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Abstract 

Most of pedestrian inertial navigation system estimates displacement based on the 

integration of inertial sensors measurements. However, due to low-cost sensors and 

pedestrian dead reckoning inherent characteristics these systems provide huge location 

estimation errors. To suppress some of these limitations we propose a pedestrian inertial 

navigation system based on low-cost sensors and on information fusion and learning 

techniques. The proposed system introduces a step characterization module that 

characterizes the step according to the activity that the pedestrian is performing. This 

module performs three characterizations: terrain, direction and length. Thus, in this work 

are presented and evaluated several machine learning approaches that perform the 

terrain characterization. The inclusion of this machine learning module led to a 

significantly better performance of the pedestrian inertial navigation system. 

 

Keywords: Pedestrian Inertial Navigation System, Indoor Location, Learning 

Algorithms, Neural Network, SVM, Information Fusion 

 

1. Introduction 

In ubiquitous systems location information is very important to provide richer, more 

productive and more rewarding user experiences. This information can be explored to 

improve life quality since emergency teams (fire-fighters, military forces [1] and medics) 

can respond more precisely if the team members location is known, tourists can have 

better recommendations [2], the elderly can be better monitored [3] and parents can be 

more relaxed with their children in shopping malls [4]. 

The major limitation of these systems is related to retrieving individual’s location, 

which nowadays is based on a GNSS (Global Navigation Satellite System), restricting the 

use of these systems to environments where GNSS signals are available. However, GNSS 

signals are not available inside buildings, in urban canyons, in the underground, 

underwater and in dense forests. Consequently location-aware applications sometimes 

cannot know the user location. Therefore, developing complementary localization 

technologies for these environments would unleash the use of many applications as 

presented above. 

There are already some proposed systems that retrieve location in indoor environments. 

However, most of these solutions require a structured environment [5-6]. Therefore, these 

systems could be a possible solution for indoor environments, but are unfeasible to be 

implemented in a dense forest or in urban canyons. To suppress structured environment 

limitations, a Pedestrian Inertial Navigation System (PINS) can be used. Typically, a 

PINS uses accelerometers, gyroscopes, among other sensors, which information is used 

by an algorithm that involves three phases: (i) step detection, (ii) step length estimation, 

(iii) and heading estimation. Thus, it continuously estimates via dead reckoning the 
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position and orientation of a pedestrian. These sensors are based on MEMS 

(Microelectromechanical systems), which are tiny and lightweight sensors, making them 

ideal to integrate into the person’s body. Unfortunately, large deviations of inertial 

sensors can affect performance, so the PINS main challenge is to correct the sensors 

deviations. An abroad overview over the current state of the art is presented in Section 2. 

In the previous works of the research team, the step detection was improved by using 

an algorithm that combines an accelerometer and force sensors placed on the pedestrian’s 

foot [7]. This approach led to better results [8] on the estimation of the pedestrian 

displacement. However, it still exists an error of 0.4% in step detection and an error of 

7.3% in distance estimation. 

Considering the works that are being developed in other INS (Inertial Navigation 

System) areas, but applied in different contexts, we have found that PINS accuracy can be 

improved using more than one IMU (Inertial Measurement Unit) placed on different 

regions of the human body, combined with information fusion and learning techniques. 

Based on the typical PINS algorithm, we have introduced another phase, step 

characterization, which characterizes the step according to past data. This characterization 

is applied to limit the typical error growing of PINSs. 

Information fusion is a multi-disciplinary research field with a wide range of potential 

applications in areas such as defense, robotics, automation and pattern recognition. 

During the past two decades, extensive research and development on multiple sensor data 

fusion has been performed for the Department of Defense of the United States of America 

[9]. This subject has been and will continue to be an ever-increasing interest field in 

research community, where it is intended to develop more advanced information fusion 

methodologies and architectures. 

In the case of PINS, the MEMS sensors have some limitations and low accuracy, 

which does not happen on more expensive sensors like the ones used on aviation and 

military applications. To reduce the sensors complexity and thereby its cost, the 

information from a set of simple and low-cost sensors can be combined. This leads to the 

creation of a less expensive system, which captures accurate and reliable information 

about the pedestrian movements. Moreover, this fusion turns the system more fault 

tolerant. 

This goal is addressed throughout the document, where the system architecture is 

presented in Section 3. In Section 4 are presented the three implemented algorithms to 

perform the terrain characterization. One is based on the DTW (Dynamic Time Warping) 

algorithm, the other on SVM (Support Vector Machines) and the third one is based on a 

neural network. In Section 5 we present and discuss the obtained results for each 

implemented method and IMU, or combination of IMUs data. Finally, in Section 6 are 

discussed the conclusions and the future work. 

 

2. Background 

A PINS tries to estimate the person location using the equations of motion through the 

acceleration information. However, a PINS working by itself cannot keep a good location 

accuracy over long periods of time. This happens because of the sensors drift and people’s 

different ways of walking.  

The approaches that will be presented consist on unassisted PINSs that have applied 

several different techniques to reduce the PINSs typical errors. One approach, to 

compensate PINS errors, suggested by Jirawimut [10] and, Lee and Mase [11], is to 

calibrate the system parameters, the step size and magnetometer bias error, using the GPS 

signal when the user is in outdoor environments. 

The gyroscope bias causes the most orientation estimation errors so a good practice is 

to calibrate the gyroscope before each experiment. These errors happen more frequently 

when a low-cost IMU is used, which can produce results 3 times worse than a high cost 
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one. As concluded by some authors [12-13] the uncorrected heading drift is proportional 

to the walking distance but not to the time elapsed. 

To mitigate some of the gyroscope errors Jimenez et al., [13] propose a Heuristic 

Heading Reduction algorithm. However, one of the best approaches to reduce these errors 

was proposed by Castaneda and Lamy-Perbal [12], which is a ZARU (Zero Angular Rate 

Update) algorithm. Ladetto et al. [14] have tested two prototypes to estimate orientation, 

one is based on a gyroscope and the other on a magnetometer. Authors concluded that the 

best approach, to estimate orientation, is to use a combination of those sensors, since each 

one have their strengths and weaknesses. 

A PINS can be composed by several sensors, so it is very important to implement 

sensor fusion techniques, like the Kalman filter [15]. Many of the studied works refer the 

Kalman filter as an optimal estimator, in order to reduce the inertial sensors errors. 

However, the Kalman filter requires a very good modelling of the system, which can be 

very complex to perform. 

Another difficulty encountered when developing a PINS is the stance phase detection. 

As stated by Beauregard [16], a dynamic threshold detection algorithm and possibly 

additional sensors, such as a force or proximity switch, can improve PINS stance phase 

detection. Hamaguchi [17] has introduced wearable electromagnetic sensors and push 

button switches attached to user’s heels. The results demonstrated that this approach can 

improve the stance detection, so other systems, like the one proposed by Bebek et al. [18] 

also tended to use similar techniques. 

Bebek et al. [18] have introduced a high-resolution thin flexible ground reaction sensor 

to the IMU, which measures zero-velocity duration to reset the accumulated integration 

errors from accelerometers and gyroscopes in location estimation. This tactile sensor can 

be used to accurately detect periods of zero-velocity to increase effective positioning 

resolution. Compared to the other systems, it can be concluded that the inclusion of a 

tactile sensor improves the step detection since it can detect, with more accuracy, when 

the foot is on the ground or not.  

One aspect that, typically, is not considered is the running gait cycle. However, Li and 

Wang [19] propose a PINS that uses two zero-velocity detectors, one for each type of gait 

cycle, walking and running. Authors concluded that the accuracy, of the proposed 

algorithm, for running cases is comparable to walking ones.  

The performance of the presented systems cannot be directly compared since each 

evaluation scenario is different. In an evaluation of a PINS several variables influence the 

final results, as is the case of the different pedestrians, the sensors quality, the total 

distance walked, the type of curves and the environment where the test was performed, 

like the amount of magnetic disturbances, type of floor (i.e. flat or wavy), among others. 

A variable that has a considerable influence in the PINS results is the step cadence, where 

the higher errors exist when the user is moving slowly. 

Despite all the techniques that are already being implemented errors in PINS are still 

considerable. It is believed that techniques like information fusion and learning 

algorithms should be applied to improve the systems estimations. For example, more 

information sources collected from the human body can be used to improve the system’s 

accuracy because one sensor advantage can suppress another sensor disadvantage. Also, 

techniques that learn the human gait characteristics in several environments can be used to 

correct, in real-time, the step distance estimation and the user orientation. 

Information fusion combined with artificial intelligence techniques are being used in 

different INS areas of research to assist in displacement estimation. In robotics, Faceli et 

al. [20] use these techniques to improve the accuracy of distance measurements between a 

robot and the objects present in the environment by 7%. These techniques are also used in 

autonomous driving vehicles. Stanley [21] software relied on machine learning and 

probabilistic reasoning techniques. Its IMU combined with artificial intelligence 
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techniques were able to maintain accurate pose of the vehicle during GPS outages of up to 

2 minutes. 

In land vehicle applications, Caron et al. [22] and Noureldin et al. [23] propose 

machine learning techniques like neural networks, which introduce context variables and 

errors modelling for each sensor. Authors conclude that with an adequate modelling an 

accuracy improvement of 20% can be achieved. Recently, Noureldin et al. [24] have 

improved the previous results by considering past position and velocity errors. Bhatt et al. 

[25] propose a hybrid data fusion methodology using Dempster-Shafer theory augmented 

by a trained Support Vector Machine, which corrects the INS errors. The proposed 

methodology has shown an accuracy improvement of 20%. 

Since these experiences presented good results in the respective area, we wanted to 

explore similar techniques but applied to PINS. To do this, we make a characterization 

about the step performed by a pedestrian. This characterization is done using machine 

learning algorithms. Thus, this work presents a set of experiments that we have performed 

in order to identify, which learning algorithm achieves the best results. 

Another important feature that must be considered is the system wearability. Due to the 

current developments on the smartphones performance and characteristics, it is likely that 

in a near future smartphones will handle strapdown calculations in real-time. This is a 

good opportunity to make the PINS lighter and more integrated with the human clothes. 

 

3. System Architecture 

The proposed system is composed by two low-cost IMU, developed by the authors [7], 

and an “Integration Software”. The “Integration Software” starts by filtering the signals 

obtained from the sensors and then some features are extracted from the signals, which 

are used to detect a step and thereby to characterize it according to some previously 

learned data. Finally, the displacement is estimated based on the collected information. 

This architecture is represented in Figure 1. 

The foot IMU (Figure 2a), placed on the foot, and the waist IMU (Figure 2b), placed 

on the abdominal area, are composed by a STMicroelectronics L3G4200D gyroscope, an 

Analog Devices ADXL345 accelerometer and a Honeywell HMC5883L magnetometer. 

The foot IMU is also composed by two Tekscan FlexiForcer A201 force sensors, 

which were included since their information can be used to improve the detection of the 

moment when the user touches his feet on the ground, as well as, the correspondent 

contact force. The force sensor combined with an accelerometer improve the accuracy of 

the step length estimation [8]. One force sensor was placed on the front part of the foot 

and the other on the heel, as shown in Figure 2a. 

Typically in PINS, after a detecting a step the displacement is estimated. However, in 

our proposal after detecting the step with the algorithm explained in [8] and in [7] a step 

characterization is made. This characterization is important to eliminate some of the 

erroneous measurements that are given by the inertial sensors when integrated. This is a 

very important phase, because it is here that the learning algorithms are applied in order to 

correct some of the errors provided by the inertial sensors. 
 

 

Figure 1. Architecture of the Proposed System 
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(a)                                                                      (b) 

Figure 2. System IMUs with the Corresponding Axis: a) Foot IMU; b) Waist 
IMU 

Although the accelerometer signal can be integrated in order to estimate the pedestrian 

displacement, it produces too many errors. However, this signal contains the information 

needed to be used to classify a step. Even if sometimes this pattern cannot be used to 

correctly classify a step, it can be surpassed by using several sources of data combined 

with learning algorithms. Since the probability that more than one source of data give an 

erroneous signal pattern at the same step is reduced. Thus, the fusion between all the 

sensors information can improve the number of correct classifications. 

A proper model of a step leads to a more correct displacement estimation, since some 

errors are suppressed in this phase. The proposed system starts the characterization of the 

step by estimate if the step was performed in a flat terrain, or ascending or descending 

stairs (i.e. step terrain characterization). Then it verifies if it was a forward or a backward 

one (i.e. step direction characterization). This characterization is very important to 

correctly estimate the pedestrian displacement, since they have opposite directions. The 

third classification is regarding the step length (i.e. step length characterization). This 

characterization fits into one of three categories: short, normal or long. With this 

classification we limit the displacement estimation according to the bounds of each 

category. 

These characterizations are performed by combining the data of several sources of 

information that the system collects from the human body movements. In this work are 

only presented the results for the step terrain characterization, since similar results were 

obtained for the other two characterizations. 

 

4. Step Terrain Characterization 

To perform the characterization about the type of terrain where a step was given, 

several algorithms/techniques were implemented and evaluated in order to identify which 

one provides the most accurate results. Three algorithms were implemented to perform 

this characterization based on: (i) DTW method (Section 4.1), (ii) SVM (Section 4.2), (iii) 

and Neural Networks (Section 4.3). 

The evaluation of these algorithms will be presented in Section 4.4. The data was first 

collected and then post processed using Matlab to obtain the results, meaning that the 

same dataset was used to test each algorithm. These simulations were performed on a low 

performance computer, in order to have similar results as nowadays high-end mobile 

device, a Pentium 4 2.8Ghz with 1GB of RAM memory. 

To evaluate the advantages of having two sources of information in different parts of 

the human body (i.e. waist and foot) the results are presented for each IMU without fusing 

their information, and with their information fused, which are represented with the name 
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of the approach combined with the word “Fusion” (i.e. DTW Fusion, SVM Fusion and 

Neural Network Fusion). 

Some treatment of the obtained signals is performed before applying the implemented 

algorithms. Because, giving to a classifier a complete signal can be very heavy and 

confusing to the machine learning algorithm identify the patterns of the signal and 

therefore estimate the correct label for that pattern. Usually, features are extracted from 

the signal to increase the overall performance of the learning system. Meaning that, it 

generally reduces the dimensionality of a problem domain for the purposes of improving 

the performance of machine learning algorithms, and to decrease the computational load. 

Thus, each learning algorithm will use the raw signals, which are first pre-processed to 

remove some of the noise, to extract some features from the signals, then classify it and 

finally will reasoning about the obtained data. This process comprises several stages: data 

acquisition, signal pre-processing, feature extraction and selection, training and 

classification. 

The three implemented algorithms were based on supervised learning, which learns to 

estimate an output based on a given input. This type of learning needs a lot of experiments 

in order to have a proper understanding of the problem. The output of these algorithms is 

a class label. The walking characteristics are learned from a set of exercises previously 

elaborated by the pedestrian. 

The terrain characterization has three possible classes: (i) in a normal (flat) terrain; (ii) 

in ascending; (iii) or descending stairs. To perform this characterization it was used the 

data from three sensors: (i) foot accelerometer (y-axis); (ii) foot gyroscope (z-axis); (iii) 

and waist accelerometer (x-axis). In Figure 3, Figure 4 and Figure 6 are represented an 

example of the signals that are obtained from these sensors for each class. 

The y-axis of the foot accelerometer gives a good indication about the foot elevation, 

which is essential to distinguish between ascending or descending stairs, since the forces 

are the opposite. However, from the several tests performed it was noticed that the main 

distinction that can be made using this sensor data is between ascending stairs and the 

other types of terrain. Visualizing Figure 3b it can be seen that on ascending stairs terrain 

the acceleration achieves higher values than in the other two cases. This happen because 

when ascending a stair the foot has to perform a higher elevation than in the other two 

cases. Regarding the other two types of terrain, descending stairs and normal, the data 

obtained from this sensor is very similar. The main difference is at the end of the step that, 

in the case of descending stairs, a higher acceleration is sensed since the foot touches the 

ground with a higher force than in the normal terrain type. 

The z-axis of the foot gyroscope provides information about the foot rotation in each 

type of terrain. Comparing the different signals presented in Figure 5, the foot rotation is 

much more noticeable in the ascending and descending stairs terrains. When ascending 

stairs, first exists an upward rotation peak and then a downward rotation peak, and it is the 

opposite when descending stairs. The data from this sensor is very important to make the 

distinction between these two types of terrain. Regarding the normal terrain, the pattern is 

similar to the descending stairs. However, the sensed rotation is much softer. Nonetheless 

this sensor provides a good accuracy on making the distinction between the three types of 

terrain. 

Finally, the x-axis of the waist accelerometer provides similar data as the foot 

accelerometer. In ascending stairs a higher acceleration is sensed, in both positive and 

negative scales. When descending stairs this acceleration is much lower than in the other 

two types of terrain.  



International Journal of Multimedia and Ubiquitous Engineering 

Vol.10, No.11 (2015) 

 

 

Copyright ⓒ 2015 SERSC      75 

 

(a)                                      (b)                                        (c) 

Figure 3. Foot Accelerometer (y-axis) Data for Each Step Terrain 
Characterization: a) Acceleration Signal Pattern in a Flat Surface; b) 

Acceleration Signal Pattern when Ascending Stairs; c) Acceleration Signal 
Pattern when Descending Stairs 

 

         (a)                                          (b)                                        (c) 

Figure 4. Waist Accelerometer (x-axis) Data for Each Step Terrain 
Characterization: a) Acceleration Signal Pattern in a Flat Surface; b) 

Acceleration Signal Pattern when Ascending Stairs; c) Acceleration Signal 
Pattern when Descending Stairs 

 
(a)                                          (b)                                        (c) 

Figure 5. Foot Gyroscope (z-axis) Data for Each Step Terrain 
Characterization: a) Gyroscope Signal Pattern in a Flat Surface; b) 

Gyroscope Signal Pattern when Ascending Stairs; c) Gyroscope Signal 
Pattern when Descending Stairs 
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The acceleration sensed in the normal terrain is within the other two. It provides similar 

data to distinguish between a flat surface and descending stairs. However, when 

ascending stairs it provides distinguishable data. 

Considering the data provided from these signals, it can be established that, combining 

their data, they are suitable to be used to differentiate each possible characterization 

terrain. Since the strengths of each signal can be combined to achieve a final consensus. 

 

4.1. DTW 

DTW is a time series alignment algorithm [26] that was largely employed in the early 

speech recognizers. This technique was used to accommodate differences in timing 

between sample words and templates. Nowadays it is applied to many other fields like 

bioinformatics, econometrics, robotics, manufacturing, handwriting recognition, data 

mining, information retrieval, among others to automatically cope with time deformations 

and different speeds associated with time-dependent data.  

This algorithm aims to find the optimal alignment between two sequences of data (e.g. 

time series). After this alignment it calculates the similarity independently of non-linear 

variations that can exist in the time dimension. It gives intuitive distance measurements 

between time series by ignoring both global and local shifts in the time dimension, which 

enables the determination of a degree of similarity between time series. 

The optimal warp path is the one that has the minimum distance. The warp path 

distance is a measure of the difference between the two time series after they have been 

warped together. It is measured by the sum of the distances between each pair of points 

connected by the vertical lines. A lower DTW distance denotes a higher similarity. Thus, 

two time series that are identical, except for localized stretching of the time axis, will have 

a warp path distance of zero. 

Despite the effectiveness of the DTW algorithm, its main problem is that it has a 

quadratic time and space complexity, O (n
2
) that limits its use to small time series 

datasets. 

This implementation works as follows, when a step is detected, the foot accelerometer 

and gyroscope, and the waist accelerometer signals, are compared, using the DTW 

algorithm, to a dataset of signals previously obtained for that person. 

The dataset, for each sensor, was composed by the data of 108 steps. The dataset can 

be decomposed into three subsets (one per each terrain type), which were composed by 36 

signals each. Since the sensors have an identical pattern through time, this amount of data 

proved to be sufficient to achieve good results. From the performed tests, less data gives 

worst results, and more data does not affect significantly the accuracy of this algorithm. 

When a step is detected it is calculated the distance between the signals of the detected 

step with each signal of each subset of signals for a specific type of terrain. The subset 

that has the lowest mean distance is the one that is closer to the detected step. Thus, the 

class that the subset represents is returned. 

This approach is similar to learning algorithms, since it gives a result based on past 

experiences. However, this approach is slower and does not generalize as well as the 

learning algorithms. 

 

4.2. SVM 

The SVM algorithm has achieved the best results using as input a set of features 

retrieved from each sensor signal. From the foot accelerometer are used 6 features: (i) 

minimum acceleration value; (ii) maximum acceleration value; (iii) difference between 

the instant moments on which each of the acceleration, minimum and maximum, peak 

values occur; (iv) difference between the maximum and minimum acceleration peak 

values; (v) sum of all the negative acceleration measurements; (vi) and the sum of all the 

positive acceleration measurements.  
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From the foot gyroscope are used 5 features: (i) minimum rotation value; (ii) maximum 

rotation value; (iii) difference between the instant moments on which each of the 

gyroscope, minimum and maximum, peak values occur; (iv) sum of the positive rotations; 

(v) and sum of the negative rotations.  

From the waist accelerometer are used 6 features: (i) maximum acceleration value; (ii) 

instant moment where the minimum acceleration measurement occurs; (iii) instant 

moment where the maximum acceleration measurement occurs; (iv) difference between 

the instant moments on which each of the accelerometer, minimum and maximum, peak 

values occur; (v) sum of all the negative acceleration measurements; (vi) and the sum of 

all the positive acceleration measurements. 

It gives a total of 17 features that are fed into the SVM algorithm. These features are 

important since they provide a good indication about the signal pattern. The design of the 

implemented SVM approach can be seen in Figure 6.  

Since in this characterization there are three possible classes (i.e. normal, ascending or 

descending stairs), and the SVM models can only classify two at each time, three SVM 

models (SVM Model 1, SVM Model 2 and SVM Model 3) were created. From the 

realized tests it was verified that the best results were achieved using on each model a 

"polynomial" kernel, configured as a 3
th
 order polynomial. 

The models were trained with the same data, but with different class labels vectors. In 

this case there are three vectors. The first vector, which is used by the SVM Model 1, 

indicates that the ascending stairs steps belongs to the positive class and the others to the 

negative.  
 

 

Figure 6. SVM Architecture for Step Terrain Characterization 

The second vector, which is used by the SVM Model 2, indicates that the descending 

stairs steps are the positive entries and the other the negatives. The third vector, which is 

used by the SVM Model 3, indicates that the normal terrain steps are the positive 

classifications and the others the negative. 

The score of the new observations are then estimated using each classifier. This will 

create a vector with three scores, one per each classifier. The index of the element with 

the highest score is the index of the class to which the new observation most likely 

belong. For example, if the first index has the highest value, then the step is classified as 
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ascending stairs. Thus each new observation is associated with the classifier that gives to 

it the maximum score. 

After the learning phase, a 10-fold cross validation to the model was performed. The 

SVM Model 1 presented no error, the SVM Model 2 presented an error of 0.8% and the 

SVM Model 3 presented an error of 2.6%. 

 

4.3. Neural Network 

For the neural network algorithm the best results were obtained using 72 inputs (24 

inputs per each sensor). Where each sensor signal is divided into 6 equal parts, and for 

each one of these parts the maximum, minimum and mean values were obtained, as well 

as, the slope. The slope was calculated based on the first and the last measurement of each 

part. This data gives a total of 24 inputs per each sensor that are fed into the learning 

algorithm. 

The same features that were used as input of the SVM (Section 6.1.1.1) were tested as 

input of the implemented neural network. However, from the several tests performed, 

these features (72 inputs) were the ones that gave the best results on classifying the type 

of terrain. 

It was decided to divide the signal in 6 parts, because, during a step, each sensor signal 

is typically composed by 30 measurements. Thus, in order to have an average of 5 

measurements per iteration the signal was divided into 6 equal parts. More parts will 

divide the signal too much, and less parts will pass insufficient information to the learning 

algorithm. Thus, the 6 was the number of parts that best represent each one of the signals. 

In Figure 7 is represented the design of the implemented neural network that classifies 

the type of terrain. The neural network receives as input (j) the 72 features previously 

presented. This input is passed to the Hidden Layer, which is composed by 144 neurons. 

Then, the Output Layer returns the final result about the type of terrain where the step was 

given. 
 

 

Figure 7. Neural Network Architecture for Step Terrain Characterization 
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Figure 8. Neural Network Training Error Histogram for Step Terrain 
Characterization 

The neural network parameters namely, the number of neurons in the hidden layer, the 

learning rate and the number of iterations, were tuned by trial and error. The learning rate 

was defined as 0.01 and the number of iterations as 36. 

The mean squared error of the best validation performance was 7.97×10
−7

 with a 

gradient of 9.80×10
−7

 at epoch 36. The error histogram can be seen in Figure 8. From 

this figure it can be concluded that the error given by the neural network is very low, 

where more than 98% of the results are very close to zero error. The highest error for 

an instance, during the network training, was of 1.50×10
−5

. 

 

5. Evaluation 

The three implemented algorithms were evaluated using a dataset of 800 steps 

performed by two pedestrians (400 steps for each pedestrian). 

The test scenario is the path represented in Figure 9, which involves a complex path 

with a set of straight walks and a set of stairs. The set of stairs was ascended two times 

and descend one time. Meaning that, the pedestrian ascended the stairs, then descend it 

and finally ascended it again.  

A total of 200 steps, each time, were performed in this scenario which gives a total 

walking distance of 70 meters. Two runs in this scenario, for each pedestrian, were 

performed. The results obtained for this scenario can be seen in Table 27. This table 

presents for each algorithm, the categorization accuracy (in percentage) and the execution 

time (in milliseconds). For all the algorithms are presented the results obtained in separate 

for each IMU, and for the combination of the data of both IMU. This comparison shows 

clearly which IMU has better accuracy for each characterization type. 
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Figure 9. Evaluation Scenario 

Table 1. Accuracy Results for the Developed Algorithms that Characterize 
the Step Terrain 

 

Method 

Ascending Descending Normal 
Execution 

Time Waist 

IMU 

Foot 

IMU 

Waist 

IMU 

Foot 

IMU 

Waist 

IMU 

Foot 

IMU 

DTW 59% 93% 98% 100% 69% 87% 400 ms 

SVM 97.5% 99.4% 94.2% 99.4% 85.1% 94.9% 1 ms 

Neural Network 98.3% 100% 94.1% 100% 87.2% 94.9% 1 ms 

DTW Fusion 95% 99% 89% 600 ms 

SVM Fusion 99.4% 99.5% 96.2% 2 ms 

Neural Network 

Fusion 

100% 100% 98.7% 2 ms 

 

Considering the obtained results it can be concluded that the ascending stairs class is 

the easiest to classify. All the algorithms, except the DTW approach, presented the best 

results when classifying this class. The normal terrain class is sometimes confused with 

the descending stairs class, so it is with this misclassification that most errors occur. 

Regarding the IMUs, the foot IMU gives more accurate data, since the foot is closer to 

the ground. The waist IMU can give a good indication about the vertical movement of the 

body. However, it obtains similar data when descending stairs and in normal terrain. 

Thus, it presents worst results in these classifications. 

The DTW approach revealed to have worse results when compared to the others. This 

happens because the signals are pretty much similar, varying only the intensity of the 

peaks. Also, it is the one that takes longer to run. 

Analyzing the obtained results for each algorithm, when considering the fusion of both 

IMU, the learning algorithms presented the best results. The best was the Neural Network, 
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achieving a mean accuracy of 99.4% and having 100% of accuracy on predicting the 

ascending and descending stairs classes. 

From the obtained results, it can be concluded that through the sensors 

complementarity the type of terrain was categorized with higher accuracy. Also, it can be 

concluded that the learning of the gait parameters enables a better characterization of a 

step. From our tests it was identified that a learned dataset 5 times smaller, than the used 

one, is sufficient to achieve similar results. Making the learning procedure simpler and 

faster to a pedestrian perform before using the proposed system. 

 

6. Conclusions 

Develop a PINS to be used by pedestrians in their daily life is a huge challenge. Many 

approaches already have been proposed, but must of them rely on a structured 

environment that usually is infeasible to implement and the others do not provide the 

necessary accuracy. 

To suppress some of these limitations we propose a PINS based on fusion and learning 

techniques. The proposed system characterizes the step according to the activity that the 

pedestrian is performing. After the type of terrain this characterization verifies the step 

direction, which is very important to correctly estimate the pedestrian displacement, since 

they are opposite directions. Then it is verified the step length, which is important to limit 

the displacement estimation according to the bounds of each category.  

Combining the two sources of data, waist IMU and foot IMU, the quality of the data is 

improved, since the probability that two sources of data give erroneous measurements 

patterns at the same time is much reduced. The fusion between all the sensors information 

improves the number of accurate classifications. Thus, this integration leads to a better 

characterization of the step. 

The use of the step characterization, through the use of more than one IMU and the 

neural network algorithm led to an improvement, compared to the previous results [7], in 

displacement estimation of 34%. In the same scenario the error has decreased from 7.3% 

to 4.8%. 
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