
International Journal of Hybrid Information Technology

Vol. 9, No.9 (2016), pp. 77-84

http://dx.doi.org/10.14257/ijhit.2016.9.9.08

ISSN: 1738-9968 IJHIT

Copyright © 2016 SERSC

Diagnosis of Software using Testing Time and Testing Coverage

Amol K. Kadam
1
, S.D. Joshi

1
, Debnath Bhattacharyya

2
 and Hye-Jin Kim

3

1
Bharati Vidyapeeth University College of Engineering, Pune

akkadam@bvucoep.edu.in,

sdj@live.in

2
Department of Computer Science and Engineering,

Vignan’s Institute of Information Technology,

Visakhapatnam-530049, India

debnathb@gmail.com
3
Sungshin Women's University,

2, Bomun-ro 34da-gil,

Seongbuk-gu, Seoul, Korea

 hyejinaa@daum.net

(Corresponding Author)

Abstract

Software reliability testing plays a vital role to identify many flaws in software design

as well as functional aspects. Reliability testing encompasses the analysis of the

software’s capacity to carry out intended tasks, particular environmental conditions

within the given time instance. So, reliability estimation should be carried out within the

initial stage of the software development. Through this paper we have shown the

importance of the testing time and testing coverage in the analysis of software reliability.

Testing time is the time interim required to carry out testing mechanism. Testing coverage

includes the amount of tests exercised by the test set or batch. In order to enhance the

efficiency of the proposed system we have applied the non-homogeneous Poisson process.

Keywords: Testing time, Testing coverage, Poisson process, Software reliability

growth model

1. Introduction

Software industry plays an important role in the economical growth of the country.

Software development is carried out applying various development models. Software

testing is the one of the umbrella activity. But only testing is unable to remove all the

flaws within the software because testing mechanism is suffered from the imperfect

debugging and error generation. Imperfect debugging means the error or flaws stays

within the software as it is also after the application of testing mechanism. And bug or

fault removal procedure induces the new fault within the system. This event is known as

error generation. So have to apply the reliability growth model within the testing stage in

order to make testing mechanism more effective. Application of reliability growth model

increases the quality of the software. Development of reliable software has become an

engineering discipline rather than an art. It is a difficult task to develop totally bug or

defect free software. All program modules should be tested until the achievement of high

superiority. Entire removal of each and every fault in huge software systems is

impractical. Software should released at some point in specified time interim otherwise

additional delay will definitely be the reason of unacceptable loss of profits plus market

share.

Huge software needs the usual improvement (upgrading) in order to recover the faults

in previous versions, include new function to compete with new requirements. So, its

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.9 (2016)

78 Copyright © 2016 SERSC

necessary to find out the exact release time of the software based i.e. intent of the software

testing process. Jianfeng Yang et al. provides the approach for identifying the exact time

to release the software by evaluating the optimal release times rely on cost-efficiency[13].

Mengmeng Zhu[14] et al. analyze the various environmental factors which affects the

software reliability and gives the algebraic analytical method for the estimation of these

factors. Wasif Afzal et al.[15] suggests the several software testing mechanism

improvement procedures for these purpose they have selected following two

methodologies:

1. TPI NEXT

2. TMMi

Based on this analysis, they have estimated the various results and accordingly improve

the process.

Test coverage is an important aspect while estimating the superiority of the software

under the test and it also provides the guideline to determine when to terminate the testing

mechanism. So some researchers have included the test coverage within the reliability

growth models. Dalal Alrmuny gives the comparison of such models which encompasses

the test coverage within reliability growth model[16]. Code coverage is an appraisal

utilized to illustrate the extent to which the source code of a program is examined or

tested by means of the particular test suite. A program which has high code coverage has

been more comprehensively tested plus has a minor likelihood of including software

defects or bugs than a program which has low code coverage. Coverage information that

is collected while testing is utilizes to consider the effectual area of the test data. So,

application of code coverage in order to regulate the failure rate before SRGM application

on software enhances the reliability to great extent [5][6]. Test time is also the important

factor because testing mechanism should be completed within the specified time. Mei-Hwa

Chen et. Al[03] proposes a novel technique which involves the use of both time and

coverage measures in order to predict the software failure. Their technique utilizes

coverage information or data assembled while testing to extort only effectual data within

the specified operational profile.

Shuanqi Wang et al.[04] proposes the new software reliability growth models(SRGMs)

using following two aspects:

1. Failure data

2. test coverage

By using these aspects they tried to include the consequence of the test coverage.

Applying SRGMs in practice is somewhat complex due to complicated manual

calculations Bijoyeta Roy et al. put the concentration on S shaped SRGM utilizing a

flexible modelling approach which substitutes the traditional manual methods with

computerized techniques [11]. Shuanqi Wang et al. presents an accelerated testing

methodology relies on test coverage for enhancing the competence and effect of software

reliability testing[8]. The testing procedure is speed up by means of the strategy of not

executing redundant test cases plus recompenses their execution instance.

Some software generate correct result for some inputs and generate incorrect result for

some inputs so it is depend upon the various software requirement contexts. Software

reliability growth models perform the quantitative analysis of the failures[02][03].

Ganesh Pai[7] categorized the reliability models as black box models and white box

models. White box models deals with the internal structure i.e. source code of the

software. And black box models deals with functional behavior of the software. Various

SRGMs have been proposed by many researchers. They have assumes various

postulations depends on the environmental circumstances. Jelinski-Moranda de-

eutrophication model [8] is one of the simplest plus earlier developed model. This model

assumes various postulations. This model supposes that removal process of the fault

eliminate the fault completely and without the introduction of new faults. But this

assumption is totally impractical. Goel and Okumoto[11] have proposed the new

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.9 (2016)

Copyright © 2016 SERSC 79

approach towards the software reliability growth model relying on non-homogeneous

Poisson process. Kapur and Garg [09] have introduced the concept of imperfect

debugging in Goel and Okumoto model. Non-homogeneous Poisson Process dependant

SRGMs are effective. Shinya Ikemoto et al. evaluates the algebraic estimation of software

testing mechanism plus reliability of product by incorporating the metric dependant

SRMs[17]. A. H. S. Garmabaki el al. [18] proposes the reliability model which can

designed for the multi-release open source software (OSS), they have estimates the

various factors in order to evaluate such software systems[18].

We have implemented Non-homogeneous Poisson Process dependant SRGM with the

inclusion of testing time and testing coverage.

2. Background and Motivation

Maintaining software reliability and quality is the challenge in today’s software

industry. So developers and testers must have to develop efficient testing technique in

order to design the reliable software that can performs its tasks without departure of the

software requirements. This is the main and motivating factor behind the development of

this system. Kiyoshi Honda et al. presents their view about SRGM[20]. They have

analyzed the results of testing phase after the application of SRGM and an expectation

values. By observing the deviation between these factors they have concluded problems

with in the development of software. So it is the challenge to reduce this deviation to get

better results. This is also the motivating factor.

3. Software Development Process

Software is developed by applying the systematic software development activities.

Different types of models are utilized to develop the software. Waterfall is the basic and

simplest development model. But waterfall model doesn’t support the iterative process so;

iterative software development model has been developed. After the first iterative

development product is delivered to the customers and if the customer is not satisfied with

the developed product then again it will be redesigned according to the customer

feedback. Systematic development process helps to release the software within the

appropriate time. Basic activities within the software development are as follows [7]:

a. Communication: Customer should state the needs or the requirements at the very

initial stage. Through the communication between the customers and developers,

requirements exactly discovered.

b. Planning: Resource management activity includes within the planning.

c. Modeling: For the sake to develop the software there should be the correct design

according to which software is developed.

d. Construction: Designed system is implemented with the help of appropriate

programming languages.

e. Deployment: After the complete development of software it is delivered to the

customer and customer provides the feedback

4. Testing Coverage

Testing Coverage supposes to accomplish a enormously substantial task within

envisaging the software reliability. TC assists software programmers to carry out the

appraisal of the superiority of inspected software project plus to decide the amount of

supplementary efforts required to progress the reliability of the software. Consequent are

the classes for testing coverage [5]:

1. Statement coverage: - This class is articulated by means of the estimation of the

fraction of statements enclosed via the group of designed test cases.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.9 (2016)

80 Copyright © 2016 SERSC

2. Decision/condition coverage: - This coverage is evaluated by means of evaluation of

the fraction of decision branches enclosed via the group of designed test cases.

3. Path coverage: - This coverage is intended to estimate the fraction of execution paths

or conducts throughout a program covered by the bunch of planned test cases.

4. Function coverage:- Total function count exercised by test cases is nothing but the

functional coverage.

5. Testing Time

Testing time includes the instance necessary to carry out test process. Testing

instance rely on the variety of factors such as testing technique, size of code, and

sometimes the efficiency of testing tool etc. Total testing time comprises summation

of instance calculation essential to examine each and every module within the

software.

6. Mathematical Model

Basic concepts:

Block coverage: Total count of blocks that have been executed by test cases

Branch coverage: total count of branches that have been executed by test cases

 (1)

Notations:

m(t) = Expected no of Faults detected at time t

λ (t) = Failure Intensity of the software at time t

c(t) = Coverage function over a time interval t

α = Expected no. of faults that may be

 detected given infinite testing time

Basic NHPP :

 (2)

Test Case1 :

 (3)

Where

 t1 is first phase end of testing,

 α Expected no. of faults detected given infinite no. of testing time

 C1 is coverage function over interval time 0 ≤ t < t1

Test Case 2 :

 (4)

Where

t2 is second phase end of testing

C2 is coverage function over interval time t1 ≤ t < t2

Test Case3:

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.9 (2016)

Copyright © 2016 SERSC 81

 (5)

Where

 t3 is third phase end of testing

 C3 is coverage function over interval time t2 ≤ t < t3

Proposed EHPP Model:

 (6)

Where

 ti is end of ith phase of testing

Ci is coverage function over interval time ti-1 ≤ t < ti

7. Proposed System Architecture

Figure 1. System Architecture

Figure 1 show the internal system architecture composed of various functional

components. System encompasses the subsequent three components:

1. Input modules

2. Software reliability analyzer depends on testing time and testing coverage

3. Evaluated inference

First of all, user has to give the software with its entire coding module. Our project will

check the reliability based on white box testing strategy so internal modules should have

be given as an input to the system. Then Estimation of each module within the software is

analyzed separately through the use of testing time and testing coverage. Object oriented

metrics are estimated in this component

After this estimation evaluated inference is shown by expressing the result in the form

of graph. Figure 2 and 3 are shows the graph for the testing time detection rate and Error

rate.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.9 (2016)

82 Copyright © 2016 SERSC

Figure 2. Before Using Threshold Value

Figure 3. After Using Threshold Value

Figure 2 shows before using threshold value the complexity of software is high because

maximum lines in graph are zigzag in nature. But in Figure 3 shows result analysis after

using threshold value. After the given the suggestion by our model and make changes in

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.9 (2016)

Copyright © 2016 SERSC 83

model then definitely increases the reliability of software shown in Figure 3 maximum

lines are straight means reliability of software is better than previous one.

8. Conclusion

Maintaining software superiority is the important task while developing the

software. Reliability is estimated through the use of software reliability growth

model. This paper presents the novel approach towards the reliability by considering

the two factors i.e. testing time and testing coverage which definitely be very useful

in industry to analyze the reliability of the software.

References

[1] B. Roy, S. Kr. Misra, A. Basak, A. Roy and D. Hazra, “A Quantitative Analysis of NHPP Based

Software Reliability Growth Models”, International Journal of Innovative Research in Computer and

Communication Engineering, vol. 2, Issue 1, ISSN (Print): 2320-9798, (2014), pp. 2432-2438.

[2] J. Yang, Y. Liu ,M. Xie, M. Zhao, “Modeling and analysis of reliability of multi-release open source

software incorporating both fault detection and correction processes”, Journal of Systems and Software,

vol. 115, (2016), pp. 102–110.

[3] M. Zhu, X. Zhang and H. Pham, “A comparison analysis of environmental factors affecting software

reliability”, Journal of Systems and Software, vol. 109, pp. 150–160, (2015).

[4] W. Afzal, S. Alone, K. Glocksien and R. Torkar,“ Software test process improvement approaches: A

systematic literature review and an industrial case study”, Journal of Systems and Software, vol. 111,

(2016), pp. 1–33.

[5] M.-H. Chen, M. R. Lyu, IEEE and W. E. Wong, “Effect of Code Coverage on Software Reliability

Measurement”, IEEE Transactions on Reliability, vol. 50, no. 2, (2001).

[6] G. Pai, “A Survey of Software Reliability Models”, Department of ECE University of Virginia, VA Dec.

6, (2002).

[7] A. L. Goel and K. Okumoto, “Time dependent error detection rate model for software reliability and

other performance measures,” IEEE Trans. on Reliability, vol. R-28, no. 3, (1979), pp. 206–211.

[8] P. K. Kapur and R. B. Garg, “Optimal software release policies for software reliability growth model

under imperfect debugging”, RAIRO, vol. 24, (1990), pp. 295–305.

[9] S. Wang, Y. Wu, M. Lu and H. Li, “Software Reliability Accelerated Testing Method Based on Test

Coverage”, IEEE, (2011).

[10] C. D. Scott and R. E. Smalley, “Diagnostic Ultrasound: Principles and Instruments”, Journal of Nanosci.

Nanotechnology., vol. 3, no. 2, (2003), pp. 75-80.

[11] H. Pham and Editor, “Handbook of Reliability Engineering”, Springer, (2003).

[12] R. S. Pressman, “Software Engineering: A Practitioner’s Approach”, McGRAW Hill international

publication, seventh edition, (2004).

[13] M.-H. Chen, M. R. Lyu and W. E. Wong, “An empirical study of the correlation between code coverage

and reliability estimation”, Proceedings of the 3rd International conference on Software Metrics

Symposium, Berlin, (1996).

[14] J. Kimura and H. Shibasaki, “Recent Advances in Clinical Neurophysiology”, Proceedings of the 10th

International Congress of EMG and Clinical Neurophysiology, Kyoto, Japan, (1995).

[15] W. E. Wong, J. R. Horgan, S. London and A. P. Mathur, “Effect of test set size and block coverage on

fault detection effectiveness”, Proc. 5th IEEE Int’l. Symp. Software Reliability Engineering, (1994), pp.

230–238.

[16] S. Wang, Y. Wu, M. Lu and H. Li, “Software reliability modeling based on test coverage ”, 9th

International Conference on Reliability, Maintainability and Safety (ICRMS), (2011), pp. 665-671,

ISBN: 978-1-61284-667-5.

[17] S. Ikemoto, T. Dohi and H. Okamura, “Quantifying software test process and product reliability

simultaneously”, IEEE 24th International Symposium on Software Reliability Engineering (ISSRE) ,

ISSN :1071-9458, (2013), pp. 108-117.

[18] A. H. S. Garmabaki, A. Barabadi, F. Yuan and J. Lu, “Reliability modeling of successive release of

software using NHPP”, IEEE International Conference on Industrial Engineering and Engineering

Management (IEEM), (2015), pp. 761-766.

[19] K. Honda, S.-K. Tokyo, Japan, H. Washizaki, Y. Fukazawa and K. Munakata, “Detection of unexpected

situations by applying software reliability growth models to test phases”, 2015 IEEE International

Symposium on Software Reliability Engineering Workshops (ISSREW),(2015), pp.2-5.

[20] D. Alrmuny, “A Comparative Study of Test Coverage-Based Software Reliability Growth Models”,

11th International Conference on Information Technology: New Generations (ITNG), pp. 255-259,

ISBN:978-1-4799-3187-3, (2014).

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

http://www.sciencedirect.com/science/article/pii/S0164121216000200
http://www.sciencedirect.com/science/article/pii/S0164121215000977
http://www.sciencedirect.com/science/article/pii/S0164121215000977
http://www.sciencedirect.com/science/article/pii/S0164121215000977
http://www.sciencedirect.com/science/article/pii/S0164121215000977
http://www.sciencedirect.com/science/article/pii/S0164121215001910
http://www.sciencedirect.com/science/article/pii/S0164121215001910
http://www.sciencedirect.com/science/article/pii/S0164121215001910
http://www.sciencedirect.com/science/article/pii/S0164121215001910
http://www.sciencedirect.com/science/article/pii/S0164121215001910

International Journal of Hybrid Information Technology

Vol. 9, No.9 (2016)

84 Copyright © 2016 SERSC

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

