 0.52020 0.890331 

4,300,0.5,0.01,1.5,0.2 0.941348 2.405891 0.495022 0.810501 

Mean 0.933725 2.3244555 0.5125655 0.849944 

5 

5,300,0.8,0.1,1.5,0.2 0.952891 2.315969 0.49287 0.858979 

5,300,0.8,0.01,1.5,0.2 0.951123 2.343766 0.524691 0.897799 

5,300,0.5,0.1,1.5,0.2 0.946221 2.333161 0.513223 0.881232 

5,300,0.5,0.01,1.5,0.2 0.951021 2.235769 0.528322 0.894231 

Mean 0.950314 2.3071663 0.5147765 0.88306 

6 

6,300,0.8,0.1,1.5,0.2 0.625667 1.997546 0.250511 0.756489 

6,300,0.8,0.01,1.5,0.2 0.656755 2.078434 0.25076 0.850534 

6,300,0.5,0.1,1.5,0.2 0.634656 1.998754 0.250411 0.838676 

6,300,0.5,0.01,1.5,0.2 0.624423 2.039837 0.250283 0.787963 

Mean 0.635375 2.0286428 0.2504913 0.808416 

7 

7,300,0.8,0.1,1.5,0.2 0.720432 1.768509 0.218084 0.724503 

7,300,0.8,0.01,1.5,0.2 0.402451 1.759184 0.13433 0.770481 

7,300,0.5,0.1,1.5,0.2 0.609541 1.749186 0.11343 0.809362 

7,300,0.5,0.01,1.5,0.2 0.695430 1.798490 0.100249 0.763302 

Mean 0.606964 1.7688423 0.1415233 0.766912 

8 

8,300,0.8,0.1,1.5,0.2 0.511222 1.748996 0.110852 0.756053 

8,300,0.8,0.01,1.5,0.2 0.529436 1.626572 0.093575 0.768729 

8,300,0.5,0.1,1.5,0.2 0.523121 1.726572 0.103675 0.785059 

8,300,0.5,0.01,1.5,0.2 0.532213 1.591642 0.086117 0.747257 

Mean 0.523998 1.6734455 0.0985548 0.764275 

9 

9,300,0.8,0.1,1.5,0.2 0.569028 1.514713 0.10739 0.721247 

9,300,0.8,0.01,1.5,0.2 0.562113 1.52321 0.10739 0.762321 

9,300,0.5,0.1,1.5,0.2 0.558122 1.524712 0.117221 0.752417 

9,300,0.5,0.01,1.5,0.2 0.556241 1.403266 0.112818 0.831242 

Mean 0.561376 1.4914753 0.1112048 0.766807 
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According to Table 1, each number of clusters correspondingly to calculate and 

get indexes values, according to the formula 2-12 to standardize, and using the 

WSVF comprehensive evaluation results, the results are shown in the Table 2: 

Table 2. Sorting Table of Smap - ED Model Results Evaluation 

number of 

clusters 
Dunn CH(E+05) I DB

-1
 WSVF 

4 0.96108755 1 0.994687928 0.721208142 0.919246 

5 1 0.979244106 1 1 0.994811 

6 0.261254562 0.644874233 0.365037387 0.371601813 0.410692 

7 0.194611509 0.332981484 0.103234634 0.022203842 0.163258 

8 0 0.21845686 0 0 0.054614 

9 0.087676747 0 0.030392453 0.021317793 0.034847 

 

According to the WSVF value calculated in Table 2, the results are shown in 

Figure 2 below. 

 

 

Figure 2. The Values of Smap - ED Clustering Index WSVF 

The Figure 2 shows that when the number of clusters is 5, WSVF value is higher, 

the clustering results of this model for seismic attribute data is better. So, 

determining the Smap - ED reservoir identification model algorithm's best cluster 

results for the data set is 5. By observing the visual result Figure which gets from 

model that inputs different clustering number , we can also observe which is better 

roughly, by comparing the Figure 3, Figure 4 and Figure 5, according to the known 

geological information, it can be seen in the case of clustering number is 5 model, 

clustering effect is better. Through the visual model clustering results graph, we can 

be more intuitive and easily to identify the unknown reservoir. 
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Figure 3. The Result of 5 Kinds of Smap-ED Model Result 

 

Figure 4. The Result of 7 Kinds of Smap-ED Model Result 

 

Figure 5. The Result of 9 Kinds of Smap-ED Model Result 
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3.2. An External Evaluation for The Rationality of the Model Results 

According to the 5% predetermined  known label information, we can get the 

calculation results of external evaluation index Rand and F - Measure by model 

results, as shown in Table 3. 

Table 3. Smap - ED Model Results of External Index Table 

Parameters Rand F-Measure 

5,300,0.8,0.01,1.5,0.2 0.881122 0.125472 

 

4. Comparison  

The results from the models including Smap-ED, S-Map, SOM, GTM and GTM-ED 

are compared and analyzed. 

 

4.1. Comparative Analysis of Relative Index 

Relative indexes evaluate clustering results by the degree of separation in different 

classes and the tightness in a class, by comparing the model results of relative index, can 

reflect the result of model for data clustering is good or bad. Comparison results as shown 

in Figure 6. 

 

 

(a)                                                                         (b) 

  

(c)                                                                            (d) 

Figure 6. Comparison Diagram of Model Result Relative Index 
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According to the results of the relative evaluation indexes, Smap - ED model clustering 

results are better, compared with the original S - Map effect does have some 

improvement, but the improvement is not particularly outstanding. 

 

4.2. The Comparative Analysis of External Indexes 

The size of the external appraisal index directly reflects the accuracy of clustering 

results, the comparison of the two model clustering results external parameter values are 

shown in Figure 7. 

The external indexes results show that the accuracy of Smap– Ed model is better 

compared to the model S - Map. To some extent, the accuracy and rationality of this 

clustering results in the 5 models is the best. 

 

 

(a)                                                                      (b) 

Figure 7. Comparison Diagram of Model Result External Indexes 

4.3. The Comparative Analysis of Running Time 

By counting running time, we can get the comparative analysis of the running 

efficiency for the five models algorithm. The comparisons of running time are shown in 

Table 4 and Figure 8. 

Table 4. Comparison Diagram of Model Running Time 

Running 

time 
1 2 3 4 5 6 7 8 9 10 

SOM 21.51 21.52 20.91 20.96 20.77 20.58 20.52 20.41 21.08 21.11 

GTM 56.13 55.1 57.29 54.38 54.45 54.7 53.26 53.69 55.04 54.89 

GTM-

ED 
54.6 55.26 55.44 55.51 56.87 56.27 57.3 56.72 58.22 56.77 

S-Map 21.98 23.2 22.32 22.14 23.21 22.88 23.36 23.54 24.17 22.91 

Smap-

ED 
22.82 23.71 25.9 21.71 23.4 23.47 22.79 24.19 24.51 24.23 
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Figure 8. Comparison Diagram of Model Running Time 

It can be seen from the model algorithm average running time, the running time of 

running time SOM, S - Map and Smap - ED algorithm are close, all smaller than the 

running time of GTM and GTM - ED obviously, thus we can know algorithm efficiency 

comparison. 

Through the above statistical analysis of evaluation indexes, we can get the following 

conclusion: from effectiveness evaluation index, compared with SOM, GTM clustering 

effect is better, for GTM-ED model, from the index values we can see it can improve 

clustering effect. For the S-Map model, it is more successful in the application to seismic 

attribute data set, because no matter look from the result of the evaluation indexes, or 

from the running time of the algorithm, S - Map algorithm has advantages all the time. 

Due to the S - the basic steps are following SOM algorithm, but using the GTM research 

probability and expectation-maximization to update the weight vector and the parameters, 

so the algorithm can achieve the similar levels of clustering of GTM by a small amount of 

time, and in many cases the S-Map clustering effect is better than GTM, that's because the 

S–Map algorithm combines with SOM self-organizing, so it reduces the sensitivity of 

parameter selection. The Smap - ED model also have effect of certain improvement. 

 

5. Conclusion 

This paper introduces the research and application of reservoir identification model 

based on Smap - ED. First it discusses the thought of model, and describes the process 

and implementation. Then it is the experimental analysis, the relative indexes use to 

determine the model and the optimal number of clusters for seismic attributes data set, 

and make a comparative analysis from the relative index, external index and running time 

of SOM, GTM, GTM - ED, S - Map and Smap - ED, the conclusion is: the Smap - ED 

model of seismic attribute data clustering effect is slightly better than the original model S 

- Map, And the running time of the algorithm and SOM is close. While this article has 

made some achievements, but research on the application of data mining to seismic 

attribute data analysis is still in its initial stage, there are a lot of problems need further 

research. 
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