
International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.10 (2015), pp.283-290

http://dx.doi.org/10.14257/ijmue.2015.10.10.28

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2015 SERSC

Flash Memory Based Failure Recovery Model by Using the F-Tree

Index

Sung-Soo Han
1*

 and Chang-Ho Seok
2

1
Department of Statistics and Information Science, Bucheon University, Korea
2
Department of Statistics and Information Science, Seoill University, Korea

Abstract

Recent advancement in mobile miniature information equipment has led to a rapid

growth in the usage of storage device based on flash memory. Also, Flash memory is

being used as the next generation’s storing device and shows rapid growth in massive

storage device such as the SSD due to the distinguishable features such as low power

consumption, strong durability, approach velocity, non-vibration, non-noise etc. These

Flash drives uses B+-Tree index universally. However, B+-tree index has a flaw which

downgrades the performance due to the repetitive writing request caused by the insertion

of node. This dissertation suggested the F-ISLD (F-Tree Index Segment Log Directory)

method which uses the F-Tree index. To prove the method’s superiority the suggested

method and BISLD (B+-Tree Index Segment Log Directory) was compared. According to

the assessment, the overall performance was increased by 29%.

Keywords: Flash Memory, Index, B+-Tree, F-Tree, Database

1. Introduction

Recently, flash memory is highly praised as a storing device for portable computer that

is equipped with SSD which has cheap price, low energy consumption, portability,

permanent storage, non-volatile, and bulk storage. Flash memory with bulk storage, has

an outstanding compatibility with other interfaces and for this reason it is a substitute

storage medium for HDD [1-2].

Existing flash memory generally uses index affiliated with B-Tree. However, B-Tree

has a problem when it comes to, writing by page, and deleting arithmetic by blocks. Due

to the Insertion and deletion of Tree node write instruction frequently occurs. This write

instruction degrades the storing performance and has a life-shortening effect on flash

memories. Therefore, to improve these defects this dissertation is suggesting a method to

use F-tree to reduce the burden of write instruction and delete instruction; thus,

establishing an outstanding performing index and will be able to recover fast from

malfunction. By using an F-Tree index, this study constitutes a system that has the ability

to quickly recover in the occurrence of disorder by using the log directory-building F-

ISLD technique (F-Tree Index Segment Log Directory technique: hereinafter referred to

as the F-ISLD technique).

The following research constructed a system that can quickly recover from malfunction

by using F-ISLD method which is a method that uses F-Tree index to construct a Log

Directory. The method that this research is suggesting is that the Log to administrate

altered information for failure recoveries. Also, when there is an alteration in root node all

the data will be committed and check pointed. And when there is a malfunction recovery,

work will be performed by the Log information. Therefore, Through the F-ISLD method

it is possible to use the buffer in the flash memory and construct a high performing F-Tree

index.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.10 (2015)

284 Copyright ⓒ 2015 SERSC

The paper is composed as follows; Chapter 2 examines the related research, Chapter 3

explains the suggested method, and Chapter 4 evaluates the performance. Chapter 5 is the

conclusion and direction of the study.

2. Related Research

2.1. NAND Flash Memory’s B+-Tree Index Buffer Recovery Method

This method is a method that builds a safe B-Tree through a slight overhead that occurs

when establishing B-Tree in a Fast speed low power consumption flash memory based

SSD. Also, it is a method that reduces recovery time after malfunction. B-Tree flash

memory index uses a failure recovery administration method that makes all the data to go

through checkpoints and to be committed to SSD so that it can recover its memory back

to the committed stage when there is a malfunction. Today B-Tree is mostly used for

efficient search in Bulk storage device. Therefore, the problems that can occur in the

process of establishing B-Tree in the SSD can be found in the storage system that uses the

Bulk SSD. To solve these problems, methods such as BFTL and IBSF was suggested.

These methods doesn’t save the index data that occurs when B-Tree is established, but

temporarily stores it in the buffer and when the buffer is filled, then, reflects it to the B-

Tree. Through these processes it reduces the number of write instruction and enhances the

B-Tree performance. Especially, IBSF does not commit all the indices but only the ones

that are expected to be exported. Also, among the buffers by deleting overlapping data it

solved the problem of overhead which was a problem in BFTL. However, in the flash

memory by using the buffer when establishing B-Tree it has a possibility of losing all the

data when the power goes off due to malfunction. Especially, when the power goes off

suddenly all the non-reflected index data will be lost, therefore, all the internally linked

data could be lost Thus, a sound B-Tree cannot be established. Generally, Log is used for

failure recovery, however, when there is a lot of loss due to malfunction and when there is

no way of distinguishing the right Log information it can add up to high cost is recovery.

Also, when using B+-Tree in searching in flash memories multiple write instructions

occur due to various entries that B-tree node presents. Therefore, a concentrated write

instruction will decrease the performance skill of a flash memory. Thus, the critical flaw

when establishing B-Tree is that a lot of write instructions occurs in a particular area [3-7].

2.2. IBSF Techniques

In this technique, IBSF utilizes a software module that can insert either a flash layer or

file switching. Also the order of the flash memory has been restricted for a more efficient

build-up of the B-Tree. ISBF is made through the unit of the nodal information change

that occurs due to the build-up of the B Tree, and keeps the buffer going temporarily.

After the buffer is completed, the node is renewed by collecting all the units and the

committed to one page. Also, ISBF reduced the amount of units by finding all units that

were duplicated and either erase it or hold it as bit stream mode. Through this process,

IBSF delayed the moments when buffers were packed, and reduced the number of writing

operations. Therefore, ISBF can reduce costs because it only requires one operation for

completion [5].

2.3. MR-Tree Technique

MR-Tree is a disk based index in space index form that does not require usage of the

main memory but can still approach space data. Also, MR-Tree has a space index

structure that has a modified form of the space data approachable R-Tree. In the main

memory system, when the difference between the CPU's speed and the memory's speed is

rising, it is important to reduce the amount of cash miss, and to take into account these

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.10 (2015)

Copyright ⓒ 2015 SERSC 285

characteristics, MR- Tree has the slight advantage over R-Tree when it comes to being

able to increase the usage rate of the middle node entry while lowering the tree's height.

Also, through the use of the indexing technique in the flash memory, the efficient

approach and management of big amounts of data is possible. However the Tree Index

has regular changes in the insert, delete, and split actions. Also, even through the node

entry change, writing operations and erasure operations happen frequently, causing the

problem of lowering the performance. Therefore, in order to fix this problem the

materialization of an efficient R-Tree and lowering of the buffering layer's writing

operation frequency of the BFTL and the flash memory system was used to fix the low

performance problem, but there is the problem of having additional search operations, and

while the efficient approach and management of big data is possible, there is pressure of

decoding and re-recording of the same sectors in the same location, when the insert/erase

operations and rebalancing operations such as division/merge are carried out [8].

2.4. Crashed Flash File Restoration Technique

This technique is used for efficient resetting during irregular file system crash

situations by changing the settings of working area to manipulate the writing tool to be

used only in particular areas of the whole flash memory space. Also, working area data

can be saved in promised space, so when initialization is carried out, the user can grasp

the crafting of the most recently set operation. Through this structure, only the most

recent work area is examined and initialized in crash situations. Through this, the amount

of time it takes for a crash to be restored proportionately increases with the size of the

working area. Through this technique, the problem of increasing expandability is resolved,

for no matter how much the flash memory's capacity increases, the crash restoration time

is proportionate to it. However, this technique has the weakness of the capacity of the

flash memory not being proportionate to the restoration time [9].

3. Technique in Restoring Damaged Flash Memory Base through F-

Tree

This research offers a flash memory base restoration technique by improving the B-

Tree flash memory, which is the foundation of the base memory database and basic disk

database, and using the F-Tree saving technique, which gets rid of pressure from the

writing/erasing operations and is able to improve performance. The offered technique is

using the node compression and complex operation compression characters in the B-Tree

and merging it with the log directory of the F-Tree's improved structure.

3.1. F-Tree Index System Structure

The F-ISLD technique recovery structure is composed of an F-Tree index and log

directory, and the diagram is shown in [Figure 1]

With a flash memory, it is impossible to convert each bit from 0 to 1 when carrying out

write operations after elimination calculations. However it is possible to carry out writing

operations converting 1 to 0, so when changing from 0 to 1 the elimination calculation to

reset every bit to 1 must be conducted first. However, the write operation from 1 to 0 has

a distinct characteristic in that it is possible without the elimination calculation and it is

possible to have higher improvement of performance using this characteristic. In other

words, on one page writing 1 to 0 can be repeated without the elimination calculation.

Also, the pressure of elimination calculation is removed, extending the life of the flash

memory and reducing the saving time.

The F-Tree algorithm is applied in this technique. When applying this algorithm certain

malfunctions within the flash memory could occur, it is possible to recover the service

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.10 (2015)

286 Copyright ⓒ 2015 SERSC

quickly through the RedoLog quick search engine. This is because the F-Tree is superior

to others when browsing [10-11].

This technique creates an index range whenever the F-Tree is modified and maintains

the buffer until it is full, when the commit is carried out. Also, it records and saves

modified information on the log, and when the route node is modified, it commits every

index range and executes Check point.

Figure 1. F-ISLD Technique Recovery Structure

3.2. F-Tree Index Algorithm

F-Tree is the structure of the original B+ Tree added with compressing and subsequent

writing. The compression of nodes is executed by compressing the key part and the

pointer part separately to increase compression efficiency. The F-Tree Index is based off

the B+Tree and includes the basic structure of the B+Tree. In the index calculation, when

there is insertion or deletion in the tree node, the search engine calculation execution

occurs, the compression and recover calculations are added to the original calculations,

and in the NAND Flash memory the subsequent writing calculation function is added to

the node which it is to be stored. The F-Tree algorithm is applied to algorithm [10].

Struct Block_Header {// elimination segment block

BYTE B_Status;// B_FREE : Not used after initialization

// B_WRITING : writing operation in process

 // B_FULL : Full of pages using the blocks

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.10 (2015)

Copyright ⓒ 2015 SERSC 287

 // B_PREINVALID : Copying to recycle blocks

 // B_INVALID : Invalid state

Int No_Erase //number of erase operations, erase operation counter

etc…// miscellaneous, Error-correcting code, check for faulty blocks, reserve blocks, various tag

information

}

Struct Page_Header {// The page the node will be saved

BYTE P_Status; //P_FREE : Able to record due to initialization

 //P_PREWRITE : Writing operation in process, not complete

//P_COMPLETE : The uncompressed page where the writing operation is

complete

 //P_COMPRESSED : Page where 1st compression is complete

//P_COMPRESSED2 : Page where 2nd compression is complete

//P_PREINVALID : Recycle operation copying to another location

//P_INVALID : Invalid state, erased state

short Comp1_end; // 1st compressed data last location offset

short Comp2_end; //2nd compressed data last location offset

etc…// miscellaneous, page number, error-correction code, various tag information is stored

}

Struct Internal_Node {

 Short isLeaf: // 0: intermediate node

 Short num_of_children; //fan-out

 Node *pointer_to_children[MAX1];

// array of pointer to subnode

 Key key/[MAX1-1];

};

Struct Leaf_Node {

 Short isLeaf; // 1 : leaf node

 Short num_of_object ; //fan-out

 Node *pointer_to_object[MAX2];

// array of pointer to sub-object

Key key[MAX2];

Struct Leaf-node *next;

// pointer to next leaf node

};

By applying the algorithm, compression is possible, thus reducing save space and the

1st writing is done in the front and afterwards during tree modification it is possible to

continue writing in the back secondarily, reducing the number of elimination calculation

by half and increasing the tree process performance as a whole, compositing a superb tree

index. The way to simulate is by creating a transaction of fixed reading and writing of

numbers per second and as a flash memory data base environment main performance

evaluation measurement, measures the transaction handling.

4. Performance Evaluation

In this research a simulation was conducted to prove the performance of the F-ISLD

technique using the F-Tree. In this simulation the comparison target search technique to

the F-ISLD method is the BISLD method using the B+Tree. The tools used are CSIM

(Schwetman, 1992) simulation language and C++. The hardware the experiment was

conducted on was Intel i7-4770 (3.6GHz) CPU and main memory of 4GB, Hard disk

500GB, the operating system used is the Windows 2000 server. Transaction process

means how many transactions were processed per second.

4.1. Experiment Result and Analysis

The results comparing the F-ISLD method introduced in this thesis and the original

BISLD method is as follows

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.10 (2015)

288 Copyright ⓒ 2015 SERSC

Table 1. Recovery Performance Comparison Graph (Measurement :ms)

Transaction BISLD F-ISLD
Improvement

 Rates

400 1.04 0.74 29%

700 0.95 0.68 29%

1,000 0.90 0.65 29%

1,300 0.87 0.62 29%

1,600 0.85 0.60 29%

1,900 0.83 0.59 29%

2,200 0.81 0.58 29%

2,500 0.80 0.57 29%

2,800 0.79 0.56 29%

3,100 0.78 0.55 29%

The transactions created per second are increased from 400 to 3,100 with a unit of 300.

The recovery process time shows the distribution from 0 to 1, and displays the lowest F-

ISLD method 0.55 to the highest BISLD 1.04. Also, the two methods’ performances are

compared and the improvement ratio is marked.

Figure 2. Recovery Time Performance Comparison

Figure 2 displays the performance evaluation results of the original method and the

proposed method using a graph. In the graph, it is confirmed that the proposed method

improved 29% more than the original method.

5. Conclusion

In this research, in relation to the search and save method of the recently popular

portable saving device, the flash drive, the structure of the B+Tree Index which is widely

used as the original tree based search and save technology was analyzed. The B+Tree has

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.10 (2015)

Copyright ⓒ 2015 SERSC 289

problems in it due to the frequent writing technology during the insertion and deletion of

nodes, the memory performance decreases and lowers the durability so when there are

defects the recovery is slow. Therefore, in this thesis, to fix the problems occurring during

recovery, a method was introduced that includes the index using the F-Tree and also

allows it to recover simultaneously. The F-Tree search method takes into consideration

the disadvantages of input and output of the flash drive, whose writing calculation and

elimination calculation is comparatively extremely slow, and used the new compressed

continuous writing method to reduce the number of low speed elimination calculation.

Therefore, through the use of the F-Tree, the response and process performances of the

tree calculation improved. Also, in this thesis the F-ISLD was built using the F-Tree on

flash drives, and through the speedy recovery of faults the recovery performance was

improved. In the comparative evaluation results, it is confirmed that there was a recovery

time decrease and performance improvement of an average of 29% compared to the

BISLD method. In the future, there needs to be continuous research on improving the

recovery from defects on portable storage devices that use the NAND flash memory.

References

[1] S. E. Corporation, “PM810”, Data Sheet, (2011).

[2] T. S. Chung, “A survey of Flash Translation Layer”, Journal of Systems Architecture, vol. 55, (2009),

pp. 332-343.

[3] C. H. Wu, L. P. Chang and T. W. Kuo, “An Efficient B-Tree Layer for Flash-Memory Storage Systems”,

Proc. RTCSA, Tainan, Taiwan, (2003), pp. 409-430.

[4] C. H. Wu, L. P. Chang and T. W. Kuo, “An Efficient R-Tree Implementation over Flash-Memory

Storage Systems”, Proc. Lf ACM CIS’03, New Orleans, Louisiana, USA, November 7-8, (2003), pp.

17-24.

[5] H. S. Lee, B. K. Kim, Y. D. Joo and D. H. Lee, “An Efficient Recovery Management Scheme for an

Index Buffer of B+tree based on NAND Flash memory”, Journal of Database Research Society, vol, 27,

no.03, (2011), pp.20-40.

[6] H. S. Lee and D. H. Lee, “An Efficient Index Buffer management Scheme for Implementing a B-Tree

on NAND Flash Memory”, Data & Knowledge Engineering, vol. 69,no.9, (2010), pp. 901-916.

[7] T. S. Chung, D. J. Park, S. Park, D. H. Lee, S. W. Lee and H. J. Song, “A survey of Flash Translation

Layer”, Journal of Systems Architecture: the EUROMICRO Journal, vol. 55, (2009), pp. 332-343.

[8] K. C. Kim and S. W. Yun, “MR-Tree: A cache-conscious main memory spatial index structure for

mobile GIS, Web and wireless geo-graphic information systems”, The 4th international workshop

(W2GIS 2004), (2004), pp. 167-180.

[9] H. C. Park and C. Yoo, “A Design of Efficient Crash Recovery Technique for NAND Flash File

System”, Journal of Korea Information Science, vol. 35, no. 2, (2008).

[10] S. W. Byun, “F-Tree: Flash Memory based Indexing Scheme for Portable Information Devices”, Journal

of Information Technology Applications & Management, vol. 13, no. 4, (2009), pp.257-271.

[11] S. S. Han and C. H. Suk, “Enhancement study on NAND flash memory-based failure recovery using F-

tree”, Advanced Science and Technology Letters, (Ubiquitous Science and Engineering 2015), vol.107,

(2015), pp.66-69.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.10 (2015)

290 Copyright ⓒ 2015 SERSC

