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Abstract 

In this article, a multi-tone signal generated by micro-speaker is adopted as the 

acoustic stimulation, and two microphones are used to collect the DPOAE data from 

human ear and background noise respectively. Otoacoustic emission is modeled based on 

Volterra kernel. The feature of human ear’s DPOAE feature model is extracted 

intelligently by improved stimulation annealing genetic mixed algorithm. In order to 

apply this model feature to identification, its feasibility is verified by BP neural network. 

This provides a new biometric method for identity authentication. 
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1. Introduction 

Identity authentication is required not only for high-confidential activities like banking 

services, entering secret institutions or searching for certain technical and economic 

resources, but also for various daily applications like taking attendance at workplace and 

entering the residence building for security reasons. In short, identity authentication is 

widely used in a vast range of fields including economic, military and daily usage and this 

has given rise to the popularity of fingerprint, face or iris recognition technologies. With 

the increasing popularity of such identity authentication techniques, however, a problem 

arises. People’s identity are stolen through methods like making copies of peoples 

fingerprints or even iris, which poses huge economic loss to both families and the nation 

as a whole. Therefore, looking for substitutable biological features which can provide a 

more secured and reliable identification has become a pressing issue. This has lead to the 

development of the technique of ‘detecting the characteristic of OAE’ which will be 

discussed in detail in the later part of this paper. 

Otoacoustic emissions are a physiological function of the human ear. When cochlea is 

stimulated by two pure tones which has a certain frequency ratio and intensity ratio, 

cochlear active mechanism will produce various forms of distortion, the otoacoustic 

emission signal which is detected in external acoustic meatus is called  

DPOAE(distortion product otoacoustic emission) [1]. DPOAE has been widely used in 

children hearing screening and early diagnosis of hearing impairment in adults [2]. It has 

the characteristics of repeatability, long term stability, and individual differences and so 

on. 

In this paper, on top of collecting the DPOAE data, the Volterra kernel is used to build 

the DPOAE characteristics model of ear, in order to discuss the feasibility of the use of 

biometric for identification. Imagining this technique being applied in your residential 

door lock, the door will open automatically after you put on a specially-made earphone, 

then you are able to enjoy your comfortable home knowing that your house is 

well-secured. 
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2. DPOAE and its Detection 

There are a variety of otoacoustic emissions, TEOAE (Transient Evoked Otoacoustic 

Emission) and DPOAE has been used more frequently in clinical application. In terms of 

detecting speed and accuracy, DPOAE outraces TEOAE, so DPOAE has been more 

widely used in actual application [3]. 

If we use the frequencies f1 and f2 which are pure pulse as the stimulus of DPOAE, the 

amplitudes of DPOAE are larger among the frequencies of 2f2-f1、2f1-f2、3f1-2f2 and 

4f1-3f2, especially in the frequency of 2f1-f2, and the number of its occurrences is the 

most [4-5]. Normally, DPOAE occurs in a few milliseconds after the inducing stimulus, 

the amplitudes are much smaller compared to the inducing stimulus, the two of them 

differ by about 1000 times, we can use the entire period sampling method to prevent it 

from being blocked by the induced stimulating sound [6]. In addition, there are many 

factors affecting the amplitude values of DPOAE. For example, the respective frequencies 

and frequency ratios, intensity and intensity difference values of two stimulus sound. 

Normally, the two induced sound frequency ratio ranges from 1.22 to 1.25, and their 

intensity values are around 70dB SPL, so that a DPOAE signal with larger amplitude can 

be obtained [7]. 

DPOAE shows that the cochlear active mechanism is a nonlinear process. Therefore, in 

our study we designs the measurement sensor according to the characteristics of DPOAE, 

process the measured data and use the Volterra kernel model to describe the 

characteristics [8-9]. 

 

3. DPOAE Signal Acquisition Sensor and its Measurement Channel 

In order to achieve high accuracy in the DPOAE measurement, sensors should have the 

functions of generating test stimulation, detecting otoacoustic emission, as well as testing 

environmental noise. Therefore, a three-element sensor which consists of a loudspeaker 

and two microphones will be used in our study. 

The sensor includes several parts: a background-sound-collecting microphone which 

acquire the background sound from the surroundings, a sound collecting microphone 

within the ear used to measure the sound within the ear canal, and a micro loudspeaker 

used to generate acoustic stimulation. 

The sensor on the front-end and the measurement circuit are used to accomplish the 

acquisition of DPOAE signal which is then processed by the computer. The diagram of 

the measurement circuit is shown in Figure 1. 
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Figure 1. The Diagram of the Measurement Circuit 

The circuit consists of two measurement channels and one channel of generating  

Acoustic stimulation .In the channel of generating acoustic stimulation, D/A converter 

converts the dual-frequency stimulation signal through digital synthesis to an analog 

http://dict.cnki.net/dict_result.aspx?searchword=%e6%b5%8b%e8%af%95%e6%bf%80%e5%8a%b1&tjType=sentence&style=&t=test+stimulation
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signal, after passing the filter circuits, the digital potentiometer adjusts stimulation 

intensity, and after passing the audio power amplifier, the analog signal is converted into 

acoustic stimulation by the loudspeaker. The measurement channels extracts the sound of 

microphone, turning it into electrical signals, after passing the preamplifier and filter, the 

signal is amplified by the programmable amplifiers, then put the amplitude signal into the 

A/D converter. Finally we can get the original measurement data which can be used for 

building the model. 

 

4. POAE Characteristic Model Based on Volterra Kernel 
 

4.1. The Extraction Method of Volterra Kernel 

We can take the ear as a nonlinear system and use the Volterra kernel to describe it. 

DPOAE is a kind of non-linear steady-state response of the ear to dual-frequency 

stimulation. This response includes the responses which Volterra kernel generate in each 

stage and the overall response is the result of interaction of kernels of different stages. 

Therefore, in order to determine the frequency domain kernel for each stage Volterra 

kernel of the ear model, the response generated by each stage Volterra kernel need to be 

separated from the overall response, which can be achieved according to the homogeneity 

of Volterra kernel [10-12]. 

We assume that the input value is x (t), and the response can be expressed as   
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Where yn (t) represents a response generated by n-order Volterra kernel, and it can be 
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Where hn(1,2,,n) represents the time domain kernel for n-order Volterra, it can 

also be called as the Generalized impulse response function (GIRF) .  

Make an n-dimensional Fourier transform on formula 2, we have 
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Yn(S1,S2,,Sn) is an n-order output transformation of the system. Hn(S1,S2,,Sn) is 

the n-order transform function, or it can be called the Generalized frequency response 

function (GFRF). 

According to the n order homogeneity of Volterra kernel, when we set the input value 

as ax (t), the response is 
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Accordingly, we can determine GFRF by multiplying measurement of different 

amplitude signals. When the nonlinear degree is low, in other words, its high-order kernel 

attenuates quickly; the system can be represented approximately by n-th kernel. For 

example, if N=3, in order to facilitate the solution, we use the input signal which only 

changes the amplitude. We assume that the three non-zero input signals have same wave 

form and different amplitude, which can be denoted as a1x (t), a2x (t) and a3x (t). The 

corresponding output can be denoted as y’1(t), y’2(t) and y’3(t). Then the formula can be 

denoted as: 

javascript:showjdsw('jd_t','j_')
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Where ei (t) (i=1, 2, 3) are measurement errors and forth-and higher-order truncation 

errors. The matrix form can be denoted as: 
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On the assumption that the system is weakly nonlinear, its high-order kernels attenuate 

very quickly, so 

ei(t) = 0  (i=1,2,3) 

Each order can be obtained to produce kernels response y (t). This method of isolating 

the response of kernels of each order from the overall response is called the Vandermode 

method [13]. The Idea of Frequency-domain kernel measurements are the same as the 

method mentioned above. After obtaining the yn (t), the frequency-domain kernel can be 

represented as: 
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In order to reduce the impact of measurement error, this paper increases the number of 

measurement, gets a set of overdetermined equations, and uses the least squares method to 

solve the equations and reduce the errors. 

 

4.2. Experimental Data Acquisition 

The sensor designed in this study is to measure background sounds. In order to simplify 

the modeling process, we ignore the background sound effects first; the noise reduction 

outcome will be published sequentially. Therefore, the experimental data is acquired with 

noise reduction headset. However, since the experiment took place in a common school 

laboratory, the interference cannot be completely excluded. 

According to the principle of Vandermode, the measurement data of sound stimulation 

and otoacoustic emissions is required. We use 100ms pure tone pulse for DPOAE 

measurement, because DPOAE occured within a few millimeters after inducing stimulus, 

therefore, the two signals mix together. In order to separate them, we use the two-step 

method for the measurement of different intensity and frequency [14]. First, fix the sensor 

that can produce and receive sound signals on the emulational ear, and seal it in a little 

box with a sound-absorbing layer to measure stimulus separately, then measure the mixed 

sound by putting the detector into the ear. 

We use dual-tone signal of 1 kHz and 1.22 kHz as stimulus, and test the subjects using 

three different intensity, 3 times for each intensity, sampling frequency is 20 kHz with 

512 continuous sampling points. Then we repeat the test on the same subjects after a week 

and another test after another week and record the data of the 22 subjects for the 3 times. 

These data are used for modeling, testing the stability of the characteristic and identity 

identification experiment. 
 

4.3. DPOAE Feature Modeling of Ear 

According to formula (5), using the 512 data points of the 9 groups from the three 

intensity, the nine overdetermined equations which include three variables of 

y1(t),y2(t),y3(t) can be established and solved by means of the least squares method. Then, 

combined with the formula (6), the Volterra frequency kernels can be obtained. 
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According to the degree of nonlinearity and application needs, more multi-order kernels 

should be solved; this article only uses the first 3 order kernels as an example [15-16]. 

Take one of the subject’s data for example, the solved Volterra frequency kernels of the 

first-order, second-order and third-order are shown in Figure 2. 

 

   

a. The First-Order Volterra Kernel 

 

b. The Three-Dimensional Figure of the Second-Order Volterra Kernel 

 

c. The Three-Dimensional Figure of the Third-Order Volterra Kernel 

Figure 2. Figure of the different Order of the Volterra Kernel 

Figure 2.c is drawn on the condition that one variable is viewed as constant. In order to 

observe conveniently, make the variables s1=s2=s3, therefore the second and third order 

of the Volterra kernel can be represented by two-dimensional figure which is a cutaway 

view of them. 

To note that, the Volterra frequency domain kernel above is represented by the matrix 
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with 512 data points, with the help of the curve fitting function of the MATLAB 

simulation software, the unary function of the different-order Volterra kernels are 

obtained. 

The first-order Volterra kernel: 

H1(s) = a1*exp (-((s-b1)/c1)2) + a2*exp (-((s-b2)/c2) 2) +a3*exp (-((s-b3)/c3) 2) 

 + a4*exp (-((s-b4)/c4) 2) +a5*exp (-((s-b5)/c5) 2) + a6*exp (-((s-b6)/c6) 2)       (7) 

Among them， a1=38.71，b1 = 271.2， c1= 0.8959， a2 =38.69，b2=242.8，

c2=0.8886，a3=8.448，b3=324.5，c3=1.504，a4 =28.44，b4 =188.8，c4 =0.2518，a5 

=11.8，b5 =72.22， c5 =291， a6 =-9.951， b6 =57.49， c6 =150.4。The fitted 

R-square=0.5124，RMSE=3.324。The first-order kernel fitting comparison as shown in 

Figure 3. 

 

 

Figure 3. First-Order Kernel Profile Fitting Comparison Chart  

The second-order Volterra kernel(s=s1=s2): 

H2(S) =a1*exp (-((s-b1)/c1)4) +a2*exp (-((s-b2)/c2)4) + a3*exp (-((s-b3)/c3)4) 

+ a4*exp (-((s-b4)/c4)4) + a5*exp (-((s-b5)/c5)4) + a6*exp (-((s-b6)/c6)4)     (8) 

Among them,a1=274.2, b1=271.2, c1=0.607, a2=274.4, b2=242.8, c2=0.6059, 

a3=169.3, b3=325, c3=0.3045, a4 =168.1, b4=189, c4=0.2548, a5=30.41, b5=198.6, 

c5=140.1, a6=-20.62, b6=156.8, c6=111.4, the fitted R-square=0.7355，RMSE=12.36。
The second-order kernel fitting comparison as shown in Figure 4. 

 

 

Figure 4. Second-Order Kernel Profile Fitting Comparison Chart 

The third-order Volterra kernel (s=s1=s2=s3): 

H3(S) =a1*exp (-((s-b1)/c1)6) + a2*exp (-((s-b2)/c2)6) + a3*exp (-((s-b3)/c3)6)  

        + a4*exp (-((s-b4)/c4)6) + a5*exp (-((s-b5)/c5)6) + a6*exp (-((s-b6)/c6)6)  

+ a7*exp (-((s-b7)/c7)6) + a8*exp (-((s-b8)/c8)6)                 (9) 
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Among them, a1=411.1, b1=271.1, c1=0.5828, a2=411.1, b2=242.9, c2=0.5828, 

a3=397.2, b3=325.1, c3=0.3955, a4=396.7, b4=188.9, c4=0.3959, a5=34.03, b5=280.2, 

c5=5.403, a6=34.03, b6=233.8, c6=5.403, a7=103.5, b7=265.9, c7=0.6416,  a8=103.5, 

b8=248.1, c8=0.6416，the fitted R-square=0.8575,RMSE=14.21。The third-order kernel 

fitting comparison as shown in Figure 5. 

 

 

Figure 5. Third-Order Kernel Profile Fitting Comparison Chart 

 

4.4. Based on Intelligent Feature Extraction and BP Neural Network of Biometric 

Identification Experiments and Results 

In order to verify the feasibility of applying the model of biometric identification, we 

conducted two experiments, one on the difference in DPOAE characteristics of different 

ears and another on the stability of DPOAE characteristics. 

According to the methods described, we can build model using the acquired data (66 

data from 22 subjects), using improved annealing genetic algorithm for intelligent 

extracting of ear feature model DPOAE [17]. The approach extracts 3 characteristics of 

per-order kernel, a total of 9 characteristics of 3-order kernels, and constitutes a feature 

vector according to certain rules. Design a BP neural network with 9 input, 5 output nodes, 

3-tier architecture, and output with encoding to identify individuals [18]. Use the 

characteristics of the 22 people in the first test as sample to train the BP neural network. 

Set the root-mean-square error of the network between actual output and expected output 

to be less than 0.001. After a successful training, put the remaining 44 samples model of 

the feature vector into BP neural networks for identification, the successful identification 

rate is 100% percent. 

 

5. Conclusions 

In this paper, we built human ear's DPOAE feature model based on Volterra frequency 

kernel, used improved stimulation annealing genetic mixed algorithm to extract the 

feature of human ear’s DPOAE feature model intelligently. With limited testing samples, 

the successful recognition rate can reach 100%. It laid the foundation for using DPOAE 

for biological information identification. 

During the research process mentioned above, due to limited sample, we ignored the 

effects of environmental noise, and the function fitting effect also needs to be improved. 

We will continue the research in this area in the future, such as researching on the transfer 

model of environmental noise outside the ear to the inner ear, noise elimination methods 

and comparing with other DPOAE feature’s modeling methods. 
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