A Study on Genes Information from Microarray Analysis of Cancer
AUTHORS
V. Sujatha,Department of CSE, Vignan’sNirula ITW Palakaluru, Guntur, AP, India
Shaheda Akthar,Department of CS, Government Women’s College, Guntur, AP, India
ABSTRACT
A DNA microarray will track the expression levels of thousands of genes at the same time. Previous analysis has incontestable that this technology is helpful within the classification of cancers. Cancer microarray knowledge ordinarily contains a little range of samples that have an outsized range of organic phenomenon levels as options. To pick out relevant genes concerned in numerous kinds of cancer remains a challenge. So as to extract helpful gene information from cancer microarray knowledge and scale back spatiality, feature selection algorithms were consistently investigated during this study. Employing a correlation-based feature selector combined with machine learning algorithms like call trees and support vector machines, we tend to show that classification performance a minimum of nearly as good as printed results is obtained on cancer of the blood and diffuse massive B-cell cancer microarray data sets. During this paper, we tend to additionally demonstrate that a combined use of various classification and have choice approaches makes it potential to pick out relevant genes with high confidence.
KEYWORDS
Animal genomics, Immunogenomics, Microarray, Microbial genomics, Vaccines, Vaccinogenomics.
REFERENCES
[1] Baskin, C.R., Garcia-Sastre, A., Tumpey, T.M., Bielefeldt-Ohmann H., Carter, V.S., Nistal- Villan, E. and Katze, M.G., “Integration of Clinical Data, Pathology, and c DNA Microarrays”. In: Influenza Virus-Infected Pigtailed Macaques (Macacanemestrina). Journal of Virology, Vol. 78, No. 19, pp. 10420-10432 (2004)
[2] Blake, D.P., Hesketh, P., Archer, A., Carroll, F., Smith, A.L. and Shirley, M.W., “Parasite Genetics and the Immune Host: Recombination between Antigenic Types of Eimeria Maxima as an Entree to the Identification of Protective Antigens”. In: Molecural and biochemical Parasitology, Vol. 138, No. 1, pp. 143-152 (2004)
[3] Blake, D.P., Shirley, M.W. and Smith, A.L., “Genetic Identification of Antigens Protective against Coccidia”. In: Parasite Immunology, Vol. 28, No. 7, pp. 305-314 (2006)
[4] Bloom, B.R., Murray and C.J.: Tuberculosis, “Commentary on a Reemergent Killer”. In: Science, Vol. 257, No. 5073, pp. 1055-1064 (1992)
[5] Blythe, M.J. and Flower, D.R., “Benchmarking B cell Epitope Prediction: Underperformance of Existing Methods”. In: Protein Science, Vol. 14, No. 1, pp. 246-248 (2005)
[6] Boyce, J.D., Wilkie I., Harper, M., Paustian, M.L., Kapur, V. and Adler, B., “Genomic Scale Analysis of Pasteurella Multocida Gene Expression during Growth within the Natural Chicken Host”. In: Infection Immunology., Vol. 70, No. 12, pp. 6871-6879 (2002)
[7] Bricker, B.J., Ewalt, D.R. and Halling, S.M., “Brucella ‘HOOF-Prints’: Strain Typing by Multi-Locus Analysis of Variable Number Tandem Repeats (VNTRs)”. In: BMC Microbiology, Vol. 3, No. 15, (2003)
[8] Brosch, R., Gordon, S.V., Buchrieser, C., Pym, A.S., Garnier, T. and Cole, S.T., “Comparative Genomics uncovers Large Tandem Chromosomal Duplications in Mycobacterium Bovis BCG Pasteur”. In: Yeast, Vol. 17, No. 2, pp. 111-123 (2000)
[9] Brown, P.O. and Botstein, D., “Exploring the New World of the Genome with DNA Microarrays”. In: Nature Genetics, Vol. 21 (1 suppl.), pp. 33-37 (1999)
[10] Brusic, V., Bajic, V.B. andPetrovsky, N., “Computational Methods for Prediction of T-cell Epitopes – a Framework for Modeling, Testing, and Applications”. In: Methods, Vol. 34, No. 4, pp. 436-443 (2004)
[11] Bulach, D.M., Zuerner, R.L., Wilson, P., Seemann, T., McGrath, A., Cullen, P.A., Davis, J., Johnson, M., Kuczek, E., Alt D.P.,Peterson-Burch, B., Coppel, R.L., Rood, J.I., Davies, J.K.. and Adler, B., “Genome Reduction in Leptospira Borgpetersenii Reflects Limited Transmission Potential”. In: Proceedings of National Academy of Science, Vol. 103, No. 39, pp. 14560-14565 (2006), USA.
[12] Caoili, S.E., “A Structural-Energetic Basis for B-cell Epitope Prediction”. In: Protein and Peptide Letters, Vol. 13, No. 7, pp. 743-751 (2006)
[13] Carrillo, C., Tulman, E.R., Delhon, G., Lu, Z., Carreno, A., Vagnozzi, A., Kutish, G.F. and Rock, D.L., “Comparative Genomics of Foot-and-Mouth Disease Virus. In: Journal of Virology, Vol. 79, No. 10, pp. 6487-6504 (2005)
[14] Chain, P.S., Comerci, D.J., Tolmasky, M.E., Larimer, F.W., Malfatti, S.A., Vergez, L.M., Aguero, F., Land, M.L., Ugalde, R.A. and Garcia, E., “Whole-Genome Analyses of Speciation Events in Pathogenic Brucellae”. In: Infection Immunology, Vol. 73, No. 12, pp. 8353- 8361 (2005)
[15] Cohen, P., Bouaboula, M., Bellis, M., Baron, V., Jbilo, O., Poinot-Chazel, C., Galiegue, S., Hadibi, E.H. and Casellas, P., “Monitoring Cellular Responses to Listeria Monocytogenes with Oligonucleotide Arrays”. In: Journal of biological Chemistry, Vol. 275, No. 15, pp. 11181-11190 (2000)
[16] Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E. 3rd, Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M.A., Rajandream, M.A., Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J.E., Taylor, K., Whitehead, S. andBarrell, B.G., “Deciphering the Biology of Mycobacterium Tuberculosis from the Complete Genome Sequence”. In: Nature, Vol. 393, No.6685, pp. 537-544 (1998)
[17] Collins, F.S., Green, E.D., Guttmacher, A.E. and Guyer, M.S., “A Vision for the Future of Genomics Research”. In: Nature, Vol. 422, No. 6934, pp. 835-847 (2003)
[18] Cummings, C.A. and Relman, D.A., “Using DNA Microarrays to Study Host-MicrobeInteractions”. In: Emerging Infectious Diseases, Vol. 6, No. 5, pp. 513-525 (2000)
[19] Cunningham, M.W., “Pathogenesis of Group A Streptococcal Infections”. In: Clinical Microbiology Reviews, Vol. 13, No. 3, pp. 470-511 (2000)
[20] Dahlquist, K.D., Salomonis, N., Vranizan, K., Lawlor, S.C. and Conklin, B. R., “GenMAPP, A New Tool for Viewing and Analyzing Microarray Data on Biological Pathways”. In: Nature Genetics, Vol. 31, No. 1, pp. 19-20 (2002)