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Abstract 

This paper analyzes the revenue of a microgrid employing the lightweight vehicle-to-

grid energy trade coordinator, focusing on such parameters as seasonal rates, number of 

participating electric vehicles, stay time, and amount to sell. The heuristic method cuts 

down the vast search space for the complex optimization problem by by iteratively 

matching the time slot having the least available electricity. The analysis result, obtained 

from a real-life demand pattern, reveals that on the winter rate, 100 EVs can sell all of 

their energy, while for the 200-EV case, they can sell and double the revenue in 12 out of 

20 days. Next, on the summer rate, in which the peak rate interval is extended, the 

revenue increases by 1.5 times. At the same time, the 200-EV case sometimes brings less 

benefit than the 100-EV case for the given parameter set. As the target brokering system 

responsively finds a near-optimal solution until a certian bound, it can be further scalable 

with a module-based distributed brokering mechanism. 

 

Keywords: electric vehicle, vehicle-to-grid, revenue analysis, demand response plan, 

trade broker 

 

1. Introduction 

Along with the advent of smart grids, electric vehicles, or EVs in short, are penetrating 

into our daily lives, making even the transportation system a part of the power network 

[1]. EVs, equipped with batteries, have the potential to introduce a new energy service 

such as V2G (Vehicle-to-Grid), in which EV batteries provide electricity storage capacity 

to the grid. Here, EVs charge their batteries overnight through the cheap rate and sell back 

to the grid at a high price, earning economic profits [2]. Moreover, the electricity can 

come even from renewable energy. On the other side, namely, from the buyers’ aspect, 

they can avoid expensive peak-rate electricity from the main grid and save energy costs 

[3]. It must be mentioned that the national grid cannot fully support this V2G flow due to 

safety threat and management complexity. Instead, a microgrid such as shopping malls 

and universities having their own power systems will be vigorous players in the V2G 

community. 

Like other smart grid entities, intelligent information technologies can enrich the V2G 

application with sophisticated brokering, trade scheduling, and electricity flow control 

between EVs and the grid [4]. Such computational intelligence gets further improved 

along with the massive data processing capabilities [5]. However, according to the 

increase in the number of EVs participating in a V2G service, the complexity of those 

services will also increase. Hence, the information service must be scalable. Our previous 
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work has designed a lightweight V2G brokering service which coordinates the electricity 

trade so as to reduce the insufficiency in the microgrid side [6]. It decides when each EV 

will be connected to the microgrid and when EV electricity will be supplied to the grid, 

desirably giving a guide when each EV will arrive at the microgrid. 

For a microgrid to determine whether to employ a V2G service system, it is necessary 

to estimate how much the grid can enhance its economic profits by avoiding the 

expensive peak rate electricity based on its energy demand pattern and the potential EV 

participants [7]. The energy pricing plan is also an important factor which must be 

integrated in the estimation. In this regard, this paper presents an electricity trade 

brokering scheme between EVs and the microgrid and then analyzes the revenue from the 

EV side. As an extended version of our previous work [8], this paper gives more details 

on the brokering service scenario, trade coordination scheme, and subsequent on-off grid 

connection schedule. Then, the revenue analysis is conducted for a target microgrid, 

whose previous power consumption records are available. The experiment focuses on the 

expected revenue according to the number of EVs, the amount of energy to be sold, 

seasonal demand change, and stay time. 

This paper is organized as follows: After issuing the problem in Section 1, Section 2 

introduces related work on V2G services and resource schedules. Section 3 describes the 

system model and presents the lightweight energy trader broker. Section 4 conducts the 

revenue analysis applying a real-life energy demand according to various parameters, 

discussing the results. Finally, Section 5 summarizes and concludes this paper with a brief 

introduction of future work. 

 

2. Related Work 

[9] highlights the role of aggregators for EVs to participate in electricity markets. 

Aggregators coordinate the provision of ancillary services such as regulation and spinning 

reserves based on the formulation of a fuzzy linear program. Here, a microgrid gets 

revenues from the ancillary markets and the difference between the fixed energy charge 

and the mark energy price. In addition, to forecast electricity prices for the next day 

overcoming the inherent uncertainty, an ARIMA (Auto Regressive Integrated Moving 

Average) model is built on top of the history of hourly price changes. Next, fuzzy 

objective and constraints are defined considering the membership functions of income, 

ancillary service prices, and expected deployments. The fuzzy set-based model embraces 

the uncertainty in ancillary service prices and deployment signals for regulation up, 

regulation down, and response reserve. 

[10] presents a day-ahead energy resource scheduling scheme for smart grids, taking 

into account the distributed energy generation and V2G. The authors put the main focus 

on the effect of uncontrolled charging, smart charging, and demand response (DR) 

programs within the context of V2G applications. Specifically, trip reduce and trip shift 

DR programs are designed, while the proposed models are activated every time the 

energy price reaches a predefined value. The trip reduces program encourages users to get 

profits by voluntarily reducing their travel needs and minimum battery level requirements. 

On the contrary, the trip shift program allows the grid to shift the EV charging load by 

adjusting the traveling period of their expected trips. To solve the large mixed integer 

nonlinear combinational problem in complex resource scheduling, a PSO (Particle Swarm 

Optimization) approach is employed with integrated AC power flow. 

[11] investigates the optimal operation of distribution feeder reconfiguration (DFR) 

strategy, employing the idea of V2G to allow bi-directional power flow involving EVs. 

The authors suggest a stochastic framework based on unscented transformation to model 

EVs’ behavior, which can be considered as a mobile demand and storage in the power 

network. Here, the DFR is the process of automatically changing the network topology by 

means of relevant switch types without violating the given constraints. The objective 
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function measures operation and reliability costs, including the cost of power received 

from the upstream grid, expected customer interruption costs, power loss costs, and 

battery degradation costs brought by extra battery cycling. Moreover, the uncertainty of 

EV behavior and wind energy is modeled by means of an approximation method to 

complement the non-linear correlated transformations. 

Our research team has been designing and developing a V2G energy trade service at 

the microgrid level. The data exchange mechanism allows both parties, namely, EVs and 

a microgrid, to fix a trade set and generate a connection control schedule. Here, individual 

EVs either accept the current schedule or keep waiting for another schedule until the 

complete schedule is built [6]. An EV can defer its acceptance decision during the 

coordination process, possibly contacting with other microgrids until it meets a 

satisfactory schedule and profit guarantee. In addition, for the allocation of EVs to time 

slots according to the power demand, two scheduling schemes are designed. The first one 

is an exhaustive scheme which traverses the whole search space to find an optimal 

schedule when the number of EVs is not so large. The other one is a heuristic-based 

scheme capable of coping with a large number of EVs and this paper is built on top of this 

scheme. 

The unit scheduler runs on a microgrid and the interaction between the EV party and 

the microgrid party is shown in Figure 1. Here, multiple EVs simultaneously negotiate 

with multiple microgrid and select the best one in which an EV can receive best reward. 

As shown in the figure, each EV is charged overnight with cheaper electricity. Then, it 

wants to decide a microgrid it will sell its electricity. The EV can visit multiple microgrid 

during the daytime of the next day. If an EV fixes the microgrid to which it sells its 

electricity, it will be removed from the set of other microgrid. Hence, each EV must make 

its decision until the final deadline of each microgrid, while the unit scheduler is invoked 

each time a new request arrives, namely, a change in the EV set takes place. 

 

 

Figure 1. Interaction between 2 Parties 

3. Service Scenario 

Figure 2 illustrates the V2G energy trade scenario. The trade contract is made one-day 

advance under the control of the V2G trader broker running in the aggregator [12]. It first 

estimates the hour-by-hour electricity demand of the microgrid according to its own 

demand forecast model, which is usually built using the previous records [13]. 

Considering the electricity price, the amount of electricity it wants to buy during each slot 

is decided. Here, the price it can affordably pay is also generated. Then, the aggregator 

initiates the brokering process by announcing the request-to-bid. Each addition of an EV 

invokes the on-off control scheduler to calculate the reward each EV can receive. After 

the brokering phase, the contract is finalized [14]. On the next day, EVs will obey the 

contract by arriving at and being plugged-in to the microgrid on the reserved slot [15]. 
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During the system operation, the controller connect or disconnect the EV battery to or 

from the microgrid to allow electricity flow. If a sufficient amount of energy can be 

purchased during a slot, the microgrid cannot but use the expensive energy supplied by 

the main grid. 

In the brokering phase, each EV sends a request-to-sell record, Ri. Ri is specified by (Ei, 

Li, Di, Ai), where each element denotes earliest arrival time, latest arrival time, plug-in 

duration, and amount to sell, one by one [6]. This model conforms to the situation that an 

EV driver will go shopping while he or she can flexibly arrive during the interval from Ei 

to Li and wants to select the arrival time according to the guide of the broker. The amount 

to sell is decided by the electricity not used for driving [7]. It must be mentioned that the 

time scale is aligned with the length of a time slot, for example, 0.5 hours. The amount-to-

sell can be represented also by the number of slots for uniformity. In this case, 1 slot 

corresponds to the amount of electricity which can flow from an EV to the microgrid 

during a single slot or vice versa. Essentially, the demand is the amount of energy the 

microgrid wants to buy from EVs, and it can be denoted by the number of slots after 

ceiling to the slot boundary. Then, an EV can be aware of its time to be plugged-in and 

makes its own tour schedule [16]. 

 

 

Figure 2. V2G Energy Trade Service Architecture 

To avoid the search space expansion accompanied by the conventional exhaustive 

search, the lightweight scheduler iteratively finds and matches both the time slot having 

the smallest number of available EVs and the EV which has the least flexibility in staying 

at the microgrid. For each match, an EV is assigned to a time slot, its amount-to-sell 

decreases by one unit and also its availability interval will be modified. The availability 

interval, initially set to all feasible ranges from earliest to latest arrival time instants, will 

shrink as more slots are assigned to an EV. It is because if the EV is to be plugged-in 

during a slot, its latest arrival time and earliest depart time will be changed. This step 

iterates until all EVs are assigned, namely, every electricity is sold out, or no EV is 

available on the slots in which the microgrid wants to buy electricity. This approach can 

achieve the computation time linearly dependent on the number of EVs for the fixed 

number of slots, as the heuristic iterates at most for the number of EVs. 
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Figure 3. Operation Table 

After the completion of a trade coordination, the next-day schedule is created as a form 

of time Tables as shown in Figure 3. In this figure, 5 EVs from EV0 to EV4 are 

participating in the V2G trade. According to the schedule, EV1 must arrive at and be 

plugged-in to the microgrid before the beginning of slot 2. Then, the connection switch 

between EV1 and the microgrid will be turned on slots 2, 3, and 5, while turned off during 

slot 4. EV1 sells electricity of 3 slots and can leave the microgrid after slot 5. Here, the 

stay time of EV1 must have been longer than 4 slots. Slot 7 takes electricity from 2 EVs, 

namely, EV3 and EV4. If the demand during a slot is not met, insufficiency takes place. On 

the contrary, the electricity cannot be sold when the microgrid doesn’t need electricity 

during the slots included in the availability interval of an EV. The amount of unsold 

electricity is surplus energy. The heuristic-based method works well even when many 

EVs submit their request-to-sell messages to a single microgrid, just with a small 

accuracy loss. For more detail, refer to [6]. 

 

 

Figure 4. Data Flow 

Figure 4 illustrates the data flow of a microgrid. The left part builds a power 

consumption model to provide the next day demand forecast to the V2G energy purchase 

plan. Here, the model is necessarily built based on the past consumption data. The 

consumption history for a microgrid has been accumulated since the microgrid requested 

the data profiling service to the energy company, specifically, KEPCO (Korean Electric 

Power Corporation) in the Republic of Korea. Each record contains the amount of energy 

consumption for every 30 minutes. It is downloaded from the KEPCO web site after a 

series of authorization steps and stored in the Linux file system. If the amount of target 

data is too much, Hadoop conducts a preliminary analysis and hands over the result to 

MySQL database. Here, other data which can be usefully combined for power 

consumption modeling such as weather records and geographic information can be 

uploaded via ODBC or JDBC (Object or Java DataBase Connection). Then, the R 

statistical package retrieves the digested stream from the MySQL database and builds a 
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consumption forecast model, taking advantage of a bunch of modeling methods provided 

by various library extensions. 

 

4. Revenue Analysis 

This section analyzes the performance of the fast heuristic by applying to a real-life 

power demand scenario acquired from Jeju National University, Republic of Korea. The 

university microgrid consumes more energy when more students and faculty members 

stay, and the consumption sharply drops over the weekend. In our assumption, EVs 

participating in the V2G trade are plugged-in to the grid in the parking area. This 

microgrid wants to buy electricity from EVs especially when the overall consumption 

exceeds the flat-rate boundary contracted with the power provider company. Based on the 

consumption profile, our experiment calculates the V2G demand for every 30-minute 

interval from 10 AM to 5 PM for a given day. This duration corresponds to the period of 

price signal change, and the time slot length is also set to 30 minutes. We assume that the 

university takes the demand response rate plan offered by Korean Electric Power 

Corporation, and the per-time slot electricity rate is shown in Table 1. [17]. The revenue 

is denoted in Korean Won (KRW), and 1,100 KRW roughly corresponds to 1 USD. 

 
Hours        10.0   10.5   11.0   11.5   12.0   12.5   01.0   01.5   02.0   02.5   03.0   03.5   04.0   04.5 

Winter       108    108    164    164    164    164    108    108    108    108    108    108    164    164 

Summer    108    108    164    164    164    164    164    164    164    164    164    164    164    164 

 

There are several parameters we are interested in. First of all, the brokering scheme is 

designed for a large number of EVs, the experiment sets the number of EVs to 100, 200, 

and 300, even though in most scenarios, tens of EVs will be enough. Next, an EV will 

stay at the microgrid 3 to 8 time units and the amount to sell ranges from 2 to 7 time units. 

The arrival time distributes randomly during the operation time of the microgrid. Actually, 

the arrival time tends to concentrate on a specific interval, namely, around the beginning 

of office hours for faculty members. However, the experiment takes the random 

distribution to take into account different types of microgrids. 

Figure 5 plots the revenue according to the number of EVs participating in the V2G 

service on a specific day according to the price plan during the winter months. Here, the 

revenue depends not only on how much electricity is purchased from EVs but also when it 

is purchased. The monetary gain differs from slot to slot as shown in Table 1. The amount 

of purchased energy does not always increase according to the increase in the number of 

EVs, especially beyond 200 EVs. The performance of the lightweight brokering scheme 

may get poorer with 300 EVs. The revenue-focused lightweight scheme also shows the 

similar pattern as in the case of insufficiency-based scheduling. As shown in Figure 2, the 

microgrid buys almost every electricity in the case of 100 EVs, hence the revenue during 

the weekdays is largely constant. In the 200-EV case, the revenue is doubled in 12 days 

and almost the same in 5 days, compared with the 100-EV case. 
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Figure 5. Winter Rate 

 

Figure 6. Summer Rate 

Next, Figure 6 plots the revenue for the same month according to the power rate during 

the summer months. As the energy consumption of the same month is investigated, the 

overall curve patterns are similar to Figure 2. However, the revenue gap between the 100-

EV case and the 200-EV case gets larger by about 1.5 times, compared with the winter 

rate. It’s mainly because the peak rate interval is extended during the summer season, and 

there are more high-price time slots as shown in Table 1. Moreover, on 5 days, the 200-

EV case saves less money than the 100-EV case by up to 29.6 %. In addition, the 300-EV 

case outperforms the other two just on a single day. This anomaly indicates that it’s not 

enough to reduce the search space based on the availability of EVs on high-load slots. 

Anyway, the microgrid can expect a profit gain by energy cost reduction employing the 

V2G trade broker. 

Next, Figure 7 plots the revenue according to the average amount of electricity an EV 

wants to sell. Here, the amount is aligned to the time slot. As the connection cable 

between EVs and the microgrid is standardized, the amount of electricity flowing across 

them is linear to the time length. Specifically, 3 kwh can flow during an hour in AC 

chargers. In the experiment, we changed the average amount to sell from 1 to 5 slots, 

while making the microgrid take the winter price plan. Day-by-day profits are added up to 

yield the monthly revenue. As shown in the figure, this parameter hardly affects the 

revenue. This is because only a small fraction of electricity can be sold from an EV. 

Especially, the revenue tightly sticks to 2,000,000 KRW. The deviation from the value is 

less than 46,000 KRW and this amount is just 2.3 %. 
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Figure 7. Effect of the Amount-to-Sell 

Figure 8 shows the monthly revenue according to the number of EVs on both winter 

and summer rates. In both curves, the revenue increases almost linearly according to the 

number of EVs until 150 EVs. This result implies that the heuristic scheme finds a near-

optimal solution until this point. However, beyond 150, the revenue does not increase 

according to the number of EVs, and thus the available electricity. During the allocation 

process, a wrong EV-slot match makes subsequent placement fall to a wrong direction. As 

the linear complexity does not permit backtracking, the effect of a mismatch cannot be 

overcome. Then, the revenue even decreases in spite of better availability of electricity to 

sell. However, the responsiveness and efficiency until 150 EVs must not be overlooked. 

 

 

Figure 8. Effect of the Number of EVs 

Finally, Figure 9 traces the revenue according to the stay time for two cases of 100 and 

200 EVs, respectively, on the winter rate. The experiment fixes the stay time with the 

given value ranging from 3 to 8. A longer stay time means more options for an EV to be 

placed in a time slot. Here, the amount-to-sell distributes from 1 to (slot -1), hence the 

available amount also increases according to the increase in the stay time. In the 100-EV 

case, the revenue gets better in proportion to the stay time for the whole parameter range. 

On the contrary, the revenue is twice as much as in the 100-EV case only when the stay 

time is 3 and 4 slots. Beyond this point, more options and more electricity yet do harm to 

the performance of the trade brokering scheme. 
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Figure 9. Effect of the Stay Time 

5. Conclusions 

EVs allow a V2G service capable of shaping the energy consumption over the power 

system and avoiding a new power plant construction. Brokering the electricity trade 

between EVs and a microgrid is a very important service and requires intelligent 

computer algorithms. In this paper, we have analyzed the revenue obtained by a heuristic-

based lightweight broker based on a real-life power consumption profile. The experiment 

result indicates that the trade broker, while providing an accepTable response time, finds a 

schedule having the maximum profit largely until 150 EVs for the given parameter set. 

Even if this scheme is quite scalable for a large number of EVs, the space search without 

backtracking imposes a limitation when there are explosively large number of EVs. 

Moreover, a better availability of electricity to sell and a more options cannot contribute 

to the improvement of revenue in V2G. However, if the brokering scheme can work in 

modular mode, that is, EVs are grouped such that total number of EVs in a group is 150 at 

maximum, our broker can create a near-optimal purchase plan for a microgrid and 

connection schedule responsively. Here, a distributed cooperative mechanism is necessary 

[18]. 

As future work, we are planning to develop a big data analysis framework for the 

power consumption profile, the real-time charger status monitor, and the EV battery 

dynamics [19]. Such data streams are being accumulated in our system and expected to 

create many value-added information services. To this end, our research team has built a 

data processing framework employing Hadoop and the R statistics package. The 

integration of multiple streams from diverse smart grid entities will give us systematic 

decision-making mechanisms in newly appearing smart grid cities. 
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