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Abstract 

The reconstruction of a volatility based on a Black-Scholes option pricing model is ill-

posed. In order to overcome the ill-posedness, a homotopy perturbation inversion method 

is designed to solve the inverse problem. The proposed method is a modified version of 

the Landweber method. The reconstruction of a volatility is a nonlinear problem which is 

needed to be linearized. Hence, numerical experiments consist of  the reconstruction of a 

policy parameter based on a Todaro model which is a linear inverse problem and the 

reconstruction of a volatility based on a Black-Scholes option pricing model in order to  

test the performance of the proposed method. Numerical examples show that the proposed 

method is more accurate and faster than the Landweber method.  

 

Keywords: Option Pricing, Black-Scholes Model, Inverse Problem, Volatility, 
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1. Introduction 

Inverse problems play the important role in the financial mathematics, such as the 

reconstruction of a volatility. With the development of economy and financial 

mathematics, the reconstruction of a volatility for the option pricing has been widely used 

in many real applications. Option is a popular type of financial derivatives, and provides 

us opportunities for buying or selling a certain number of basic commodity options in the 

future.  

In the option trading market, the option price is determined from option trading sellers 

and purchasers in the way of a competitive bidding based on the applications of 

computers and advanced communication technologies. In the theoretical field, Fischer 

Black and Myron Scholes provided the first complete option pricing model (the so-called 

Black-Scholes (B-S) formula) [1]. Following the framework of the B-S formula, the 

inverse problem of an option pricing is to reconstruct the risk neutral measure by using 

the measurement data [2]. 

In the option trading market, the performance of an implied volatility often shows the 

two kinds of curves: a "smile" curve and a "skew" curve which correspond to the exercise 

price and to the maturity, respectively. The reconstruction of a financial parameter is ill-

posed, in other words, a very small noise of the measurement data may lead to a very 

large error of the reconstruction. For different maturities and strike prices, the volatility is 

more stable than options or stock prices. Therefore, the reconstruction of a volatility plays 

an important role in the financial market. 

Volatility reconstruction is the important part of the B-S Theory. In 2005, Hein 

provided the analysis of Tikhonov regularization method for the inverse problem of 

option pricing in the price-dependent case [3]. Egger and Engl gave the convergence 
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analysis and stability of the inverse problem of option pricing by using a Tikhonov 

regularization method [4]. In 2014, Trong et al. investigated an explicit formula of the 

implied volatility [5]. In real applications, a Landweber method as an iterative 

regularization method is used to solve large scale problems. The stability of a Landweber 

method is superior to other methods, however, it has a slow convergent rate and a low 

accuracy. In order to improve the accuracy and convergence rate of a Landweber method, 

a homotopy perturbation inversion method is designed to reconstruct a volatility. 

This paper discusses the reconstruction of a volatility based on the Black-Scholes 

option pricing model. A finite difference method is used to solve the forward problem. 

The reconstruction of a volatility is a nonlinear inverse problem, and hence the 

reconstruction of a policy parameter based on a Todaro model (which is a linear inverse 

problem) is investigated in numerical experiments in order to test the performance of the 

proposed method for linear and nonlinear cases. 

 

2. Mathematical Model 

The B-S formula is widely used in the field of a derivative pricing, when the price 

changes of a derivative satisfy the standard geometric Brown motion. The boundary 

conditions of the different values vary with the different types of derivatives. When 

boundary conditions are given, a derivative pricing tV can be obtained by solving the B-S 

formula of the derivative pricing model. When the derivative is taken as option, the 

forward problem is defined as the determination of the option pricing. For simplicity, the 

European call option is taken as example. 

The relationship between the European call and put options shows that the 

reconstructed volatility should be the same by using the call options market quotes or the 

put options market quotes. For the European call option in the time interval [0, ]T , let 

( , ; , , )t tV V S t K T  be the European call option pricing in the domain 

: 0 ,0S t T    ,  and 
tV  satisfies [6,7]  
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where S : stock prices, K : strike price, r : interest rate, q : dividend, T : availability 

period, t : time,  : volatility. 

    In the B-S formula, except the volatility is a free variable, the other parameters and 

variables are decided by the prevailing market conditions or contracts. Hence, the 

volatility  is a very important parameter. For an option, the volatility can be 

reconstructed from the B-S formula. The inverse problem is defined as follows: 

reconstructing the volatility ( , )tS t   from the measurement 

data * *( , ; , , ) , ( 1, , )i i iV S t K T V i N   ,  
* * *(0 ),t t t T S S    . 

 

3. Solving Forward Problem using a Finite Difference Method 

A finite difference method is used to solve the B-S formula. Many methods solving the 

forward problem of the B-S formula exist in many references; however, the finite 

difference method is briefly provided  for convenience.  

Let 0, ,2 ,3 , , ,S S S S M S    0, ,2 ,3 , , ,T t t t M t     

where max ,M S S  N t T  . 
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The boundary conditions of the European call put option are taken as 

( )
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( , ) max( ,0)
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The B-S formula is in the discrete form 
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Equation (4) is written as 

, 1, 1 , 1 1, 1,i j i i j i i j i i jV AV BV CV      
                                                                     (5) 
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For the forward problem, Eqs. (4) and (5) are used to obtain 
,i jV  when   is known. 

 

4. A Landweber Method for the Inverse Problem 

A nonlinear vector-valued function is defined as
0:F V  , namely,

0( )F V  .  Let 
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Because the inverse problem is ill-posed, F  is a nonlinear ill-posed operator. To 

reconstruct the volatility, the cost function is as follows [8-10] 
2

0 2
( ) ( ) .J F V  

                                                                                                           
 (7) 

The method to solve the cost function plays an important role in inverse problems.  A 

popular algorithm-a Landweber method is briefly provided. 

The Landweber method arises from the gradient-like numerical method. This method 

does not invert the F-derivative, and hence it is widely used in large scale problems.   

    The Landweber method can be written as  
' *

1 0( ) ( ( ) ).n n n nF F V         
         

                                                                        (8)
 

For large scale problems, 
' *

0( ) ( ( ) )n nF F V     can be determined by using the 

adjoint method. Although the Landweber method is easy to implement and is stable to 

noises, it is very slow for many problems. 

In order to guarantee the convergence, the following modified version is used to solve 

the real applications: 
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' *

1 0( ) ( ( ) ),n n n nF F V          
                                                                           

(9) 

where  is a damped parameter satisfying 

1 1 .n n n n

         
 

 

5. A Homotopy Perturbation Inversion Method based on a Landweber 

Method 

The nonlinear ill-posed operator equation 
0( )F V   is transformed to the Euler 

equation 
' *

0( ) ( ( ) ) 0,F F V   
                                                                                               (10)  

where 
'( )F  is the F-derivative. 

Setting a homotopy mapping YFH  ]1,0[:  

]1,0[,0))(1()])(()([),( 00

*'  pxpVxFxFppxH                   
(11)

 

where p : embedding parameter, 0V : an initial guess value.  Hence,  

0

' *

0

( ,0) 0,

( ,1) ( ) ( ( ) ) 0.

H x x

H x F x F x V

  

  
                                      

(12) 

  is taken as the power series of p : 

,2

2

10   ppx
                                             

(13) 

and the approximation of Equation (7) is obtained as 

0 1 2
1
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p
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
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                                                                                   (14) 

The operator ( )F x  in Equation (11) is expanded as a Taylor series near 

0 ： 
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Following the power of p , one can get 
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(17) 

The volatility  for the noisy measurement data is reconstructed by the first two terms: 
' * ' ' *

1 0(2 ( ) ( )) ( ) ( ( ) ),n n n n n nI F F F F V                                           (18) 

where 0 0V V   and the parameter n denotes the iteration number. 
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When the volatility  is reconstructed by the first term: 
' *

1 0( ) ( ( ) )n n n nF F V          ,                                                                        (19) 

Equation (19) is a well-known Landweber method that is stable; however, the 

convergence rate of this method is very slow. Equation (18) is a modified version of 

Equation (19), which is called a homotopy perturbation inversion method (HPIM). 

Because HPIM is a modified version, the convergence rate of HPIM is faster than a 

standard Landweber method. 

 

6. Extension to HPIM based on a Gauss-Newton Method 

The formula (18) is designed from the Landweber method.  Another well-known 

method is called as a Gauss-Newton method, which is based on the regularized cost 

function  
2 2

0 2 2
( ) ( ) ,J F V     

                                 

(20)
 

where 0( )F V  is a misfit term ,  is a penalty term, and is a regularized 

parameter, which balances the misfit term and the penalty term. The Gauss-Newton 

method solves the above cost function as follows: 
' * ' 1 ' *

1 0[ ( ) ( ) ] [ ( ) ( ( ) ) ].n n n n k n n k nF F I F F V              

     
            

 

(21) 

Like the Landweber method, the following modified version is used to solve the real 

applications: 
' * ' 1 ' *

1 0[ ( ) ( ) ] [ ( ) ( ( ) ) ],n n n n k n n k nF F I F F V               

     
        

 

(22) 

where  is a damped parameter satisfying 

1 1 .n n n n

         
 

The accuracy and convergence rate of the Gauss-Newton method are better than those 

of the Landweber method, however, the stability of the Gauss-Newton method is worse 

than that of the Landweber method. Because it is very difficult to implement the 
'( )F   

in large scale problems, the Gauss-Newton method is widely used in small and medium 

scale problems. 

The nonlinear ill-posed operator equation 
0( )F V   is transformed to the Euler 

equation 
' *

0( ) ( ( ) ) 0,F F V    
                                                                    

 (23) 

where 
'( )F  is the F-derivative. 

Setting a homotopy mapping YFH  ]1,0[:  

' *

0 0( , ) [ ( ) ( ( ) ) ] (1 )( ) 0, [0,1]H x p p F x F x V x p x p                       (24) 

where p : embedding parameter, 0V : an initial guess value.  Hence,  

0
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H x x

H x F x F x V x


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(25) 

   is taken as the power series of p : 

,2

2

10   ppx
                                              

(26) 

and the approximation of Equation (20) is obtained as 

0 1 2
1

lim
p

x   


    
                                  

(27) 

The operator ( )F x  in Equation (24) is expanded as a Taylor series near 0 ： 
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' * '
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(28) 

Following the power of p , one can get 
1 ' *

1 0 0 0 0

2 ' * ' ' *

2 0 0 0 0 0
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and 

0 1
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   

                        

 

(30) 

 

7. Numerical Experiments 

In this section, some numerical experiments are run to test the accuracy and efficiency 

of the proposed method compared with a standard Landweber method, as the same as 

with a Gauss-Newton method. To guarantee the convergence of HPIM, the formula (18) 

is modified as 
' * ' ' * ' ' *

1 max 0[2 ( ) ( ) / ( ( ) ( ))] ( ) ( ( ) ),n n n n n n n nI F F F F F F V                   

 (31) 

where 
' * '

max ( ( ) ( ))n nF F    denotes the maximum eigenvalue. The stopping criteria 

are taken as 

0( ) ,nF V   1.05  , 

1 610
n n

n

 



 


 .                                           (32) 

 

7.1. Reconstruction of policy Parameter based on a Todaro Model (a linear case) 

Todaro model is the famous model to describe the number of  rural migrants (namely, 

workers in urban areas from rural areas) in the labor economics. A Todaro model shows 

the relationship between the number of rural migrants with the income difference of rural 

and urban areas. A Todaro model can be written in the following form 

( ),M f d                                                                                                      (33) 

where ,M d denote the number of rural migrants and the income difference of rural 

and urban areas, respectively. The function f is an increasing function, i.e., 
' 0f  . A 

modified Todaro model considers policy parameter   

( , ),M f d                                                                                             (34) 

where  describes the efficiency of government policy.  
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 I  rural areas and J urban areas are considered. 
ijd  (1 ,1i I j J    ) stands for 

the income difference between the i th rural area and the j th urban area, and 

jj
g (1 ,1j J j J    ) stands for the income difference between the j th and the j th 

urban areas. The number of  migrants into the j th urban area denotes jM . For the j th 

urban area, policy parameter j is split into two parts
r u

j j j    , where ,r u

j j  denote 

the efficiency of government policy with respect to rural and urban areas, respectively. 

The number of workers from urban areas into rural areas is set to zero.  In real 

applications, the function f has many different representations. In this section, we focus 

on the performance of the proposed method, and hence f is taken as a linear function. 

The Todaro model is modified as 

1 11 1 21 1 1 1 1 1 11 1 21 1 1 1 1 1

1

                                                                                                                        

r r r r u u u u

i I j J

r r

j j j

d d d d g g g g M

d d

       

 

           

 2 1 2

1 2

                                                                                                                        

r r u u u u

j j ij j Ij j j j j j jj j Jj j

r r r

J J J J J iJ

d d g g g g M

d d d

     

  

          

   1 2

r u u u u

J IJ J J J J J jJ J JJ Jd g g g g M            

(35) 

where the income differences ijd  and
jj

g , and the number of  migrants into the j th 

urban area jM  are known. The policy parameter 

1 1 2 2( , , , , , , , , , )r u r u r u r u T

j j J J         is unknown. 

Let 
1 1

,  
I J

j ij j jj
i j

D d G g
 

   , and  

 

1 1

1 2

0 0

 0 00 0

0 0

, , ,

j j

J J

T

j J

D G

A D G

D G

M M M M M

 
 
 
 
 
 
 
 



                                       (36) 

Equation (35) is recast as 

A M                                                                                                                  (37) 

In numerical tests, we take 30, 10I J  and add 0%, 0.5%, 1% Gaussian random 

noises to the measurement data in order to test the stability. The relative errors are shown 

in Table 1. Table 1 shows that the performance of the proposed method than that of the 

Landweber method. 

Table 1. Relative Errors 

Noise HPIM Landweber 

0% 0.58% 0.98% 

0.5% 1.66% 2.87% 

1% 3.09% 5.81% 
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7.2. Reconstruction of Volatility Based on A Black-Scholes Option Pricing Model (a 

Nonlinear Case) 

For testing the performances of HPIM and Landweber method, we set 1,2,3T  , 

respectively, and set stock prices 50S  , interest rate 0.05r  . We investigate the effect 

of different measurement data on reconstruction. A 1% Gaussian random noise is added 

to the measurement data in order to test the stability.  In Table 2, the exact and initial 

guess volatilities are provided for 1,2,3T  . Let 
1 2( , , , )L    be a piece-wise 

constant volatility with the equally-spaced time interval. Three exact volatilities are 

chosen in numerical experiments, respectively, 

Case 1: 

0.5000,   (0, );t T  

 Case 2: 

0.2000,          (0,  / 2);

0.4000,          ( / 2,  );

t T

t T T



 

  
Case 3: 

0.2500,          (0,  / 3);

0.2000,          ( / 3,  2 / 3);

0.3000,          (2 / 3,  ).

t T

t T T

t T T






 
   

Due to the nonlinearity and ill-posedness, the different initial guess volatilities are 

chosen for reconstruction in different cases:

 
    

Case 1:

 0.1000,   (0, );t T  

 Case 2: 

0.4500,   (0, );t T  

 Case 3: 

0.3000,   (0, ).t T  

 For 1T  , the reconstructed results by using the Landweber method and HPIM are 

given in Table 3. Table 4 shows the computational times of the Landweber method and 

HPIM. Reconstruction results for 2,3T  show in Tables 5-6 and Tables 7-8, 

respectively. For Case 1 and Case 2, the accuracy of HPIM is better than one of the 

Landweber method, because HPIM is a modified version of the Landweber method.  The 

computational time of HPIM is less than that of the Landweber method. The 

computational times of them are the same for the exact volatility (0.2500,0.2000,0.3000) ; 

however, the reconstruction of HPIM is much closer to the exact value. 

Table 2. Exact and Initial Guess Volatilities ( 1,2,3T  ) 

K  Exact volatility Initial guess volatility 

50 0.5000 0.1000 

50,45 (0.2000,0.4000) (0.4500,0.4500) 

50,45,40 (0.2500, 0.2000,0.3000) (0.3000, 0.3000,0.3000) 
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Table 3. Reconstruction Results (Continued 1T  ) 

Table 4. Computational Times (continued 1T  ) 

 

 

 

 

 

 

 

 

 

Table 5. Reconstruction Results (Continued 2T  ) 

 

 

 

 

 

 
 
 
 

Table 6. Computational Times (Continued 2T  ) 

 
 

 

 

 

 

 

 
 

 

 

 

Reconstructed volatility(Landweber) Reconstructed volatility(HPIM) 

0.5003 0.5000 

(0.2000,0.3997) (0.2000,0.3999) 

(0.2580, 0.2000,0.2999) (0.2517, 0.2000,0.3000) 

Time(s) (Landweber) Time(s) (HPIM) 

2.7653 0.9380 

6.3128 5.1286 

4.9863 5.090 

Reconstructed 
volatility(Landweber) 

Reconstructed 
volatility(HPIM) 

0.5005 0.5002 

(0.2001,0.3995) (0.2000,0.3997) 

(0.2619, 0.2000,0.2996) (0.2572, 0.2000,0.2999) 

Time(s) (Landweber) Time(s) (HPIM) 

3.5370 1.2742 

8.8112 6.5231 

5.6530 5.8033 
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Table 7. Reconstruction Results (Continued 3T  ) 

 

 

 

 

 

 

 

 

 

Table 8. Times (Continued 3T  ) 

 

 

 

 

 

 

 

 

 

8. Conclusions 

Both the reconstruction of a volatility based on the Black-Scholes option pricing model 

and the reconstruction of a policy parameter based on the Todaro model are investigated. 

Since the inverse problem is ill-posed, a regularization method is used to overcome the ill-

posedness. The well-known Landweber method is very slow, and hence a new method is 

designed to speed up the Landweber method. Numerical experiments show that the 

proposed method HPIM is faster and more accuracy than the Landweber method. 
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