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Abstract \/’
The reconstruction of a volatility based on a Black-Scholes option prici %! 1S ill-

ng=mo

posed. In order to overcome the ill-posedness, a homotopy perturbation i @ ethod
is designed to solve the inverse problem. The proposed deis a ified”version of
the Landweber method. The reconstruction of a volatili nlipear em which is
needed to be linearized. Hence, numerical experi %&lst of th onstruction of a
policy parameter based on a Todaro model Whl’@i linea We problem and the
reconstruction of a volatility based on a Black-Schoi€s optlon model in order to
test the performance of the proposed method. Q\erlcal ex es show that the proposed
method is more accurate and faster thamth weber me

Keywords: Option Pricing, hole , Inverse Problem, Volatility,
Homotopy Perturbation Inversi

1. Introduction

Inverse problems p |mportm: in the financial mathematics, such as the

reconstruction o ofatility. MWth the development of economy and financial
mathematics, the £€80 oma latility for the option pricing has been widely used
in many real-applications. Opt s a popular type of financial derivatives, and provides
us opportu @ for buyi @selling a certain number of basic commaodity options in the
future.

In the option tradj rket, the option price is determined from option trading sellers
and purchasers _i way of a competitive bidding based on the applications of
computers and&ced communication technologies. In the theoretical field, Fischer

Black an ron”Scholes provided the first complete option pricing model (the so-called
Black-S (B-S) formula) [1]. Following the framework of the B-S formula, the
inver, lem of an option pricing is to reconstruct the risk neutral measure by using

urement data [2].

%the option trading market, the performance of an implied volatility often shows the
kinds of curves: a "smile" curve and a "skew" curve which correspond to the exercise
price and to the maturity, respectively. The reconstruction of a financial parameter is ill-
posed, in other words, a very small noise of the measurement data may lead to a very
large error of the reconstruction. For different maturities and strike prices, the volatility is
more stable than options or stock prices. Therefore, the reconstruction of a volatility plays

an important role in the financial market.
Volatility reconstruction is the important part of the B-S Theory. In 2005, Hein
provided the analysis of Tikhonov regularization method for the inverse problem of
option pricing in the price-dependent case [3]. Egger and Engl gave the convergence
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analysis and stability of the inverse problem of option pricing by using a Tikhonov
regularization method [4]. In 2014, Trong et al. investigated an explicit formula of the
implied volatility [5]. In real applications, a Landweber method as an iterative
regularization method is used to solve large scale problems. The stability of a Landweber
method is superior to other methods, however, it has a slow convergent rate and a low
accuracy. In order to improve the accuracy and convergence rate of a Landweber method,
a homotopy perturbation inversion method is designed to reconstruct a volatility.

This paper discusses the reconstruction of a volatility based on the Black-Scholes
option pricing model. A finite difference method is used to solve the forward problem.
The reconstruction of a volatility is a nonlinear inverse problem, and hence the
reconstruction of a policy parameter based on a Todaro model (which is a linear inverse
problem) is investigated in numerical experiments in order to test the performance of the
proposed method for linear and nonlinear cases.

0

2. Mathematical Model Y
The B-S formula is widely used in the field of a derivative pricing e price
changes of a derivative satisfy the standard geometrl nv moti oundary
conditions of the different values vary with the dlff es of tives. When

boundary conditions are given, a derivative pricin e ob Wsolvmg the B-S
formula of the derivative pricing model. When erlvatlkaen as option, the
forward problem is defined as the determinatiomof the OP'[I ricing. For simplicity, the
European call option is taken as example. ( )‘

@ call

The relationship between the Eurt put options shows that the

reconstructed volatility should be the % Y Usi aII options market quotes or the
put options market quotes. For t@ ean ion in the time interval [0, T], let
V, =V (S,t;0,K,T) be _th ropea Il option pricing in the domain

2{0<S<ooO<t<'|é’ 71

N +(r- q&% (&&182882 -1V, =0

(1)
where S : c@& strike price, I': interest rate, d: dividend, T : availability
: ility

a, except the volatility is a free variable, the other parameters and
variables are Iled by the prevailing market conditions or contracts. Hence, the
volatilityw;a very important parameter. For an option, the volatility can be
reconstr, from the B-S formula. The inverse problem is defined as follows:
reco ing the volatility  o=0(S,,t) from the measurement

Sotyo, K, T)=V,, (i=1---N), t=t.(0<t.<T),S=S..

3. Solving Forward Problem using a Finite Difference Method

A finite difference method is used to solve the B-S formula. Many methods solving the
forward problem of the B-S formula exist in many references; however, the finite
difference method is briefly provided for convenience.

Let S ={0,55,258,35S,---,M5S}, T ={0,6t,26t,36t,---, Mt}
where MoS =S, Not=T .

max !
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The boundary conditions of the European call put option are taken as
V (S, T)=max(K -S,0)

V(0,t) = Ke "™V
V(S,,.t)=0.

(2
Let
Vi]N =max(K —(i6S),0) , i=01.---,M,
V, ;= Ke "0 j=01---,N
VM’J.=0, ]=0,1---,N. 3)
The B-S formula is in the discrete form
Vi,j _Vi,j—l +10'2 (i5S)2 Vi+1,j—l _2\/i,j—1 +Vi—l,j71

ot 2 58’ ?y’

Viaja—Via,
+r(ioS) L Tty =,

Equati (4) switen - \* ’ @0 X
quatlon is written as
S AV B OV o~ L NS
where | | | O \V ©
A ——5t(r| a’i?), OQ 0\6

*

B, =1+ (c’%i’* +r)6dt, N\ .
@ QP

C, :——5t(r| +0%i%).
2 A@ (6)
For the forward problem EqS¥(4) arQ@ used to obtain V; ; when o is known.

4. A Landweb r.@hod fog% e Inverse Problem
A nonlinear vectartvalued fu nis defined as F : o —>V,, namely, F(c) =V, . Let
o =(>,o< Zao(0.m),,0(n0),0(n1), 0 (nm)),
VoT =(V0 (O'O)’ v Vo (0’m)""'vo(n’o)’vo(n’l)""’vo(n’m))'

Because the i e problem is ill-posed, F is a nonlinear ill-posed operator. To
reconstruct the vglatility, the cost function is as follows [8-10]

2
J(@)=NfE0) Vo, (7)
T od to solve the cost function plays an important role in inverse problems. A
I

gorithm-a Landweber method is briefly provided.
%e Landweber method arises from the gradient-like numerical method. This method
do€s not invert the F-derivative, and hence it is widely used in large scale problems.
The Landweber method can be written as

ona =0y —F () (F(7) - V). (8)
For large scale problems, F ()" (F(c?)-V,) can be determined by using the

adjoint method. Although the Landweber method is easy to implement and is stable to
noises, it is very slow for many problems.

In order to guarantee the convergence, the following modified version is used to solve
the real applications:
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Ora =0y —0F (07) (F(07) - V), €)
where @ is a damped parameter satisfying

5
o

n+1~ “n
5. A Homotopy Perturbation Inversion Method based on a Landweber
Method

The nonlinear ill-posed operator equation F (o) =V, is transformed to the Euler
equation
F (o) (F(o)-V,) =0,

5 )
On —Ohf|

(10)
where F'(o)is the F-derivative. .
Setting a homotopy mapping H : F x[0,1]] »>Y ?\
H(x, p)= p[F (X)"(F (x) =Vo)]+ (1~ p)(x—0,) =0, p €[0]] 11)
where P : embedding parameter, V, : an initial guess v énce, @

H(x,0)=x-0,=0

H(x,1)=F () (F(x)-V,) =0. O 12
o is taken as the power series of P :
! N e -

X=0,+pPo,+po,+-, .

and the approximation of Equation @\Jbtalsr{e\@

o=|limX=0,+0,+0,
p-l (14)
The operator F(x) in jon (11) |§«e\%1ded as a Taylor series near

H(X p) = p[E @%(O—o)ﬁlx?o)(x )
,)* P)(x—0,) =0, (15)

O@ 6@F (O'o) (F(O'O)+F (o,)(po, + p o, + p o, +)=V,)

+a(0'0+p0'1+p 62+p0'3+ I

®® +1-p)(po, + sz_2 + p30'3 +--) =0,

Following th er of p , one can get
\LF—F'(GO)*(F(GO)—VO)

= (1 =F (05) F (0))(=F (5,) (F(55) = Vs)) (16)
= |p|an O, +0,+*
=0, F (0,) (F(5,)-V,) an

+(1 - F'(O-o)* F'(O'o))(_F'(O-o)*(F(Go) Vo)) +--
The volatility o for the noisy measurement data is reconstructed by the first two terms:
Ony =0y —(21=F (0,) F (67))F (07) (F(07) V), (18)

where ”Vo —VOH < 6 and the parameter n denotes the iteration number.
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When the volatilitya is reconstructed by the first term:
ona=0s —F (07) (F(o7)-V,), (19)
Equation (19) is a well-known Landweber method that is stable; however, the
convergence rate of this method is very slow. Equation (18) is a modified version of
Equation (19), which is called a homotopy perturbation inversion method (HPIM).
Because HPIM is a modified version, the convergence rate of HPIM is faster than a
standard Landweber method.

6. Extension to HPIM based on a Gauss-Newton Method

The formula (18) is designed from the Landweber method. Another well-known
method is called as a Gauss-Newton method, which is based on the regularized cost
function

*
3@ =IF @)Vl +alof;, o9
where |F(c)-V,| is a misfit term , o] is a penalty term, and & is larized

parameter, which balances the misfit term and the p t term. -Newton
method solves the above cost function as follows:

0% =0 ~[F (@) F (02) + e T'IF (o Q@ SRS
Like the Landweber method, the following mo versm?\ ed to solve the real

applications:
GrilZGﬁ_CU[FI(O-&)*FI(O-&)‘Fak@O— ) (@ -V,) +a, 0,1, (22)

where wis a damped parameter satl
5

‘ O-n+1 &\

The accuracy and conver. % of th ss-Newton method are better than those
of the Landweber method, however, t y of the Gauss-Newton method is worse
than that of the Landwet@wethod |t is very difficult to implement the F (o)
in large scale pro e Gauss- evvton method is widely used in small and medium
scale problems. Q

The nonki IN-posed_operator equation F(o)=V, is transformed to the Euler
equation

F (o) (F(o +ao =0, (23)
where F (0)i -derivative

= p[F ()" (F(X) =Vp) +ax]+ (1~ p)(x—0,) =0, p€[0,1] (24)
: embedding parameter, V, : an initial guess value. Hence,
(x,0)=x—-0, =0,

o (25)
H(x,1) =F (x) (F(x)-V,)+ax=0.
o istaken as the power series of p :
X=0,+ Po,+ pio, ++-, (26)
and the approximation of Equation (20) is obtained as
a=|irqx=ao+al+az+--~ (27)
P

The operator F(x) in Equation (24) is expanded as a Taylor series near o, :
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H(x, p)= p[FI(O-o)*(F(O'o)"‘ F‘(O-o)(x_o-o)
+0(x—0,)° =V,) +ax]+(@- p)(x—0o,) =0,
p[F'(O'o)*(F(O-o) + F‘(O-O)(po-l + p20_2 + p30_3 +e)=Vp)
+a(o, + po,+ p’o, + po, ++-)] (28)
+(1-p)(pa, + p’c, + pPoy+:+) =0,
Following the power of p , one can get
p':o,=-F (c,) (F(c,)-V,)—ao,
p*:0, =(1 =F (0,) F (0,))(=F (55) (F(05) V) (29)
_a(F'(O'o)*(F(O'o)_Vo)_ao-o)

= Iplinv O, +0;,++- ?‘
:O-o_FI(O-O)*(F(O-O)_VO)_C(O-O * @0 (30)
+(I - F‘(O-o)*FI(UO))(_F'(GO)*(F(O_O)_VO \
+ alF (@) (Floy) Vo) ~ao) +) \\,

7. Numerical Experiments QQ G.)

In this section, some numerical exp are,ru test the accuracy and efficiency

and

of the proposed method compar stan weber method, as the same as

with a Gauss-Newton method. Ttéeantee the ergence of HPIM, the formula (18)
is modified as

Oy =0, —[21 - F( (%&. (07) F (o))IF (57) (F(07) Vs,

(31)

where A, (FK\ 0' )) tes the maximum eigenvalue. The stopping criteria
are taken as Q
IF(o,) ®_ 0, T @5

o

n+l

(32)

Tod del is the famous model to describe the number of rural migrants (namely,
wor rban areas from rural areas) in the labor economics. A Todaro model shows
onship between the number of rural migrants with the income difference of rural

rban areas. A Todaro model can be written in the following form
M = f(d), (33)
where M, d denote the number of rural migrants and the income difference of rural

n”$
7.1. RECETUC n of policy Parameter based on a Todaro Model (a linear case)

and urban areas, respectively. The function f is an increasing function, ie., f >0. A
modified Todaro model considers policy parameter y

where y describes the efficiency of government policy.
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| rural areas and J urban areas are considered. d; (1<i<1,1<j<J) stands for
the income difference between the i th rural area and the | th urban area, and
g; (1< j<J,1<]<J) stands for the income difference between the jth and the ] th

urban areas. The number of migrants into the jth urban area denotes M. For the jth

urban area, policy parameter y; is split into two parts y; = y; + ;| , where x|, | denote

the efficiency of government policy with respect to rural and urban areas, respectively.
The number of workers from urban areas into rural areas is set to zero. In real
applications, the function f has many different representations. In this section, we focus

on the performance of the proposed method, and hence f is taken as a linear function.
The Todaro model is modified as
erdll+Z1rd21+"'+erdi1+"'+erd|1+7(1ugu+Zlugﬂ+"'+Zlugj1+"'+llugn= MIV’

r r r r u u u u 35
Xy + 2y + Gy et iy + 20+ 10, J.gijJr---+ J.@\j (35)

Z30yy + 30y, oo gy 0+t ypd ) + 250, + Q"‘Z;%VZ;QJJ =M
where the income differences d;; and g, and umber fgrants into the jth

urban area M; are kn Ih policy parameter

X (Zl!ZleZ!sz 1ZJ Zjv aZ‘],Z‘@nknOWb

Let D, Zdqu Zg and& s&
o G Q 0

A= 0 0 .

* J ] (36)
\\Q I?@Iﬁﬁ D G,

M oM, jl”'MJ)

Equ%cér;(ﬁ/?) is r@t as -

In numerica s, we take | =30,J =10and add 0%, 0.5%, 1% Gaussian random

noises to asurement data in order to test the stability. The relative errors are shown
in T@ ble 1 shows that the performance of the proposed method than that of the

Lan method.

Table 1. Relative Errors

Noise | HPIM | Landweber

0% | 0.58% 0.98%

0.5% | 1.66% 2.87%

1% | 3.09% 5.81%
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7.2. Reconstruction of Volatility Based on A Black-Scholes Option Pricing Model (a
Nonlinear Case)

For testing the performances of HPIM and Landweber method, we setT =1,2,3,

respectively, and set stock prices S =50, interest rate r =0.05. We investigate the effect
of different measurement data on reconstruction. A 1% Gaussian random noise is added
to the measurement data in order to test the stability. In Table 2, the exact and initial
guess volatilities are provided for T =1,2,3. Let o =(0,,0,,---,0,) be a piece-wise
constant volatility with the equally-spaced time interval. Three exact volatilities are
chosen in numerical experiments, respectively,

Case 1:
o =0.5000, te(0,T);
Case 2.

02000, te(0, T/2): \/’

={0.4000, te(T/2, T); ?\

Case 3: S 0

02500,  te(0, T/3); \* Q/
o=102000, te(T/3, 2T/3); OQ \/

03000, te(2T/3 T). \\/

Due to the nonlinearity and ill posedness’@ diffe r@tlal guess volatilities are
chosen for reconstruction in different case\

aiag.elgoo, te(0,T); &6 s&@
?S—eozhsoo, te(0,T); \G.)
Case 3:

&—0.3000, te Q.19 \
ForT =1, the tructed re% by using the Landweber method and HPIM are

given in Table 4 sh omputational times of the Landweber method and
ction r or T=2,3 show in Tables 5-6 and Tables 7-8,
Case Case 2, the accuracy of HPIM is better than one of the

Landweber method, HPIM is a modified version of the Landweber method. The
computational HPIM is less than that of the Landweber method. The

i
computational @ hem are the same for the exact volatility (0.2500,0.2000,0.3000) ;
however, the reconstruction of HPIM is much closer to the exact value.

O able 2. Exact and Initial Guess Volatilities (T =1,2,3)

Exact volatility

Initial guess volatility

&«

50 0.5000 0.1000
50,45 (0.2000,0.4000) (0.4500,0.4500)
50,45,40 | (0.2500, 0.2000,0.3000) | (0.3000, 0.3000,0.3000)
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Table 3. Reconstruction Results (ContinuedT =1)

Reconstructed volatility(Landweber)

Reconstructed volatility(HPIM)

0.5003

0.5000

(0.2000,0.3997)

(0.2000,0.3999)

(0.2580, 0.2000,0.2999)

(0.2517, 0.2000,0.3000)

Table 4. Computational Times (continuedT =1)

Time(s) (Landweber)

Time(s) (HPIM)

2.7653

6.3128

4.9863

Table 5. Reconstruct;or@Qlts (Coh&edT 2)

Reconstructed
volatlllty(LanQWé)

onstructed
s\\/olatlllty(HPlM)

N

0. 509& \G.) 0.5002

(& 3995\\

(0.2000,0.3997)

%‘o 20&}6)

(0.2572, 0.2000,0.2999)

Table@omputational Times (ContinuedT =2)

@ Time(s) (Landweber)

Time(s) (HPIM)

1.2742

O$ 3.5370

6.5231

O 8.8112
o

5.6530

5.8033

Copyright © 2016 SERSC
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Table 7. Reconstruction Results (ContinuedT =3)

Reconstructed Reconstructed
volatility(Landweber) volatility(HP1M)
0.5012 0.5006
(0.1998,0.3993) (0.2000,0.3996)
(0.2774, 0.2000,0.2994) (0.2581, 0.2000,0.2997)

Table 8. Times (Continued T =3)

Time(s) (Landweber) | Time(s) (HPIM) dyy
47452 1.5@3\ . @
N

10.6663 Q&ua \\ P
6.2702 ’ ,S\ 6.35\(;%

8. Conclusions Xe
Both the reconstruction of a é base Black-Scholes option pricing model

and the reconstruction of a parame d on the Todaro model are investigated.
Since the inverse problem is ill-p sed rlzatlon method is used to overcome the ill-
posedness. The well- kno andweb od is very slow, and hence a new method is
designed to speed. andw er ethod Numerical experiments show that the
proposed method is fa ore accuracy than the Landweber method.
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