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Abstract 

Delineating brain tumor boundaries from multi-modality magnetic resonance images 

(MRIs) is a crucial step in brain cancer surgical and treatment planning. In this paper, 

we propose a fully automatic technique for brain tumor segmentation from multi-modality 

human brain MRIs. We first use the intensities of different modalities in MRIs to represent 

the features of both normal and abnormal tissues. Then, the multiple classifier system 

(MCS) is applied to calculate the probabilities of brain tumor and normal brain tissue in 

the whole image. At last, the spatial-contextual information is proposed by constraining 

the classified neighbors to improve the classification accuracy. Our method was 

evaluated on 20 multi-modality patient datasets with competitive segmentation results. 
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1. Introduction 

A brain tumor is a mass or growth of abnormal cells in human brain or close to human 

brain. The human brain tumor can be classified to many different types such as 

noncancerous (benign), and cancerous (malignant). Brain tumor treatment options depend 

on the type of brain tumor the patient have, as well as its size and location. However, it is 

a particularly time consuming task for radiologists to segment the brain tumor for location 

and statistical analysis. Also, in most cases the task is performed on a 3D data set by 

labeling the tumor slice by slice on 2D data, limiting the global perspective and 

potentially generating sub-optimal segmentations [1-4]. Therefore there is a need for fully 

automatic segmentation tools for brain tumor segmentation. 

Nowadays, in clinical practice, usually multi-modality3D MRIs are used to delineate 

the tumor and its sub-regions. These multi-modality MRIs are generated by giving 

different excitation pulse sequences during MR imaging. These multi-modality MRIs can 

form weighted sequences to reflect the different characteristics and biological properties 

of tissues [5-8]. T1-weighted, T2-weighted, post-Gadolinium T1 (T1C) and FLAIR (Fluid 

Attenuated Inversion Recovery) weighted sequences are four commonly used MRI 

modalities for brain tumor extraction. Each of the modalities reveals different sub-regions 

in human brain. In general, an automatic segmentation method needs to consider all these 

MRI modalities simultaneously. Subsequently, in last few years, a large amount of 

research has been focused on fully automatic methods for segmenting brain tumors from 

multi-modality MRIs.  

Even with multi-modality MRIs, brain tumor segmentation is still a challenging task 

because the tumors vary greatly in size and position and have a variety of shape and 
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appearance properties [9-10]. Therefore, it is difficult to segment a brain tumor by using a 

simple unsupervised threshold. For accurately segment the brain tumor, we need to 

explore the characteristic and pathological process of brain tumor. On this basis, several 

techniques have been used to perform supervised segmentation of brain tumor in multi-

modality MRIs [4-8]. However, training samples are very difficult to collect by the 

radiologist. This issue results in an unbalance between the high dimensionality of the 

MRIs and limited number of training samples [11]. One strategy to deal with this problem 

has been efficiently exploited by using multiple classifier system which combines the 

outputs from several individual classifiers according to a certain criteria [12]. However, 

these kinds of methods assume that data or each testing sample is independently and 

identically distributed and doesn’t consider any spatial relationships. This is not 

particularly suit for medical image segmentation or classification because most voxel 

labels in medical image strongly depend on their neighbors. Therefore, we need to take 

the spatial relationship into account for accurate segmentation results. 

In this paper, we propose a fully automatic technique by integrating the multiple 

classifier system (MCS) and spatial constraint for brain tumor segmentation from multi-

modality human brain MRIs. We first use the intensities of different modalities in MRIs 

to represent the features of both normal and abnormal tissues. Then, the multiple classifier 

system (MCS) is applied to calculate the probabilities of brain tumor and normal brain 

tissue in the whole image. At last, the spatial regularization introduces spatial constraints 

to the MCS to take into account the pair-wise homogeneity in terms of classification 

labels and multi-modality voxel intensities. Our method was evaluated on 20 multi-

modality patient datasets with competitive segmentation results. 

 

2. Multiple Classifier System 

Let
1 2
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n

X x x x be the input multi-modality MRIs, where 
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D x y x y is the training set, M is the total number of training 

samples. The goal of classification is to assign a label 
i

y L to each pixel vector
i

x . 

According to [12], multiple classifier system combines class labels or probabilities 

from multiple classifiers. The final output mainly depends on the supervised classifier and 

the diversity among the classification results. In this paper, Naïve Bayes classifier and 

multinomial logistic regression classifier are chosen due to both of these two classifiers 

are able to generate the class labels and probabilities by training the samples selected by 

the radiologists.  

 

2.1. Naïve Bayes Classifier 

The naïve Bayes (NB) classifier technique [13] is based on the so-called Bayesian 

theorem and is particularly suited when the dimensionality of the inputs is high. Using 

Bayes rule, the posterior distribution can be modeled as: 
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where ( | )
i i

p x y k  is conditional probability and ( )
i

p y k is the prior probability 

of
i

x belongs to j-th class which can be estimated by using training samples. In this paper, 

we assume that the data associated with each class are distributed according to a Gaussian 

distribution; then the conditional probability can be computed by using normal 

distribution: 
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Where
k

 and
k

 are the mean value and covariance calculated by the training samples 

which belong to k-th class. 

 

2.2. Multinomial Logistic Regression Classifier 

Multinomial logistic regression (MLR) model [14-16] generalizes logistic regression to 

classification problems where the class label can take on more than two possible values. 

This characteristic is very useful for brain tumor segmentation, where the goal is to 

classify the image to several different regions.MLR technique models the posterior class 

distribution in a Bayesian framework. The densities ( | )
i i

p y x are modeled with the MLR, 

which corresponds to discriminative model of the discriminative-generative pair 

for ( | )
i i

p x y  Gaussian and ( )
i

p y multinomial [17]. The MLR model is formally given 

by:  
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Where is the parameters and estimated by the training samples. 

 

2.3. Bayes Weighted Average 

After the probabilities of each pixel in MRIs are obtained by NB classifier and MLR 

classifier, Bayesian weighted average which follows a linear opinion pool is used to 

produce the final probabilities as follows: 

( | ) = ( | ) (1 ) ( | ; )
N B M L R

i i i i i i
p y k x p y k x p y k x      

          
  (4) 

Where  is a tunable parameter which controls the weights between the probability 

obtained by NB classifier and the probability obtained by MLR classifier. The range of 

parameter   is [ 0 ,1]  . If 1  , the classification results is same as that obtained by NB 

classifier, and is equal to the results obtained by MLR classifier when 0 .  In our 

experiments, we select 0 .5  , which means that the effects of NB classifier and MLR 

classifier to the final probability are the same. 

 

3. Global Energy Cost Function Imposing the Spatial Constraint 

The segmentation results are not accurate enough when only using the probabilities 

calculated in above section, because this technique only consider the image pixels as the 

discrete signals and without consider the spatial correlation in the whole image. In order 

to encourage the spatial information to improve the segmentation accuracy, we integrate 

the probability information and the spatial information together to propose the following 

optimization problem of an energy cost function: 

1
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 y               (5) 

Where the first term in Eq. (5) is the data term imposing the probability information 

which is obtained by MCS, and the second term is the total variation term which 

encourages the pixels in neighborhood to belong to the same class in spatial domain. 

Parameter  controls the importance of spatial information. 

It is very difficult to solve this total variation regularized classification model for the 

discrete status of 
i

y . In order to solve this optimization problem, we turn to graph cuts 
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methods which are efficient tools to solve this kind of optimization problems. These 

methods construct our model on a graph with nodes and edges and solve the minimization 

of energy cost function as a maximum flow problem. In this paper, the method proposed 

in [18] is applied to solve our optimization problem in Eq. (5).  

The whole work flow of our proposed brain tumor segmentation algorithm is provided 

as follows: 

Step1: Selecting the training data by the radiologists; 

Step2: Training NB classifier and MLR classifier by using the training samples; 

Step3: Calculating the probabilities of each pixel by using NB classifier and MLR 

classifier; 

Step4: Calculating the Bayes weighted average using Eq. (4); 

Step5: Minimizing Eq. (5) to obtain the final brain tumor segmentation results;  

 

4. Results and Discussion 

We evaluate our model on the BRATS challenge data set 

(http://www.imm.dtu.dk/projects/BRATS2012) of 20 MRIs with brain tumor, 10 subjects 

are simulated data and other 10 subjects are real patient data. Each subject comprises T1, 

T2, FLAIR and post-Gadolinium T1 modalities. All volumes are linearly co-registered to 

the T1 contrast image, skull stripped, and bias correction using N3 method. 

Figure 1 shows the outputs at different steps of our method for a typical subject with 

brain tumor. The first row shows the original images of four different modalities. We can 

see that the intensities of the tumor region and brain tissues are quite different in these 

four modalities. The second row shows the brain tumor segmentation results of each step. 

The left two images demonstrate the probability maps of brain tumor obtained by the NB 

classifier and MLR classifier, respectively. The third image demonstrated the probability 

map by using MCS in Eq. (4). From this result, we can see that the MCS by integrating 

the probabilities obtained by NB classifier and MLR classifier is able to improve the 

tumor segmentation result at some level. The last image in second row demonstrates the 

final tumor segmentation result by minimizing Eq. (5). It is clear that our method is able 

to detect the complete boundaries of tumor and reduce the influence of the noise by 

integrating the probabilities from the MCS and the TV based regularization. 

 

 

 

Figure 1. An Example of the Brain Tumor Segmentation Pipeline. The First 
Row Shows the Original Images from Four different Modalities: T1, T2, 
FLAIR and T1C Images from Left to Right. The Second Row Shows the 

Probability Maps of Brain Tumor Obtained by NB Classifier, MLR Classifier, 
MCS, and the Final Brain Tumor Segmentation Result of Our Method 
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The result of our algorithm for a real patient data is shown in Figure 2. The first row 

shows four T1C images from different slices of one 3D data. The segmentation results of 

our algorithm are demonstrated in the second row. The last row shows the corresponding 

segmentation of brain tumor provided by expert radiologist and used only for 

performance evaluation and comparison. It is clear that our brain tumor segmentation 

results show a high similarity to the ground truth (the third row) demonstrating the 

efficacy of our solution. 

 

 

 

 

Figure 2. An Example of 3D Brain Tumor Segmentation. First Row: the T1C 
Images of different Slices from a Real Patient Subject. Second Row: 

Segmentation Results Produced by Our Algorithm. Third Row: Manual 
Segmentation Obtained by a Radiologist 

We employed the Jaccard score to quantitatively evaluate the segmentation results 

obtained by the NB classifier, the MLR classifier, the MCS as well as our method in 20 

subjects. Figure 3 and Figure 4 demonstrate the Jaccard Score of these four methods on 

simulated data and real data. As shown in these two figures, the mean JS value of the 

results obtained by NB classifier, MLR classifier, MCS method and our method executed 

on simulated data and real data are 0.79, 0.80, 0.84, 0.90, and 0.60, 0.61, 0.64, 0.79, 

respectively. From these results, we can see that the Jaccard scores of MCS are a litter 

higher than those of NB classifier and MLR classifier, which demonstrate the advantage 

of combination of multiple classifiers. The Jaccard scores of our method are much higher 

than all of those classifiers which show significant improvements by encouraging the 

spatial information to improve the segmentation accuracy. 
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Figure 3. Jaccard Score of each Method for the 10 Simulated Subjects 

 

Figure 4. Jaccard Score of each Method for the 10 Real Subjects 

4. Conclusions 

In this paper, we presented a novel brain tumor segmentation method by using multiple 

classifier system and spatial constraint. Firstly, the Naïve Bayes classifier and 

multinomial logistic regression classifier are trained by using the training samples from 

the radiologists. Then, these two classifiers are applied to calculate the probability of each 

test pixel. After that, Bayesian weighted average from MCS is generated using linear 

combination of probabilities of above two different classifiers. At last, the global energy 

optimization function which can be solved by graph cut method is proposed by integrating 

the spatial-contextual information into the intensity information represented by the 

probability. Our method was evaluated on 20 BRATS challenge subjects; the higher 

Jaccard Score values demonstrate the advantage and considerable competence of our 

method. 
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