
International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016), pp. 65-84

http://dx.doi.org/10.14257/ijhit.2016.9.8.07

ISSN: 1738-9968 IJHIT

Copyright © 2016 SERSC

Autonomous Migration of Virtual Machine Based on OpenStack

Li Zhou
1,2

, Zhuoer Yu
1,2

, Jilin Zhang
1,2,3,4,*

, Jian Wan
1,2,4,5

 and Yusen Wu
1,2

1
School of Computer and Technology, Hangzhou Dianzi University, 310018,

Hangzhou, China
2
Key Laboratory of Complex Systems Modeling and Simulation, Ministry of

Education, Hangzhou, China
3
College of Electrical Engineering, Zhejiang University, 310058, Hangzhou,

China
4
School of Information and Electronic engineering, Zhejiang University of Science

& Technology, 310023, Hangzhou, China
5
Zhejiang Provincial Engineering Center on Media Data Cloud Processing and

Analysis, Hangzhou, Zhejiang, China

Abstract

For the problem of compute nodes load unbalance leads to the overload node impact

VM performance and the underload node waste electrical energy. Dynamic VM

consolidation is an efficient approach for improving the utilization of servers and

reducing energy costs. In this paper, we introduce dynamic consolidation into OpenStack

and implement AMVM based on OpenStack. AMVM collect and analyze all performance

data of VM and compute node in OpenStack. Then AMVM automatically schedules VM

live migrate to the most appropriate node according to the real-time load of all compute

nodes. Then we use hybrid-copy instead of pre-copy in AMVM to improve the efficiency of

VM live migration. Finally, we analyze the performance of hybrid-copy, hybrid-copy can

reduce page faults compared with post-copy and reduce total data transferred compared

with pre-copy.

Keywords: cloud computing; VM live migration; OpenStack; dynamic consolidation

1. Introduction

With the further development of cloud computing, more and more enterprises provide

public cloud by building a virtualized data center or build a business-oriented internal

private cloud. The number of cloud computing data centers are increasing, the number of

the servers also speed expansion of the scale. However, servers consume a lot of electrical

energy. According to the United States department of energy's report, the power

consumption of data center accounted for 1.5% of all US energy consumption and the

demand for electrical energy is still at 12% per year rate of growth [1]. In addition, if the

data centers of around the world as a “country”, then the total energy consumption of this

country rank No.15 in the world [2]. Furthermore, Global data center emissions of 11.6

million tons of carbon dioxide in 2007, and the carbon dioxide emissions of IT equipment

accounted for 2% of global carbon dioxide emissions [3].

To realize energy efficiencies within cloud data centers, an efficient approach is

dynamic consolidation. For underload node, VMs running on this node live migrate to

another node, and shutdown the underload node to minimize the number of active nodes

and economize the electric power resource. For overload node, VMs running on this node

also live migrate to another node to avoid performance degradation experienced by the

VMs.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

66 Copyright © 2016 SERSC

VM live migration is one of the key technology to realize dynamic consolidation. VM

live migration is to migrate a VM from a source node to another node as soon as possible

within a short downtime. During the VM live migration, all transferred data include

memory pages, VCPU state, device status, and network redirection. VM live migration is

widely used in load balance of servers in data center [4, 5], online maintenance, fault-

tolerant system and energy management [6]. Therefore, improving the performance of VM

live migration is important to improve the resource utilization and reduce the energy

consumption in cloud data center.

In this work, we introduce dynamic consolidation into OpenStack – a popular open-

source cloud computing platform and realize autonomous migration of virtual machine

(AMVM) in OpenStack. For the problem of VM uneven distribution of OpenStack, the

AMVM will collect and analyze all performance data of VM and computing node in

OpenStack. Then AMVM will automatically schedule VM live migrate to the most

appropriate node according to the real-time load of all compute nodes. The AMVM is

composed of three modules: performance monitoring module, VM migration scheduling

module and disk array driver module. The performance monitoring module responsible for

collect real-time performance data of all compute nodes and VMs in OpenStack. All

performance data are saved in RRD database. The VM migration scheduling module

analyze the gathered performance data to execute workload adjustment for computing node

which triggered load threshold. The workload adjustment will migrate some VMs from

underload or overload compute node to another appropriate compute node. Besides, the

disk array driver module can help VM which mounts a volume live migrate to destination

node successfully.

To further improve the efficiency of VM live migration, we use hybrid-copy in

OpenStack instead of per-copy. Hybrid-copy is composed of three-phase. Firstly, all

memory pages of VM will copy to the destination node in one round. Secondly, VM

shutdown in a short time and transfers VCPU state and other necessary device state to the

the destination node. Finally, VM restores running on the destination node. The remaining

dirty memory will be synchronized through on-demand request and active push. Compared

with the pre-copy, hybrid-copy can avoid iteratively copy dirty memory of VM. Compared

with the post-copy, hybrid-copy effectively reduces the number of page fault of VM after

VM restore running on destination node. Besides, we evaluate the performance of hybrid-

copy when VM under a different workload. The result of experiment shows that hybrid-

copy can reduce page faults compared with post-copy and reduce total data transferred

compared with pre-copy.

The remainder of the paper is structured as follows, in the next section, we discuss the

related work. Follow this, there is a section detailing the overall design and details of each

module of AMVM. In section 4, we describe the hybrid-copy of VM live migration and

experimentally evaluate the performance of hybrid-copy in different workload compared

with pre-copy and post-copy. Finally, we conclude the paper in section 5.

2. Related Work

With the rapid development of cloud computing, the VM scheduling algorithm of

cloud computing has also been a great progress. In order to reduce the energy

consumption of data center, Beloglazov et al. [7, 8] proposed energy-aware allocation

heuristics provision data center resources to client applications in a way that improves the

energy efficiency of the data center, while delivering the negotiated Quality of Service

(QoS). In addition, they put forward the VM optimal placement algorithm and VM

selection algorithm that is to shutdown the needless servers to achieve energy saving.

In order to improve the system resources utilization, Fabien Hermenier et al. [9]

proposed a resource scheduling algorithm named Entropy, this algorithm considers the

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

Copyright © 2016 SERSC 67

Virtualization Layer

Infrastructure Layer

... ...

Performance

Monitoring

Module

RRD Database

Data Exchange

Call Program

Hybird-Copy

VM Migration

Scheduling Module

QEMU
KVM

VM

VM

Performance

Monitoring

Client

QEMU
KVM

VM

VM

Performance

Monitoring

Client

QEMU
KVM

VM

VM

Performance

Monitoring

Client

QEMU
KVM

VM

VM

Performance

Monitoring

Client

QEMU
KVM

VM

VM

Performance

Monitoring

Client

QEMU
KVM

VM

VM

Performance

Monitoring

Client

Disk Array

Disk Array

Driver Module

Cinder

Hardware

Host Operating

System

Server

Performance

Monitoring Client

Hardware

Host Operating

System

Server

Performance

Monitoring Client

Hardware

Host Operating

System

Server

Performance

Monitoring Client

Figure 1. Architecture of AMVM

effects of two important factors on the reconfiguration time and the migration time of the

VM. Hien Nguyen Van et al. [10, 11] proposed a dynamic scheduling algorithm to solve

the problem of virtual resource scheduling in cloud computing.

Nathuji et al. [12, 13] proposed a set of management components of cluster layer and

data center layer, and put forward the VM aware energy consumption budget to add

multiple distributed manager into VirtualPower framework. The goal of VirtualPower is

maximized the performance or utilization in a certain energy budget.

Jung et al. [14] proposed a framework Mistral that optimizes energy consumption and

improves the performance gains, reduce overhead caused by caused by the various

operations and the controller itself to maximizing the overall utilization.

Zhu et al. [15] presented three individual controllers that each operating at a different

timescale, which places compatible workloads onto groups of servers, react to changing

conditions by reallocating VMs.

VM live migration is a key feature of system virtualization technologies. Pre-copy [16]

is a popular mechanism of live migration, which has been implemented in most

hypervisors such as KVM [17], Xen [18] and VMware [19]. The main idea of pre-copy is

that memory of VM is transferred to the destination node in a succession of iterations

until the remaining dirty memory can be transferred in a short enough stop and copy

phase which will not cause prolonged VM downtime.

Hines et al. [20, 21] propose using post-copy instead of pre-copy for live migration. In

post-copy, the CPU and device state are transferred immediately to the destination node

firstly, then the VM resume running on the destination node. The memory of VM will be

synchronized to the destination node through on-demand request and active push.

Compared with pre-copy, post-copy reduces the total migration time and total data

transferred but lead to performance degradation of VM due to page faults which must get

memory page from the source node.

Liu et al. [22] design and implement a CR/TR-Motion that adopts

checkpointing/recovery and trace/replay technology to provide fast, transparent VM

migration in LAN. Jin et al. [23] propose using adaptive compression of transferred data.

The dirty page will be compressed before transferred to the destination node. Then

compressed data will be decompressed and received. However, this approach increases the

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

68 Copyright © 2016 SERSC

system overload. Cerroni [24] proposes an analytical model that can evaluate the

performance of an inter-datacenter network for federated clouds during multiple live

migrations of VMs.

3. Autonomous Migration of Virtual Machine

The purpose of AMVM is to reduce energy costs and improve the server resource

utilization. AMVM collect and analysis the performance data of all compute nodes and

VM in OpenStack in real time. Then AMVM identifies the overload compute node and

underload compute node to execute load adjustment. For overload nodes need to move part

of the VM to reduce load, for underload nodes need to migrate all of the VM to other node

and this node to be in the resting state automatically to reduce the electrical energy

consumption.

Figure 1 show the architecture of AMVM. The infrastructure layer is composed of all

servers and other hardware devices. The infrastructure layer provides the underlying

computing, network and storage resources for the upper layer to achieve virtualization.
Besides, the infrastructure layer also is the key of AMVM, because the energy

consumption of data center is mainly due to the hardware of the infrastructure layer. So the

ultimate aim of AMVM is to improve the physical resource utilization by the VM

scheduling. The virtualization layer is composed of KVM, QEMU, Libvirt and other basis

software. Virtualization layer virtualizes CPU, memory and I/O devices of the

infrastructure layer, then the virtualized resources are used by OpenSatck. Furthermore,

AMVM is improved and optimized based on the OpenStack Kilo. In addition to

OpenStack components, AMVM added the disk array driver module, performance

monitoring module, and VM migration scheduling module.

3.1. Disk Array Driver Module

In OpenStack Cinder, all third party storage devices are required to implement their

driver program. Then, this device can provide persistent storage volume services for VM as

storage backend in the Cinder. So in the AMVM, we realize a driver of a disk array to

achieve create, delete, mount the volume and other functions in the Cinder. Besides, to

address the exception of VM live migration that mounts a volume, we realize a volume

migration auxiliary program to help VM with volume live migrate to destination node

normally.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

Copyright © 2016 SERSC 69

Figure 2. Internal Architecture of Cinder and Disk Array

3.1.1. Workflow of Disk Array Driver Module

Because the root partition of VM is not persistent, once this VM is deleted or failed, the

data of VM cannot be restored. So VM need mount a block storage volume which provided

by Cinder to realize persistence.

The internal architecture of Cinder and disk array as shown in Figure 2. The cinder-

volume service running on the storage node to manage storage space of each storage node,

so that several storage nodes may merge to form a storage resource pool to provide

persistence storage service for OpenStack VM. We implement the DiscArrayDriver, so

Cinder can use a disk array as storage backend. The volume of Cinder can be scheduling

by cinder-scheduler service. All operations of volume by Cinder will eventually need to

call DiskArrayDriver to achieve, and DiskArrayDriver sends commands to disk array

through the SSH or HTTP to manage storage resources. The compute node in OpenStack

and the disk array are interconnected by iSCSI, so that the block storage of disk array can

be mapped to the compute node through iSCSI. The mapped block storage can be mounted

to the specified VM as a volume by Libvirt to achieve persistent storage. DiskArrayDriver

in the process of running need to read the configuration of the disk array and connection

information in real time, so that the maintenance of the DiskArrayDriver does not need to

restart the cinder-volume service and make the new configuration into effect.

Furthermore, the cinder-API service is responsible for receiving and processing all

RESTful requests, and then send the request into RabbitMQ; cinder-scheduler service is

responsible for handling tasks in the task queue, and according to the set of strategies to

select an appropriate storage node to execute the task.

3.1.2. Volume Migration Auxiliary Program

When the VM with a volume to be migrated, the mapping relationship between VM and

source node also have to turn into the mapping relationship between VM and destination

node, then the VM can access storage volume on the destination node after live migration.

However, the migration of volume state relies on the support of disk array driver.

Therefore, AMVM realized the volume migration auxiliary program for VM and volume

state live migration correctly. The workflow of volume migration auxiliary program as

shown in Figure 3.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

70 Copyright © 2016 SERSC

Disconnect the mapping

relationship of VM with

the source node

migrate_volume

Create the iSCSI tunnel

between destination node

and disk array

Mapping the volume to

destination node

migrate_volume return

the metadata of volume

Update the Cinder

database

Restore the connection

of VM with volume on

the destination node

Complete VM live

migration

Figure 3. The Workflow of Volume Migration Auxiliary Program

At the beginning of the VM live migration, Nova will be calling Libvirt’s API to

execute VM migration. After VM have migrated to the destination node, the rest of VM

state include volume state will be migrated to the destination node. For the migration of the

volume state, the program disconnects the mapping relationship between VM and source

node firstly and the volume is in the state of being unable to read and write. Secondly, the

volume migration auxiliary program calls migrate_volume function, this function to

determine whether the destination node for the first time to connect disk array. If so, the

volume migration auxiliary program has to create the iSCSI tunnel between the destination

node and disk array. Then, mapping the volume to destination node instead of the source

node. Finally, the connection information of the volume with destination node will send to

Cinder. Cinder need to update the new connection information to the database, and then

Cinder restores the connection of VM and volume on the destination node to complete

volume live migration.

3.2. Performance Monitoring Module

Performance monitoring module is responsible for collecting and storing the

performance data of all servers and VM in OpenStack. This module includes server

performance monitoring client, VM performance monitoring client, data collection server

and RRD database. The server performance monitoring client and the virtual machine

performance monitoring client are installed on each computing node, and data collection

server and RRD database are installed on the control node. The architecture of

performance monitoring module as shown in Figure 4.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

Copyright © 2016 SERSC 71

ServersVM

VM Performance
Monitoring Client

Data Collection
Server

RRD Database

Cloud Performance
Monitoring

Server Performance
Monitoring Client

VM Performance
Monitoring Client

Server Performance
Monitoring Client

Figure 4. The Architecture of Performance Monitoring Module

Data collection server receives performance data from clients periodically, then save

performance data to RRD database file respectively after data process. Data collection

server can use unicast or multicast mode to collect performance data. In the unicast mode,

the client needs to record the IP address and port of data collection server for send

performance data to realize separate communication between each client and server across

the network. In the multicast mode, client and server need in the same network and the

client will send performance data to all nodes on the LAN. Therefore, the client will also

receive performance data from other clients. The performance monitoring module uses

unicast mode and the client send performance data to the server each 15 seconds.

Server performance monitoring client through Linux system interface to collect the

performance data of compute nodes, but also use Nova’s API to get the list of VM on the

compute node. The VM performance monitoring client according to different client

operating system use different API to collect the performance data of each VM. The

specific performance indexes of server and VM are shown in Table I and II.

Table 1. Performance Index of Server

Performance Index Description

os_name Server operating system

uuid UUID of server

heartbeat Heartbeat from server

load_one/five/fifteen Server load each 1/5/15 minutes

proc_total/run
Number of total/running

processes

cpu_num Number of CPU

cpu_usr/system/ide User/system/idle CPU utilization

mem_total Memory size

mem_free/shared/buff

ers/cached

Free/shared/buffers/cached

memory

swap_total Swap space size

swap_free Free swap space

disk_total Total disk space

disk_free Free disk space

pkts_in/out Server packets received/sent

bytes_in/out Server bytes received/sent(B/s)

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

72 Copyright © 2016 SERSC

Table 2. Performance Index of Vm

Performance Index Description

vcpu_num Number of VCPU

vcpu_util VCPU utilization ratio

vmem_total Memory size

vmem_util Memory utilization ratio

vdisk_total Vdisk space

vdisk_free Free vdisk space

vdisk_bytes_read/writ

ten
VM bytes read/writen (B/s)

vpkts_in/ out VM packets received/sent

vbytes_in/out VM bytes received/sent(B/s)

Performance data are saved in RRD (round-robin database). RRD is a fixed size

recycled database, an RRD database file contains multiple RRA, each RRA includes a

fixed number of data storage ring, if the number of data record exceeds the limit, the new

data record will cover the eldest data record.

Compared to the traditional relational database for preserve all performance data, the

relational database will occupy a large amount of disk space, RRD more frugal with disk

space. In addition, because each RRA recording performance data is based on time

frequency, RRD Tool can draw the performance data into curve graph conveniently, this

graph can clearly show the real-time running state and specific performance data of

OpenStack in the browser. It is to achieve a simple cloud monitoring easily.

Data collection server will according to the host-name of compute node to create the

corresponding file directory. Each directory preserves the performance data of this

compute node and VM located in this node. Using this file directory can avoid maintain the

corresponding relationship between VM and located compute node in performance

monitoring module. Therefore, the VM migration scheduling module get the performance

data of compute node and corresponding VM.

3.3. VM Migration Scheduling Module

The VM migration scheduling module analyzes the performance data, calculate each

computing node work load. For the compute node which loads above the upper threshold,

part of VM located this node will be migrate to other destination nodes. In order to reduce

the energy consumption of the data center, for the compute node which load is lower than

the lower threshold, all VM will be migrated to other destination node. Then the underload

node will be shutdown or transfer to sleep mode.

3.3.1. Load Threshold Setting

The upper load threshold is mainly based on the CPU, memory and network utilization

of server, if any one of them exceeds the upper load threshold that the server belongs to

overload node that need execute load adjustment. The load adjustment will migrate the VM

from overload node to other nodes until a load of this node does not trigger the upper

threshold. The workflow of load adjustment as shown in Figure 5.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

Copyright © 2016 SERSC 73

Read the performance

data of servers
RRD database

Trigger the

upper/lower

threshold

Load threshold timer

Instantaneous

overload

Select the destination

node

Recovery to

normal load

Server load

decrease/shut down

No

No

No

Yes

Yes

Yes

Figure 5. The Workflow of Load Adjustment

If the instantaneous load peak or valley of VM over the load threshold to adjust the load.

It is easy to produce a lot of invalid migration operation, instead of decreasing resources

utilization. Therefore, when a performance data of compute node exceeds the load

threshold, VM migration scheduling module will continuously monitor this compute node.

If this node keeps overload or underload within a period, then the load adjustment will be

executed. Otherwise, if this node recovery to normal load in a short time that is not

triggered load adjustment to avoid ineffective migration.

3.3.2. Selection Strategy of Destination Node

For the compute node, which need adjust load, we need to select the most appropriate

node as the destination node of VM live migration in the remaining node. The

inappropriate destination node will be likely to cause large amounts of load adjustment, so

we need to select the best destination node through setting a series of strategies.

Figure 6. The Workflow of Select Destination Node

As shown in Figure 6, in OpenStack Nova Scheduler, the VM scheduling algorithm is

composed of filter and weight. Using the filter to select a set of available compute nodes

based on all kinds of indicators. The weight is to calculate a weight for each node in the set

of available compute nodes and select the most appropriate node that is the lowest weight.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

74 Copyright © 2016 SERSC

4. Hybrid Live Migration

The current existing VM live migration mechanisms mainly include pre-copy and post-

copy. The pre-copy iterative copy dirty memory of the last round to the destination node,

and then transfers the VCPU state to resume VM running on the destination node. The pre-

copy will be caught in iterative copy for a long time and transfer many useless dirty pages

when the dirty page generated faster than the speed of the network transmission. In contrast

to the pre-copy, the post-copy copy the VCPU state before memory, and restore VM

running on the destination node immediately. The VM memory will be synchronized

through on-demand request and active push. Compared with the pre-copy, the downtime of

post-copy is shorter than pre-copy and can guarantee that all of the memory pages will be

transferred only once. However, the on-demand request gets the memory page from the

source node through the network. Frequent on-demand request leads to the VM execution

delay and the performance of VM decline.

In order to improve the efficiency of live migration of VM, we use the hybrid-copy

replace pre-copy that is the default mechanism in OpenStck to implement VM live

migration in AMVM.

4.1. Workflow

As shown in Figure 7, the workflow of hybrid-copy includes five phases.

1) Pre-Migration: Waiting for the VM migration command and select the appropriate

destination node.

2) Reservation: It should ensure that there are enough physical resource on the

destination node. The destination node will reserve those resource for migrated VM.

3) Full memory synchronization phase: All memory pages of VM sent to the

destination node in one round, and create a dirty_bitmap for recording dirty page which

is changed memory.

4) Stop copy phase: VM shutdown, the state of the VCPU, devices status and

dirty_bitmap copy to the destination node.

5) Dirty page synchronization phase: VM restores running at the destination node,

and synchronizes dirty page from the source node through two kinds of mechanism: on-

demand request and active push.

Compared with the pre-copy, because hybrid-copy only transferred all memory of VM

in memory synchronization phase, thus fundamentally avoid the situation of write memory

frequently or dirty page produces greater than the speed of network leads to multiple

iterative copy rounds. Compared with the post-copy, when VM resume running in the

destination node, destination node has saved all memory of VM except for dirty page.

Therefore most of the memory access of VM can obtain directly from the destination

node's local memory rather than get from source node by network request. Thus, the

performance cost of VM live migration will be drastically reduced the efficiency of

application which running on VM is also improved.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

Copyright © 2016 SERSC 75

VM running on

the source node

VM resume running on

the destination node

VM shutdown

Full memory synchronization phase

Stop copy phase

Dirty page synchronization phase

Complete

VM memory

synchronize

Source node releases VM resource

Yes

No

Reservation

Pre-Migration

Figure 7. The Workflow of Hybrid-Copy

4.2. Dirty Page Synchronization

In the dirty page synchronization phase, VM uses on-demand request and active push to

synchronize dirty page from the source node.

In the on-demand request, the destination node intercepts the page fault of VM and

compared with the dirty_bitmap to confirm this page has not been synchronized, then

sends this page fault to the source node. The source node receives this page fault and finds

the corresponding memory page in local memory, then transfers this page to destination

node after mark the corresponding bit in dirty_bitmap.

In order to further decrease page fault, the on-demand request adds prefetch page

technique. Because of the order and the locality of the program, when VM generates a

page fault that source node transfers corresponding memory page and neighbor memory

page of this address to the destination node. When the VM access the next page will not

trigger on-demand request again, VM can get this page from local memory, to enhance the

efficiency of application running in VM.

In order to synchronize the remaining memory dirty page as soon as possible, hybrid-

copy also use the active push mode. In active push mode, the source node sends dirty page

to the destination node that has not been synchronized. If the corresponding bit of memory

page in dirty_bitmap marked as 0, this page has already changed in the destination node, so

discard this memory page, else receives it. In addition, if the source node receives an on-

demand request in a process of active push, the source node interrupt current active push to

fulfilling the on-demand request, as soon as possible to resume VM running from page

fault exception.

4.3. Hybrid-Copy Model

The basic idea of hybrid-copy is, before by transfer all VM memory page and VCPU to

the destination node in one round before VM resume running, and then synchronize the

remaining dirty pages to reduce the number of the page fault. In this section, we describe

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

76 Copyright © 2016 SERSC

the hybrid-copy model and analyze the main parameters that affect the performance of live

migration.

Table 3. Parameters of Hybrid-Copy Model

Parameters Description

memV VM memory size

dirtyV VM dirty memory size

migV Total data transferred

downT VM downtime

migT Total migration time

resumeT
Duration of VM synchronize all

memory page since resume

running on the destination node

B

Network bandwidth between

source node and destination

node

D Dirty rate of VM memory

F Total page fault

We defined the key parameters and description of hybrid-copy in Table Ⅲ. In hybrid–

copy, the dirty memory is produced in full memory synchronization phase. The time of this

phase is memV

B
 , so the dirtyV as shown in equation (1) and the migV can be described as

equation (2)

mem

dirty

V D
V

B
 (1)

mem

mig mem dirty mem

V D
V V V V

B
    (2)

The total migration time indicates that the VM start live migrate from the source node to

resume running on destination node and all of VM memory has synchronized completely.

So the total migration time includes the time of full memory synchronization phase, stop

copy phase, dirty page synchronization phase. We sum the time of three phases as the

following equation:

 mem
mig down resume

V
T T T

B
   (3)

In stop copy phase of hybrid-copy, source node needs to transfer the state of the VCPU,

devices status and dirty_bitmap to the destination node. In addition, the destination node

needs to load the VM device status to resume VM running. We use  to describe the time

overhead of VM resume running on the destination node. VCPUW represent the size of

VCPU. Therefore, the downtime can be calculated as the equation (4).

 VCPU
down

W
T

B
   (4)

As for the resumeT , it represents the time required to synchronize all VM memory page

completely since VM resume running on the destination node. Because there are two kinds

of synchronization mechanism, the resumeT is the sum of time-consuming of the on-demand

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

Copyright © 2016 SERSC 77

request and active push mode. The parameter  as the network delay between source node

and destination node. So that the resumeT as describe as the following equation:

dirty

resume

V
T F

B
   (5)

In dirty page synchronization phase, the remaining dirty pages decrease with the active

push mode, so the number of the page fault in unit time is also gradually reduced. We

define the F as equation (6) where R is the access rate of VM memory and t is
dirtyV

B
 .

2

0

0

2

t

dirty

dirty

dirty

t

mem

mem

V
x V dx

V Rt
F tR

BV
V dx

 
  
  




 (6)

So that we can combine equation (3) ~ (7) to define the total migration time as

following:
2

2 32

mem VCPU mem mem
mig

V W V D V RD
T

B B B

 
     (7)

5. Performance Evaluation

In this section, we present a detailed evaluation of hybrid-copy compare with pre-copy

and post-copy in different workload situation.

Our performance analysis the VM live migration in OpenStack. The OpenStack

platform consists of a controller node and two compute nodes. The servers used for this

experiment are Dawning A620r-G with Gigabit Ethernet interfaces and installed Ubuntu

14.04. The software includes QEMU 1.6.0, Libvirt 1.2.18. The operating system of VM is

CentOS 6.5 and each VM with two vCPUs, memory size range from 256 MB to 4 GB.

In order to analyze the performance of all kinds of VM live migration mechanisms, we

use the following four performance metrics as the evaluation standard:

1) Total migration time: The source node receives the VM live migration command

until VM resumes running on the destination node. In addition, all relevant data of the

VM has been completely synchronized to the destination node. This performance metric

determines the occupation time of all kinds of physical resources during VM migration.

2) Downtime: The downtime is caused by synchronous VCPU state and other

necessary device information. The VM can not provide service during the downtime.

3) Total data transferred: In the process of VM love migration, all data of the source

node transferred to the destination node, which mainly includes memory pages, VCPU

state and other devices status such as the network. This performance metric determines

the utilization of network resources during the VM live migration.

4) Page faults: In the dirty page synchronization phase of post-copy and hybrid-copy,

VM in the destination node to resume running. Due to the memory pages of VM are not

completely synchronized in the destination node, the VM have to get memory page from

the source node through the network. This performance metric is the total number of on-

demand request. It reflects the performance loss caused by the VM live migration.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

78 Copyright © 2016 SERSC

5.1. Empty Workload

In the empty load experiment, VM with different memory size immediately lives

migrate to another node after power on. The experiment results as shown in Figure 8.

Figure 8. Overall Performance of Empty Workload

Because read/write memory operation of VM is very low under empty load, so the

amount of dirty pages generated is also very small. In the empty load experiment, pre-copy

is able to quickly end the memory iterative copy phase and enter the stop copy phase. The

post-copy mainly relies on active push in dirty page synchronization phase. Hybrid-copy

can synchronize the vast majority of the memory page in full memory synchronization

phase. Therefore, the total data transferred of three kinds of migration mechanism is

broadly equivalent to the memory size of VM. Besides, the total migration time is no big

performance difference between all kinds of migration mechanism.

In pre-copy, because all memory pages have already saved at the destination node when

VM resume running. So that there is no page fault in pre-copy. As the operation of access

memory is less when VM under empty workload, the number of page faults in post-copy

and hybrid-copy are very low. But compared to the post-copy, the hybrid-copy can get the

majority of the memory access from the local memory of destination node, so the number

of pages faults are less than 500 times.

5.2. Memory-Bound Workload

We use V8-benchmark programs on the VM to evaluate the memory profiling. V8-

benchmark is a suite of JavaScript-based benchmarks developed by Google, and it includes

DeltaBlue, Crypto, and Splay etc. Each benchmark is about two seconds, so we repeat to

execute the program until VM live migration complete.

As shown in Figure 9, V8-benchmark as a memory intensive application will continue

to execute write operations to generate memory dirty page. Therefore, pre-copy executes

multiple rounds of iterative copy memory before stop copy phase, caused by the total

migration time and total data transferred dramatically higher than other two kinds of VM

live migration mechanisms. When the VM with 4GB memory, the total data transferred of

pre-copy as high as 8869MB. The multiple rounds of memory copy in pre-copy leads to

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

Copyright © 2016 SERSC 79

the total migration time much higher than the other two mechanisms. The total migration

time of pre-copy averagely is 208% of the hybrid-copy and 277% of the post-copy.

For the hybrid-copy, due to the dirty memory page also increased under the memory-

bound workload. When the VM with 4GB memory, the total data transferred of hybrid-

copy is 4716MB. Compared to the 4104MB physical memory of VM, the dirty page is

612MB. This also makes the total migration time of hybrid-copy is higher than post-copy

in memory-bound workload.

Figure 9. The Overall Performance of Memory-Bound Workload

As shown in the experimental results, even in the case of high memory load, the

downtime of three kinds of VM lives migration mechanisms is basically in 20ms.

Therefore, regardless of each VM live migration mechanism, the downtime of VM is very

short and it can meet the requirement of the performance of the most applications.

However, in the memory-bound workload environment, the rate of the dirty page are

increased, the page fault of hybrid-copy and post-copy are also increased. Compared to the

post-copy, hybrid-copy significantly reduced the number of page faults. In the four group

experiments, the total number of page faults is 5562 times in hybrid-copy, and is 11528

times in post-copy. This means hybrid-copy can reduce 51.8% page faults than post-copy.

Reducing the number of page faults means that the more memory requests of a application

running in the VM can be executed in the local memory of the destination node. The

performance loss of VM caused by post-copy also can be reduced.

5.3. CPU-bound Workload

This experiment is to test the performance of the three kinds of VM live migration

mechanisms under the CPU-bound workload. To simulate the high CPU load, we use VM

to play video in this experiment.

As shown in Figure 10, the average total migration time of hybrid-copy is 66.5% of pre-

copy and is 162.3% of post-copy. Due to the dirty page rate in CPU-bound workload

experiment is relatively lower than memory-bound workload experiment. In the

experiment of VM with 4GB memory, the total data transferred of pre-copy is 6769MB.

Compared

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

80 Copyright © 2016 SERSC

Figure 10. Overall Performance of CPU-Bound Workload

to the memory-bound workload, it is reduced 2100MB. However, it still higher than

hybrid-copy and post-copy. The total data transferred of pre-copy is 140% of hybrid-copy

and 164% of post-copy.

For hybrid-copy, the downtime of hybrid-copy is slightly higher than other two kinds of

VM live migration mechanisms. The total data transferred of hybrid-copy is 123.1% of

post-copy, but hybrid-copy reduced 45% page fault than post-copy averagely. Therefore, it

is obvious that hybrid-copy has advantage in reducing performance loss caused by VM live

migration under high CPU workload.

5.4. I/O-bound Workload

High I/O workload is a common scene in cloud computing environment. In the

experiment, we use Bonnie++ to simulate the high I/O workload of VM. Bonnie++ is a set

of well-known free benchmark tool set that can be used to test the performance of hard

disk and file system. In this experiment, the test command is bonnie++ -D -x 10 -u root.

The parameter D indicates that the way of read and write disk is direct I/O pattern. The

parameter of -x 10 represents we repeat 10 times of test to ensure that high I/O workload

during the VM live migration process.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

Copyright © 2016 SERSC 81

Figure 11. Overall Performance of I/O-Bound Workload

The experiment results as shown in Figure 11. As we use Network File System (NFS)

between the source node and the destination node. The I/O operation of VM will not be

interrupted when VM live migration except for the stop copy phase. Because the memory

read/write rate of VM is low in high I/O workload experiment, the average dirty memory

of the three kinds of VM live migration mechanisms respectively is 897MB, 11.5MB and

230.6MB. That is, the hybrid-copy requires to transfer 219.1MB memory data more than

post-copy. But the hybrid-copy can reduce 41.7% page faults than post-copy in high I/O

workload experiment. Therefore, the hybrid-copy can effectively reduce the number of

page faults under the condition of increasing some transferred data.

6. Conclusions

In this work, we implement AMVM which automatically scheduling VM live migrate

to the most appropriate node according to the real-time load data of all compute nodes to

realize autonomous migration of VM in OpenStack. The AMVM includes the disk array

driver module, performance monitoring module, and VM migration scheduling module.

To improve the efficiency of VM live migration in AMVM, we use hybrid-copy

instead of pre-copy. The hybrid-copy transfers all memory page at first to ensure the

destination node saves memory page of VM when VM resume running. Then the hybrid-

copy synchronizes dirty page from a source node through on-demand request and active

push. At last, we evaluate the performance of hybrid-copy when VM under the different

workload. The result of experiments shows that hybrid-copy can reduce page faults

compared with post-copy and reduce total data transferred compared with pre-copy.

Acknowledgments

This work is partly supported by the Ministry of Science and Technology-tube

detection technology under Grants No.2014BAK14B04, the National High Technology

Research and Development Program of China under Grant No.2015AA01A303, the

Zhejiang Natural Science Funds under Grants NO.LY16F020018 and NO.LY13F020047,

the National Natural Science Foundation of China under Grants No. 61572163, No.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

82 Copyright © 2016 SERSC

61472112, NO.61572163, NO. 61202094 and NO.61472109, the National High

Technology Research and Development Program of China under Grant

No.2015AA01A303, Key Laboratory of Complex Systems Modeling and Simulation

program, Ministry of Education and Chinese Postdoctoral Science Foundation

No.2013M541780 and No.2013M540492.

References

[1] A. Hooper, “Green computing”, Communication of the ACM, vol. 51, no. 10, (2008), pp. 11-13.

[2] G, Cook and J. Van Horn, “How dirty is your data? A look at the energy choices that power cloud

computing”, Greenpeace, (2011).

[3] G. Cook, “How clean is your cloud? Report, Greenpeace International”, (2012).

[4] L. Chen and H. Choi, “Approximation algorithms for data distribution with load balancing of web

servers”, In cluster: IEEE, (2001), pp. 274.

[5] H. Kameda, J. Li and C. Kim, “Optimal load balancing in distributed computer systems”, Springer

Science & Business Media, (2012).

[6] B. Nicolae and F. Cappello, “A hybrid local storage transfer scheme for live migration of i/o intensive

workloads”, Proceedings of the 21st international symposium on High-Performance Parallel and

Distributed Computing: ACM, (2012), pp. 85-96.

[7] A. Beloglazov, J. Abawajy and R. Buyya, “Energy-aware resource allocation heuristics for efficient

management of data centers for cloud computing”, Future generation computer systems, vol. 28, no. 5,

(2012), pp. 755-768.

[8] R. Buyya, A. Beloglazov and J. Abawajy, “Energy-efficient management of data center resources for

cloud computing: a vision, architectural elements, and open challenges”, arXiv preprint

arXiv:1006.0308, (2010).

[9] F. Hermenier, X. Lorca and J. M. Menaud, “Entropy: a consolidation manager for clusters”, Proceedings

of the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution environments.

ACM, (2009), pp. 41-50.

[10] H. N. Van, F. D. Tran and J. M. Menaud, “SLA-aware virtual resource management for cloud

infrastructures”, Computer and Information Technology, 2009. CIT'09. Ninth IEEE International

Conference on. IEEE, vol. 1, (2009), pp. 357-362.

[11] H. Nguyen Van, F. Dang Tran and J. M. Menaud, “Autonomic virtual resource management for service

hosting platforms”, Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of

Cloud Computing. IEEE Computer Society, (2009), pp. 1-8.

[12] R. Nathuji and K. Schwan, “Virtual Power: coordinated power management in virtualized enterprise

systems”, ACM SIGOPS Operating Systems Review. ACM, vol. 41, no. 6, (2007), pp. 265-278.

[13] R. Nathuji, K. Schwan and A. Somani, “VPM tokens: virtual machine-aware power budgeting in

datacenters”, Cluster computing, vol. 12, no. 2, (2009), pp. 189-203.

[14] G. Jung, M. Hiltunen and K. R. Joshi, “Mistral: Dynamically managing power, performance, and

adaptation cost in cloud infrastructures”, Distributed Computing Systems (ICDCS), 2010 IEEE 30th

International Conference on. IEEE, (2010), pp. 62-73.

[15] X. Zhu, D. Young and B. J. Watson, “1000 islands: Integrated capacity and workload management for

the next generation data center”, Autonomic Computing, 2008. ICAC'08. International Conference on.

IEEE, (2008), pp. 172-181.

[16] C. Clark, K. Fraser and S. Hand, “Live migration of virtual machines”, Proceedings of the 2nd

conference on Symposium on Networked Systems Design & Implementation-Volume 2. USENIX

Association, (2005), pp. 273-286.

[17] A. Kivity, Y. Kamay and D. Laor, “kvm: the Linux virtual machine monitor”, Proceedings of the Linux

Symposium, vol. 1, (2007), pp. 225-230.

[18] P. Barham, B. Dragovic and K. Fraser, “Xen and the art of virtualization”, ACM SIGOPS Operating

Systems Review, vol. 37, no. 5, (2003), 164-177.

[19] M. Nelson, B. H. Lim and G. Hutchins, “Fast Transparent Migration for Virtual Machines”, USENIX

Annual Technical Conference, General Track, (2005), pp. 391-394.

[20] M. R. Hines, U. Deshpande and K.Gopalan, “Post-copy live migration of virtual machines”, ACM

SIGOPS operating systems review, (2009), vol. 43, no. 3, pp. 14-26.

[21] M. R. Hines and K. Gopalan, “Post-copy based live virtual machine migration using adaptive pre-paging

and dynamic self-ballooning”, Proceedings of the 2009 ACM SIGPLAN/SIGOPS international

conference on Virtual execution environments. ACM, (2009), pp. 51-60.

[22] H, Liu, H. Jin and X. Liao, “Live migration of virtual machine based on full system trace and replay”,

Proceedings of the 18th ACM international symposium on High performance distributed computing.

ACM, (2009), pp. 101-110.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

Copyright © 2016 SERSC 83

[23] H. Jin, L. Deng and S. Wu, “Live virtual machine migration with adaptive, memory compression”,

Cluster Computing and Workshops, 2009. CLUSTER'09. IEEE International Conference on. IEEE,

(2009), pp. 1-10.

[24] W. Cerroni, “Multiple virtual machine live migration in federated cloud systems”, Computer

Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on. IEEE, (2014), pp. 25-

30.

Authors

Li Zhou, she received her Master Degree from Hangzhou Dianzi

University, Hangzhou, China, in 2003. She is currently an associate

professor in School of Computer Science and Technology, Hangzhou Dianzi

University. Her current research interests include virtual storage system,

cloud storage, cloud computing and high performance computing.

Zhuoer Yu, he is a software developement engineer at NetEase, Inc. He

received his Ms from Hangzhou Dianzi University in China, 2016. His

research interests include cloud computing, distributed monitoring systems

and performance of cloud systems.

Jilin Zhang, he received the PhD degree in Computer Application

Technology from University of Science Technology Beijing, Beijing, China,

in 2009. He serves as an assistant professor of software engineering in

Hangzhou Dianzi University, China. His research interests include High

Performance Computing and Cloud Computing.

Jian Wan, he received the PhD degree in Computer Application

Technology from Zhejiang University, Zhejiang,China, in 1989. He is

currently a professor in software engineering in Hangzhou Dianzi

University,China. His research interests include Grid Computing, Service

Computing and Cloud Computing.

Yusen Wu, he is now M.S. in School of Computer Science and

Technology in Hangzhou Dianzi University, China. His research interests

include Parallel Computing, High Performance Computing and Cloud

Computing.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

84 Copyright © 2016 SERSC

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

