
International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.10 (2015), pp.329-336

http://dx.doi.org/10.14257/ijmue.2015.10.10.32

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2015 SERSC

Construction of Concurrent Programs Based on a

Modeling and Simulation Formalism

Jung Hyun Im
1
, Ha-Ryoung Oh

1
 and Yeong Rak Seong

2

1
Dept. of Secured-Smart Electric Vehicle, Kookmin University

77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, KOREA
1
ijh227@kookmin.ac.kr

2
Dept. of Electric Engineering, Kookmin University

77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, KOREA
2
yeong@kookmin.ac.kr

Abstract

This paper proposes a framework for developing a concurrent program using the

discrete event system specification (DEVS) formalism. Within the proposed framework, a

concurrent program is modeled by the DEVS formalism, and the modeling result is

validated through simulation in a DEVS abstract simulator environment, called

DEVSim++. Then, the validated modeling results are translated to multi-threaded

program codes written in a conventional programming language. For that, each DEVS

model which specifies behavior of a component is converted to a single thread, called an

atomic thread, and every connection information between the components are clustered

together and converted to a data structure, called a port mapping table. This paper also

proposes an efficient solution which combines several atomic threads into a new thread,

called a combined thread.

Keywords: Modeling and Simulation, Concurrent Software, Multi-thread Software,

Discrete Event System

1. Introduction

Modeling and simulation (MAS) is a powerful technique for system design. Many

studies have been conducted on the application of MAS techniques in the development of

software systems [1-2]. Especially, if we develop a software system by using formal MAS

techniques, we can use formal modeling techniques in software design, and can verify the

design results through simulation. Consequently, we can reduce software development

time. In most of existing software development methodologies based on formal MAS

techniques, however, the formal MAS techniques are employed only for design, and the

design results are implemented by using conventional procedural or object-oriented

languages. Therefore, the formal design results cannot be properly expressed in the

implemented code due to the limitation of the implementation languages.

On the other hand, to develop a concurrent program is known as a very exhausting job.

Especially, it takes very long time to test a concurrent program. This is because the

execution order of threads in a single program may vary occasionally even if the identical

events occur at the identical time with the identical order [3].

This paper proposes a framework for developing a software program with concurrency

using the discrete event system specification (DEVS) formalism [4-5]. In the proposed

framework, a concurrent program is modeled by using the DEVS formalism and

simulated by using the DEVS abstract simulator algorithm [6]. Due to a synchronization

mechanism based on simulation time in DEVS, execution of components, which will be

implemented by threads later, can be strictly controlled, and thus behavior of concurrent

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.10 (2015)

330 Copyright ⓒ 2015 SERSC

programs can be preciously specified with the framework. The modeling result is

translated to conventional programming language codes which can be compiled and

executed in an actual environment through a simple conversion process. Although the

generated code is also written in a conventional language, it exhibits the semantics of the

DEVS formalism, and includes the synchronization mechanism stated earlier. Therefore,

the code differs from the code developed by using conventional informal methods. A

naive version of the suggested framework was introduced in [7] and applied in the

development of a navigation application. This paper explains the framework more

specifically by focusing on the framework itself. Furthermore, a solution to efficiently

prevent the over-generation of threads is also proposed.

This paper is organized as follows. Section 2 presents a brief review of the DEVS

formalism. Section 3 presents how modeling results are translated to multi-threaded

program codes written in a conventional programming language. Finally, Section 4

concludes this paper.

2. DEVS Formalism

The DEVS formalism specifies a discrete event system in a hierarchical, modular

manner. There are two classes of models within the DEVS formalism: atomic and coupled

models. An atomic DEVS model specifies behavior of a component. An atomic DEVS

model AM is specified as follows [8]:

AM = < X, Y, S, , , , ta >

 X : Input events set

 Y : Output events set

 S : Sequential state set

 : Q X  S : External transition function

 Q = {(s, e) | s S, 0 e ta(s)}: total state of AM

 : S  S : Internal transition function

 : S  Y : Output function

 : S  R
+
 : Time advance function

The state of an atomic model is changed by both the external transition function and

the internal transition function. When an input event arrives from other models, the state

of the atomic model is changed by the external transition function. The next state is

decided based on the current state, the time elapsed during the current state, and the input

event. On the other hand, when no input event arrives until the schedule time, which is

determined by the time advance function, the state of the model is changed by the internal

transition function. At this time, the next state is decided based solely on the current state.

Right before any internal transition, the atomic model can generate output events

determined by applying the output function to the current state. The output events are

transmitted to other models as input events.

A coupled model, the second class of the DEVS models, combines component models

together to form a new model. Since a coupled model can be employed as a component of

a larger coupled model, a complex model can be constructed in a hierarchical manner. A

coupled model CM is specified as follows:

CM = < X, Y, {Mi}, EIC, EOC, IC, SELECT >

 X : Input events set

 Y : Output events set

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.10 (2015)

Copyright ⓒ 2015 SERSC 331

 {Mi} : Components set

 EIC ⊆ CM.X × Mi.X : External input coupling relation

 EOC ⊆ Mi.Y × CM.Y: External output coupling relation

 IC ⊆ Mi.Y × Mj.X : Internal coupling relation

 SELECT = subsets of D  D : tie-breaking function

The three coupling relationships connect the coupled model and its component models;

the external input coupling EIC specifies coupling from the input events of the coupled

model to the input events of the component models, the external output coupling EOC

specifies coupling from the output events of the component models to the output events of

the coupled model; and the internal coupling IC specifies coupling from the output events

of the component models to input events of the other component models.

Due to the hierarchical feature, the modeling result within the DEVS formalism can be

represented as a tree structure, as shown in Figure 1(a). Each leaf node of the tree is an

atomic DEVS model, and each internal node in the tree is a coupled DEVS model.

Figure 1. Transformation from a Model Tree to an Abstract Simulator Tree

The DEVS abstract simulator algorithm is suggested for the simulation of DEVS

models. It includes a simulator for atomic models, a coordinator for coupled models, and

a root coordinator for controlling the entire simulation process. DEVSim++ [9, 10] is a

DEVS abstract simulator environment based on the C++ language.

To simulate a DEVS model with the abstract simulator algorithm, a model tree should

be converted to an abstract simulator tree. Figure 1(b) shows the abstract simulator tree of

the Figure 1(a) in DEVSim++. A simulator is placed at each atomic model node and a

coordinator is placed at each coupled model node of the model tree. Each abstract

simulator is connected to the corresponding atomic/coupled model. In addition, a root

coordinator is placed over the top coordinator. Simulation starts with the root coordinator

delivering the first message to the top coordinator via the link connecting them in the tree.

Whenever an abstract simulator receives a message, it requests to the associated DEVS

model for the knowledge that is required to process the message. According to the

response of the DEVS model, the abstract simulator generates new messages and sends

them to other abstract simulators. By repeating theis action, the simulation proceeds.

3. Proposed Framework

For developing concurrent programs efficiently, this paper proposes a novel software

development framework based on discrete event model and simulation formalism. Figure

2 illustrates the framework. It looks similar to the traditional waterfall framework [11] or

prototyping framework [12]. However, it has two significant differences.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.10 (2015)

332 Copyright ⓒ 2015 SERSC

Figure 2. The Flowchart of the Proposed Framework

First, in the design phase, a concurrent program is modeled by using the DEVS

formalism and the modeling result is verified and validated through simulation

experiments in the DEVSim++ environment. Software validation is a quite difficult, time-

consuming job. Validation of a multi-thread program is more difficult due to non-

determinism in thread scheduling. Generally, to validate software design result, it should

be implemented to an actual program. On the contrary, the design result specified by the

DEVS formalism can be easily validated through simulation experiments in the

DEVSim++ environment without implementing to an actual program. Moreover, non-

determinism in thread scheduling can be easily eliminated, since execution of components

is strictly controlled by a synchronization mechanism based on virtual time in the DEVS

formalism.

Second, in the implementation phase, the verified/validated modeling results are

transformed to an actual program code through a series of conversion steps. The rest of

this paper is devoted to explain how a DEVSim++ code which models and simulates a

concurrent program can be translated to an actual program code.

Figure 3. Transformation from an Abstract Simulator Tree to a Multi-
Threaded Program

A DEVSim++ simulation code can be converted to an actual program code in various

ways. From the fact that the behavior of the designed software is specified by only atomic

models within the DEVS formalism, this paper implements the program code so that the

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.10 (2015)

Copyright ⓒ 2015 SERSC 333

software design result represented by the DEVSim++ simulation code can be maintained

as much as possible. The implementation phase consists of three parts as shown in Figure

3(b); 1) each pair of ‘atomic model–simulator’ is implemented as an independent thread

(Section 3.1); 2) the connection information between atomic models stored in all ‘coupled

model–coordinator’ pairs is converted to a data structure (Section 3.2); and 3) the

scheduling function included in the root coordinator and ‘coupled model–coordinator’

pairs is implemented as a thread (Section 3.3).

3.1. Atomic Thread

Each pair of an atomic model and a simulator is implemented as a single thread, called

an atomic thread. In this paper, to preserve the software design result included in

DEVSim++ codes as much as possible, the atomic model code is scarcely changed, but

the simulator part is entirely recoded as the control code of the atomic thread. More

precisely, the four characteristic functions (e.g. the external/internal transition function,

the time advanced function, and the output function) and the state variable set, specified

in DEVSim++ atomic model codes, are unchanged. However, the specification of the

input/output events sets are migrated into the port mapping table, which will be explained

in Section 3.2, and is referenced during inter-thread communication.

Figure 4 shows the simplified architecture of an atomic thread. An atomic thread is

divided into two parts: the control code part and the atomic model part. The control code

is the main routine of the thread. It checks arrival of messages continuously, and invokes

appropriate functions of the involved atomic model. The atomic model part consists of the

four characteristic functions and the state variable set of an atomic model as stated earlier.

Figure 4. Structure of the Transformed Multi-Threaded Program

Whenever an atomic thread receives a message from other threads, the message is

delivered to the control code. The message is classified into two types depending on the

source of the message: the messages transmitted from other atomic threads, and the

messages transmitted from the scheduler thread. If the delivered message is transmitted

from other atomic threads, this means that the message is an output event generated by

other atomic model. Therefore, the control code calls the external transition function to

change the state of the atomic model. It then calls the time advanced function to

determine the next schedule time, and send the time to the scheduler thread, which will be

explained in Section 3.3.

Meanwhile, if the delivered message is transmitted from the scheduler thread, the

message corresponds to the schedule message generated by the root coordinator in

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.10 (2015)

334 Copyright ⓒ 2015 SERSC

DEVSim++. Now, the control code calls the output function to produce output events,

which will be transmitted to other atomic threads, and calls the internal transition function

to change the state of the atomic model. It finally calls the time advanced function and

delivers the new schedule time to the scheduler thread.

3.2. Port Mapping Table

A port mapping table plays a role in connecting the input/output events of atomic

models embedded in atomic threads. To attain this end, two types of information are

required; the information of input/output events sets of atomic and coupled models, and

the coupling information between the input/output events sets. Since the modeling result

within the DEVS formalism is represented by a tree as shown in Figure 1(a), it requires a

complex operation to extract specific information from the connection information

separately stored in the many coupled models. To simplify these processes, this paper

flattens the hierarchical structure of the modeling result first. By flattening shown in

Figure 5, every hierarchical information in the modeling result is eliminated. There is only

one coupled model in the flattened model tree. Since the coupled model contains all

atomic models, it specifies every connection between the input/output events sets of the

atomic models. Finally, a port mapping table can be easily constructed from the

specification of the single coupled model.

Figure 5. Flattening of Figure 3.1

3.3. Scheduler Thread

The scheduler thread generates a schedule message to activate execution of the atomic

threads. It implements the scheduling function that is included in the root coordinator and

‘coupled model–coordinator’ pairs in DEVSim++. To attain this end, the scheduler thread

consists of a scheduling time table and an alarm timer. Whenever an atomic model

embedded in an atomic thread changes its state, it reports its next scheduled execution

time to the scheduler thread by transmitting a message. Then, the scheduler thread updates

the scheduling time table properly, and set the alarm timer to the minimum value of the

scheduling time table. Eventually, when the alarm timer expires, the scheduler thread

generates a schedule message and delivers the message to the corresponding atomic

thread to activate the atomic thread.

3.4. Thread Population Tuning

Depending on the modelers’ expertise or perspective, a system can be modeled in

various ways even with the same MAS technique. Therefore, a huge number of atomic

models may be generated in some cases. As explained earlier, if one atomic model is

implemented in one atomic thread, too many threads should be generated. This increases

the context switching overhead and negatively influences the performance of the software.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.10 (2015)

Copyright ⓒ 2015 SERSC 335

Besides, the proposed framework may not be applied if the execution environment has

limitations in the number of threads (e.g., uC/OS [13]). However, it is not appropriate to

limit the total number of atomic models in modeling, since it restricts modelers’ degree of

freedom.

Figure 6. Structure of a Combined Thread

This paper suggests a method for implementing threads without over-generating them,

while securing the modeling freedom. Although there may be many ways to adjust the

number of threads, this paper suggests a method that implements several ‘atomic model–

simulator’ pairs in one thread, called a combined thread. Regardless of whether an atomic

model is implemented by an atomic thread or a combined thread, it would be very

favorable if both of the threads can be implemented with the nearly identical code. To

attain this end, the control code of an atomic thread is rewritten and modularized into a

function called the entrance function in figure 6. Thus, when a combined thread receives a

message, the control code of the combined thread invokes an appropriate entrance

function after it finds the destination of the message by using the port mapping table.

4. Conclusions

This paper proposes a framework to develop concurrent programs based on a discrete

event system modeling and simulation methodology. The proposed framework employs

the DEVS formalism and DEVSim++ for the design, simulation, and implementation of

concurrent programs. This paper mainly focuses on how to translate a DEVS model of a

concurrent program to an actual program code. Each atomic DEVS model is converted to

an atomic thread, and the coupling information distributed in coupled DEVS models are

collected into a port mapping table. In addition, for scheduling of operation of atomic

threads, the scheduling function of DEVSim++ is implemented by a scheduler thread.

Lastly, we suggested a method to reduce the number of threads through combining

several atomic threads into a combined thread. The proposed method thus reduces the

context switching overhead caused by thread over-generation, improves the software

performance, and enables us to develop concurrent programs even in an environment

having limitations in the number of threads.

References

[1] W. T. Tsai, Z. Cao, X. Wei, R. Paul, Q. Huang and X. Sum, “Modelling and Simulation in Service-

Oriented Software Development”, Simulation, vol. 83, (2011).

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.10 (2015)

336 Copyright ⓒ 2015 SERSC

[2] Y. H. Kim, T. Y Lee, Y. R. Seong and H. R. Oh, “Design and Realization of Multi-Thread Structure for

an LLRP Server”, Applied Mathematics & Information Sciences, vol. 6, no. 3, (2012), pp. 1117-1123.

[3] M. Emmi, Q. Shaz and R. Zvonimir, “Delay-bounded scheduling”, ACM SIGPLAN Notices, ACM, vol.

46, no. 1, (2011), pp. 411-422.

[4] B. P. Zeigler, “Theory of Modelling and Simulation”, John Wiley, New York, (1984).

[5] B. P. Zeigler, “DEVS formalism: A framework for hierarchical model development”, IEEE Transactions

on Software Engineering, vol. 2, (1988), pp. 228-241.

[6] B. P. Zeigler, “Object-oriented simulation with hierarchical, modular models: intelligent agents and

endomorphic systems”, Academic Press, (2014).

[7] Y. H. Kim, H. R. Oh and Y. R. Seong, “Software Development Method Using the Concurrency Control

Approach Based on DEVS Simulation”, Proceeding of the 2014 FTRA International Conference on

ACS, vol. 11, no. 7, (2014), pp. 553-558.

[8] T. G. Kim, “DEVS Formalism: Reusable Model Specification in an Object-Oriented Framework”,

International Journal in Computer Simulation, vol. 5, no. 4, (1995), pp. 397-415.

[9] T. G. Kim and S. B. Park, “The DEVS Formalism: Hierarchical Modular Systems Specification in C++”,

Proceeding of 1992 European Simulation Multi-conference, (1992), pp. 152-156.

[10] T. G. Kim, “DEVSim++ User's Manual: C++ Based Simulation with Hierarchical Modular DEVS

Models”, (1994).

[11] D. Whitgift, “Methods and tools for software configuration management”, John Wiley, (1991).

[12] S. W. Randy, “Prototyping and the Systems Development Life Cycle”, Journal of Information Systems

Management, vol. 8, no. 2, (1991), pp. 47-53.

[13] J. J. Labrosse, “uC/OS:The Real-Time Kernel”, R&D Publications, (1992).

[14] J. H. Im, H. R. Oh and Y. R. Seong, “Development of Concurrent Programs based on a Modelling and

Simulation Formalism”, Proceedings of International Workshop Ubiquitous Science and Engineering,

Jeju island, Korea, August 19-22, (2015).

Authors

Jung Hyun Im, he received the B.S degree in Department of

Electrical Engineering from Kookmin University and the M.S

degree in Department of Secured-Smart Electric Vehicle from

Kookmin University. He is currently a student in Department of

Secured-Smart Electric Vehicle from Kookmin University. His

research interests are in the areas of discrete event system modeling

and simulation, and embedded system.

Ha-Ryoung Oh, he was born in Busan, Korea, in 1961. He

received the B.S. degree in electrical engineering from Seoul

National University, Seoul, Korea, in 1983 and the M.S. and Ph.D.

degrees in electrical engineering from Korea Advanced Institute of

Science and Technology, Daejeon, Korea, in 1988 and 1992,

respectively. Since 1992, he has been a professor with Kookmin

University, Seoul. His current research interests include RFID

system, wireless sensor network, and embedded system.

Yeong Rak Seong, he received the B.S degree in electronics

engineering from Hanyang University, Seoul, Korea, in 1989 and

the M.S and Ph.D. degrees in electrical engineering from Korea

Advanced Institute of Science and Technology, Daejeon, Korea, in

1991 and 1995, respectively. Since 1996, he has been with

Kookmin University, Seoul, where he is currently a professor. His

current research interests include real-time system, wireless sensor

networks, discrete event system modeling and simulation, and

embedded system.

