International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016), pp. 65-84
http://dx.doi.org/10.14257/ijhit.2016.9.8.07

Autonomous Migration of Virtual Machine Based on OpenStack

Li Zhou'?, Zhuoer Yu'?, Jilin Zhang"***”, Jian Wan'*** and Yusen Wu'?

!School of Computer and Technology, Hangzhou Dianzi University, 310018,
Hangzhou, China
’Key Laboratory of Complex Systems Modeling and Simulation, Ministry of
Education, Hangzhou, China
3College of Electrical Engineering, Zhejiang University, 310058, Hangzhou
China
*School of Information and Electronic engineering, Zhejiang University ce
& Technology, 310023, Hangzhou, China
>Zhejiang Provincial Engineering Center on Media D a Clou%ce ing and

Analysis, Hangzhou, Zhejlan\

AbstraCQ
For the problem of compute nodes load ance Ieads)%)verload node impact

unpal
VM performance and the underload nﬁ@aste «leCirical energy. Dynamic VM
consolidation is an efficient approacﬁ |mprovm utilization of servers and

reducing energy costs. In this paper odu mlc consolidation into OpenStack
and implement AMVM based o oIIect and analyze all performance
data of VM and compute no e enStack AMVM automatically schedules VM
live migrate to the most appro te node rding to the real-time load of all compute
nodes. Then we use hybridreopy instead copy in AMVM to improve the efficiency of
VM live migration. Ein e anal performance of hybrid-copy, hybrid-copy can

reduce page faults mp ed with opy and reduce total data transferred compared
with pre- copy \ %

Keywords dco L@ VM live migration; OpenStack; dynamic consolidation

1. Introduction . [y

With the furt evelopment of cloud computing, more and more enterprises provide
public clo building a virtualized data center or build a business-oriented internal
private clgtd.%The number of cloud computing data centers are increasing, the number of
the ser@so speed expansion of the scale. However, servers consume a lot of electrical
e ccording to the United States department of energy's report, the power
consumption of data center accounted for 1.5% of all US energy consumption and the
demand for electrical energy is still at 12% per year rate of growth [1]. In addition, if the
data centers of around the world as a “country”, then the total energy consumption of this
country rank No.15 in the world [2]. Furthermore, Global data center emissions of 11.6
million tons of carbon dioxide in 2007, and the carbon dioxide emissions of IT equipment
accounted for 2% of global carbon dioxide emissions [3].

To realize energy efficiencies within cloud data centers, an efficient approach is
dynamic consolidation. For underload node, VMs running on this node live migrate to
another node, and shutdown the underload node to minimize the number of active nodes
and economize the electric power resource. For overload node, VMs running on this node
also live migrate to another node to avoid performance degradation experienced by the
VMs.

ISSN: 1738-9968 IJHIT
Copyright © 2016 SERSC

International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016)

VM live migration is one of the key technology to realize dynamic consolidation. VM
live migration is to migrate a VM from a source node to another node as soon as possible
within a short downtime. During the VM live migration, all transferred data include
memory pages, VCPU state, device status, and network redirection. VM live migration is
widely used in load balance of servers in data center [4, 5], online maintenance, fault-
tolerant system and energy management [6]. Therefore, improving the performance of VM
live migration is important to improve the resource utilization and reduce the energy
consumption in cloud data center.

In this work, we introduce dynamic consolidation into OpenStack — a popular open-
source cloud computing platform and realize autonomous migration of virtual machine
(AMVM) in OpenStack. For the problem of VM uneven distribution of OpenStack, the
AMVM will collect and analyze all performance data of VM and computing<hode in
OpenStack. Then AMVM will automatically schedule VM live migrate t gth&v}ost

appropriate node according to the real-time load of all compute nodes. M is
composed of three modules: performance monitoring module, VM migrati heduling
module and disk array driver module. The performance itoring m onsible for
collect real-time performance data of all compute n d VMs penStack. All

performance data are saved in RRD database.
analyze the gathered performance data to execute doad adj

which triggered load threshold. The worklandjustment w

eduling module

underload or overload compute node to al pproprigte, compute node. Besides, the
disk array driver module can help VM W ounts a e live migrate to destination
node successfully. @

To further improve the eff|C| igration, we use hybrid-copy in
OpenStack instead of per- cop d -Co '&% omposed of three-phase. Firstly, all
memory pages of VM WI|| to the destination node in one round. Secondly, VM
shutdown in a short time transfers, \/. tate and other necessary device state to the
the destination node..Fi&/M re nning on the destination node. The remaining
dirty memory will sxd ronized.throdgh on-demand request and active push. Compared

id-co void iteratively copy dirty memory of VM. Compared
brid-co tively reduces the number of page fault of VM after
VM restore g onde tion node. Besides, we evaluate the performance of hybrid-
copy when VM under g th
copy can reduce pa

module o M. In section 4, we describe the hybrid-copy of VM live migration and

related woﬁﬁgllow this, there is a section detailing the overall design and details of each
experig y evaluate the performance of hybrid-copy in different workload compared

opy and post-copy. Finally, we conclude the paper in section 5.

2. Related Work

With the rapid development of cloud computing, the VM scheduling algorithm of
cloud computing has also been a great progress. In order to reduce the energy
consumption of data center, Beloglazov et al. [7, 8] proposed energy-aware allocation
heuristics provision data center resources to client applications in a way that improves the
energy efficiency of the data center, while delivering the negotiated Quality of Service
(QoS). In addition, they put forward the VM optimal placement algorithm and VM
selection algorithm that is to shutdown the needless servers to achieve energy saving.

In order to improve the system resources utilization, Fabien Hermenier et al. [9]
proposed a resource scheduling algorithm named Entropy, this algorithm considers the

66 Copyright © 2016 SERSC

International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016)

VM Migration
Scheduling Module
Hybird-Copy
: ;
, v ¥ v
{ Virtualization Layer
VM VM VM VM VM VM
Perfo_rmance Perfo‘rma_nce Perfo_rma_nce Perlormafnce Performance Perfofmgnce
Client N Client Client Client Client Client
P W M M W WM WM |
e . A [P \ S
Performance “ QEMU QEMU QEMU QEMU QEMU QEMU
Monitoring . ' KVM KVM KVM KVM KVM KVM
Module [X |
| A
! i |
E——— A Y
| RRD Database | | > | Infrastructure Layer
R S Server Server Server
< Performance Performance Performance
Monitoring Client Monitoring Client A Manitqrin@ Client
Host Operating . Host Operating o ost Operating X
¢z Data Exchange System System SyStem
>/ /‘\
<> Call Program Hardware Hardware Harddare
,()
V

Figure 1. Arch' re of.AmiSM

VM. Hien Nguyen Van et al. [10 pos m|c scheduling algorithm to solve
the problem of virtual resourc ing in c mputing.

Nathuji et al. [12, 13] pro a set.0 nagement components of cluster layer and
data center layer, and put<forward &Ware energy consumption budget to add
multiple distributed mg&into Vi{%ﬂ wer framework. The goal of VirtualPower is
0

maximized the per r utilization in a certain energy budget.

Jung et al. [14 ﬁ%’wed f ork Mistral that optimizes energy consumption and
improves th ance ¢ duce overhead caused by caused by the various
operations a controllgPitself to maximizing the overall utilization.

Zhu et al. [15] prese ree individual controllers that each operating at a different
timescale, which pla mpatible workloads onto groups of servers, react to changing
conditions by rea g VMs.

VM live mig is a key feature of system virtualization technologies. Pre-copy [16]
is a pop T_LE echanism of live migration, which has been implemented in most
hypervis as KVM [17], Xen [18] and VMware [19]. The main idea of pre-copy is
that m@ of VM is transferred to the destination node in a succession of iterations

remaining dirty memory can be transferred in a short enough stop and copy
phaSe-which will not cause prolonged VM downtime.

Hines et al. [20, 21] propose using post-copy instead of pre-copy for live migration. In
post-copy, the CPU and device state are transferred immediately to the destination node
firstly, then the VM resume running on the destination node. The memory of VM will be
synchronized to the destination node through on-demand request and active push.
Compared with pre-copy, post-copy reduces the total migration time and total data
transferred but lead to performance degradation of VM due to page faults which must get
memory page from the source node.

Liu et al. [22] design and implement a CR/TR-Motion that adopts
checkpointing/recovery and trace/replay technology to provide fast, transparent VM
migration in LAN. Jin et al. [23] propose using adaptive compression of transferred data.
The dirty page will be compressed before transferred to the destination node. Then
compressed data will be decompressed and received. However, this approach increases the

effects of two important factors on thf flgur ti |me and the migration time of the

Copyright © 2016 SERSC 67

International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016)

system overload. Cerroni [24] proposes an analytical model that can evaluate the
performance of an inter-datacenter network for federated clouds during multiple live
migrations of VMs.

3. Autonomous Migration of Virtual Machine

The purpose of AMVM is to reduce energy costs and improve the server resource
utilization. AMVM collect and analysis the performance data of all compute nodes and
VM in OpenStack in real time. Then AMVM identifies the overload compute node and
underload compute node to execute load adjustment. For overload nodes need to move part
of the VM to reduce load, for underload nodes need to migrate all of the VM to other node
and this node to be in the resting state automatically to reduce the electricangy
consumption.

Figure 1 show the architecture of AMVM. The infrastructure layer is compgo; f all
servers and other hardware devices. The infrastructure layer provide derlying
computing, network and storage resources for the upper lay; o.achl zation.

Besides, the infrastructure layer also is the key %&se the energy
consumption of data center is mainly due to the hard the infrastrycture layer. So the
ultimate aim of AMVM is to improve the p al reso e utthization by the VM
scheduling. The virtualization layer is composed Qﬁ%ﬂ ibvirt and other basis
software. Virtualization layer virtualizes mem /0 devices of the
infrastructure layer, then the virtualized r?r es are y OpenSatck. Furthermore,
AMVM is improved and optimized on t nStack Kilo. In addition to
OpenStack components, AMVM the ay driver module, performance
monitoring module, and VM mi a@ hedul% dule.

3.1. Disk Array Driver uIe

In OpenStack C|r1de hird p rage devices are required to implement their
driver program. Th evice can p V|de persistent storage volume services for VM as
storage backend md the AMVM, we realize a driver of a disk array to
achieve cre mount volume and other functions in the Cinder. Besides, to
address the |on live migration that mounts a volume, we realize a volume
migration auxiliary pr%o help VM with volume live migrate to destination node
normally.

NG
O
QQ

68 Copyright © 2016 SERSC

International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016)

<Cinder>

Cinder-api

Cinder-scheduler

i

Cinder-volume

DiscArrayDriver

SSH/HTTP

it - ';@@

Figure 2. Internal Architecture der Mrray
3.1.1. Workflow of Disk Array Drlver le
Because the root partition of VM erS| N e thls VM is deleted or failed, the
data of VM cannot be restored. So @ eed m lock storage volume which provided
by Cinder to realize persiste

The internal archltecture of Cinder aﬁt\o array as shown in Figure 2. The cinder-
volume service running on storag manage storage space of each storage node,
so that several stor es may e to form a storage resource pool to provide
persistence storage ice for nStack VM. We implement the DiscArrayDriver, so
Cinder can use.a rray ra e backend. The volume of Cinder can be scheduling
by cinder- sc serV|c peratlons of volume by Cinder will eventually need to
call DlskArr Priver ve, and DiskArrayDriver sends commands to disk array
through the SSH or 0 manage storage resources. The compute node in OpenStack
and the disk array erconnected by iSCSI, so that the block storage of disk array can
be mapped to th ute node through iSCSI. The mapped block storage can be mounted
to the specified VIV as a volume by Libvirt to achieve persistent storage. DiskArrayDriver
running need to read the configuration of the disk array and connection
real time, so that the maintenance of the DiskArrayDriver does not need to
restayt the/cinder-volume service and make the new configuration into effect.
%\ermore, the cinder-API service is responsible for receiving and processing all
RESTful requests, and then send the request into RabbitMQ; cinder-scheduler service is
responsible for handling tasks in the task queue, and according to the set of strategies to
select an appropriate storage node to execute the task.

3.1.2. Volume Migration Auxiliary Program

When the VM with a volume to be migrated, the mapping relationship between VM and
source node also have to turn into the mapping relationship between VM and destination
node, then the VM can access storage volume on the destination node after live migration.
However, the migration of volume state relies on the support of disk array driver.
Therefore, AMVM realized the volume migration auxiliary program for VM and volume
state live migration correctly. The workflow of volume migration auxiliary program as
shown in Figure 3.

Copyright © 2016 SERSC 69

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)

[Complete VM live }

Mapping the volume to

migration destlnatlon node

'

Disconnect the mapping
relationship of VM with
the source node

the metadata of volume

()
[migrate_ volume return]
[|

¢ Update the Cinder
database
[migrate_volume]
i Restore the connection V ¢
of VM with volume on

Create the iSCSI tunnel
between destination node
and disk array

the destination node C}?’
Figure 3. The Workflow of Volume I@ n Auxili rogram
éﬁ

At the beginning of the VM live mlgrat Nova will b ling Libvirt’s API to
execute VM migration. After VM have, Tk@\ to the natlon node, the rest of VM

state include volume state will be migrat e destmat’bn node. For the migration of the
volume state, the program disconnec tlonshlp between VM and source
node firstly and the volume is i réte of b ble to read and write. Secondly, the
volume migration auxiliary& calls mi volume function, this function to
determine whether the destinatio node flrst time to connect disk array. If so, the
volume migration auxiliar gram ate the iSCSI tunnel between the destination
node and disk array.s pplng Iume to destination node instead of the source
node. Finally, the on mfo at of the volume with destination node will send to
Cinder. Cinder n upd w connection information to the database, and then

Cinder resto nnect ion and volume on the destination node to complete
volume live mig tlon

3.2. Performance Gbloring Module

Performance &toring module is responsible for collecting and storing the
performan ata’of all servers and VM in OpenStack. This module includes server
performa Q’%ﬁtitoring client, VM performance monitoring client, data collection server

tabase. The server performance monitoring client and the virtual machine
ce monitoring client are installed on each computing node, and data collection
ser and RRD database are installed on the control node. The architecture of
performance monitoring module as shown in Figure 4.

70 Copyright © 2016 SERSC

International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016)

WM Performance Server Performance

Monitoring Client Cloud Rerformance Monitoring Client
Monitoring

AN B

MQ/ ———————————— : *Q I a ”””””” ’ ﬁ

Data Collection
s Server Performance
erver Monitoring Client

WM Performance
Monitoring Client

Figure 4. The Architecture of Performance Monitoring Modulex).

Data collection server receives performance data from clients period%aen save
performance data to RRD database file respectively after ata proc collection
server can use unicast or multicast mode to collect perfo ‘%e data. unicast mode,
the client needs to record the IP address and port td ¢ ion”server for send
performance data to realize separate communicati tWeen t and server across
the network. In the multicast mode, client and se need i, thg/Same network and the
client will send performance data to all node he LA§ Therefore, the client will also

receive performance data from other clie e perfi ce monitoring module uses
unicast mode and the client send perfor@ge data to @ ver each 15 seconds.

Server performance monitoring ol%{ thro N system interface to collect the
performance data of compute n e@ also L% a’s API to get the list of VM on the
compute node. The VM pé‘%;ance monitoring client according to different client
operating system use different API to C % the performance data of each VM. The

specific performance ind f serve& are shown in Table I and II.
[]
\ ble 1.&formance Index of Server
erformancg, INdex Description
A 05 Mame. Server operating system
d UUID of server
N heartbeat Heartbeat from server

b/ one/five/fifteen | Server load each 1/5/15 minutes
N proc_total/run Number of total/running

Lr processes
Q\ cpu_num Number of CPU

cpu_usr/system/ide | User/system/idle CPU utilization

Q mem_total Memory size
% mem_free/shared/buff Free/shared/buffers/cached

ers/cached memory
swap_total Swap space size
swap_free Free swap space
disk_total Total disk space
disk_free Free disk space
pkts_in/out Server packets received/sent

bytes_in/out Server bytes received/sent(B/s)

Copyright © 2016 SERSC 71

International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016)

Table 2. Performance Index of Vm

Performance Index Description
VCpu_num Number of VCPU
vcpu_util VCPU utilization ratio
vmem_total Memory size
vmem_util Memory utilization ratio
vdisk_total Vdisk space
vdisk free Free vdisk space
Vd'Sk—byttZ sn_read/wrlt VM bytes read/writen (B/s)
vpkts_in/ out VM packets received/sent
vbytes_in/out VM bytes received/sent(B/s) °

recycled database, an RRD database file contains multiple RRA, each includes a

Performance data are saved in RRD (round-robin database). RRD is a size
§Rﬁ
fixed number of data storage ring, if the number of data)r\ it, the new

data record will cover the eldest data record.

Compared to the traditional relational database ;
relational database will occupy a large amount o @ space D)more frugal with disk
space. In addition, because each RRA recording erform% ata is based on time
frequency, RRD Tool can draw the perfor@data mtq%xbr

graph conveniently, this
graph can clearly show the real-time % g state a ecific performance data of

OpenStack in the browser. It is to achi @;? imple.cl monitoring easily.
Data collection server will accg@ ot %e e of compute node to create the

corresponding file directory. |rectory rves the performance data of this
compute node and VM Iocat is node this file directory can avoid maintain the
corresponding relationship<between ,V Iocated compute node in performance
monitoring module. Th , the V atlon scheduling module get the performance

data of compute noK rres

3.3. VM Mum%chedu uIe
The VM tion @Iing module analyzes the performance data, calculate each

computing node work | For the compute node which loads above the upper threshold,

part of VM located thisyode will be migrate to other destination nodes. In order to reduce

the energy cons of the data center, for the compute node which load is lower than
all

the lower threshol®; all VM will be migrated to other destination node. Then the underload
node will b down or transfer to sleep mode

@d Threshold Setting

upper load threshold is mainly based on the CPU, memory and network utilization
of server, if any one of them exceeds the upper load threshold that the server belongs to
overload node that need execute load adjustment. The load adjustment will migrate the VM
from overload node to other nodes until a load of this node does not trigger the upper
threshold. The workflow of load adjustment as shown in Figure 5.

72 Copyright © 2016 SERSC

International Journal of Hybrid Information Technology

Vol. 9, No.8 (2016)
Load threshold timer
nstantaneous
overload

Read the performance
data of servers

RRD database

1gger the Select the destination
upper/lower node
reshold

No

Figure 5. The Workflow of LoaQ@]

If the instantaneous load peak or valley of VM he Io oId to adjust the load.
It is easy to produce a lot of invalid mlgratl eration, instead of decreasing resources
utilization. Therefore, when a perform ta of® o%ute node exceeds the load
threshold, VM migration scheduling m |II con monitor this compute node.
If this node keeps overload or underl |th|n then the load adjustment will be
executed. Otherwise, if this n ery tg}al load in a short time that is not
triggered load adjustment to i ectlve mi on

3.3.2. Selection Strategy c@estma Nw
For the comput n hich n e st load, we need to select the most appropriate

node as the desti node VM live migration in the remaining node. The
inappropriate ion nod@ﬁ? likely to cause large amounts of load adjustment, so
natio

we need to s he be n node through setting a series of strategies.

i ‘ weight=60
Node 1 MNode 2 | | 'S w“ght Node ¢ v/

< 8080
Node 3 Node ¢ Node ¢ Node 1

Figure 6. The Workflow of Select Destination Node

As shown in Figure 6, in OpenStack Nova Scheduler, the VM scheduling algorithm is
composed of filter and weight. Using the filter to select a set of available compute nodes
based on all kinds of indicators. The weight is to calculate a weight for each node in the set
of available compute nodes and select the most appropriate node that is the lowest weight.

Copyright © 2016 SERSC 73

International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016)

4. Hybrid Live Migration

The current existing VM live migration mechanisms mainly include pre-copy and post-
copy. The pre-copy iterative copy dirty memory of the last round to the destination node,
and then transfers the VCPU state to resume VM running on the destination node. The pre-
copy will be caught in iterative copy for a long time and transfer many useless dirty pages
when the dirty page generated faster than the speed of the network transmission. In contrast
to the pre-copy, the post-copy copy the VCPU state before memory, and restore VM
running on the destination node immediately. The VM memory will be synchronized
through on-demand request and active push. Compared with the pre-copy, the downtime of
post-copy is shorter than pre-copy and can guarantee that all of the memory pages will be
transferred only once. However, the on-demand request gets the memory page from the
source node through the network. Frequent on-demand request leads to the VM e on
delay and the performance of VM decline.

In order to improve the efficiency of live migration of VM, we use ® rid-copy

replace pre-copy that is the default mechanism in OpenStck to impl VM live
migration in AMVM. %
4.1. Workflow Q : x)

As shown in Figure 7, the workflow of hybriéscopy includ&x)phases.

1) Pre-Migration: Waiting for the VM r@ on co-mm%d and select the appropriate
destination node.

2) Reservation: It should ensure here r@nough physical resource on the
destination node. The destination r@w I res \Kfn se resource for migrated VM.

3) Full memory synchropization/ phase: emory pages of VM sent to the

destination node in one round, create g dirty bitmap for recording dirty page which
is changed memory. N

4) Stop copy phas shutd@we state of the VCPU, devices status and
dirty_bitmap copyN{s& stination node.

5) Dirty page ronizati ase: VM restores running at the destination node,
and synchro y page%@% source node through two kinds of mechanism: on-
demand req d acti

y, because hybrid-copy only transferred all memory of VM
phase, thus fundamentally avoid the situation of write memory
frequently or dir e produces greater than the speed of network leads to multiple
iterative copy, rotpds. Compared with the post-copy, when VM resume running in the
destination'ﬁﬁg, destination node has saved all memory of VM except for dirty page.
Therefor of the memory access of VM can obtain directly from the destination
no 's@ memory rather than get from source node by network request. Thus, the
p@v ce cost of VM live migration will be drastically reduced the efficiency of
app

tion which running on VM is also improved.

Compared with the
in memory synchroni

74 Copyright © 2016 SERSC

International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016)

‘:"VM running on -
i the source node Pre-Migration

l

E E Reservation

‘
“*VM resume running on l_ °
i the destination node [Dirty page synchronization phase }

i E Y
L
i (>
1 2
®
7)

\)

Source node releases VM resource
[N\

Figure 7. The W%Q\ w of H;/bg Copy
o

In the dirty page synchronizatien phase, ‘%uses on-demand request and active push to
synchronize dirty page fronrthe sourc

4.2. Dirty Page Synchronizati

In the on-demand, r ; the de on node intercepts the page fault of VM and
compared with th |tmap onfirm this page has not been synchronized, then
sends this page f ‘;fe The source node receives this page fault and finds

the correspom ory pa ocal memory, then transfers this page to destination
node after m e corr mg bit in dirty_bitmap.

In order to further ase page fault, the on-demand request adds prefetch page
technigue. Because e order and the locality of the program, when VM generates a
page fault that s node transfers corresponding memory page and neighbor memory
page of this addréss’to the destination node. When the VM access the next page will not
trigger on-ﬂﬁ%d request again, VM can get this page from local memory, to enhance the
efﬁcienc@a plication running in VM.

o@ 0 synchronize the remaining memory dirty page as soon as possible, hybrid-
c%so use the active push mode. In active push mode, the source node sends dirty page
to the“destination node that has not been synchronized. If the corresponding bit of memory
page in dirty_bitmap marked as 0, this page has already changed in the destination node, so
discard this memory page, else receives it. In addition, if the source node receives an on-
demand request in a process of active push, the source node interrupt current active push to
fulfilling the on-demand request, as soon as possible to resume VM running from page
fault exception.

4.3. Hybrid-Copy Model

The basic idea of hybrid-copy is, before by transfer all VM memory page and VCPU to
the destination node in one round before VM resume running, and then synchronize the
remaining dirty pages to reduce the number of the page fault. In this section, we describe

Copyright © 2016 SERSC 75

International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016)

the hybrid-copy model and analyze the main parameters that affect the performance of live
migration.

Table 3. Parameters of Hybrid-Copy Model

Parameters Description
Viem VM memory size
Viiny VM dirty memory size
Vinig Total data transferred
T VM downtime

down

[J
mig Total migration time V
Duration of VM synchronize all ?’V
T esume memory page since resume
running on the destifiation node/}

Network banmetween\;)
B source noda@d, w

—

D Durtny VM&W
F Wotal page,taul\’
We defined the key parameters and %izlptlon 0 }d -copy in Table IIL In hybrid-
copy, the dirty memory is produced i e ronization phase. The time of this

phase is V”;m S0 the Vy, A& in e%al (1) and the V,, can be described as
equation (2) @

\ ty Yoan X 1)
"Q\V +m%/ (2

g mem

icates that the VM start live migrate from the source node to
resume running on d ion node and all of VM memory has synchronized completely.
So the total migr me includes the time of full memory synchronization phase, stop
copy phase, dir ge synchronization phase. We sum the time of three phases as the
following tion:

The total migration ti

QQTmig Vrgm + Tdown +Tresume (3)

%@p copy phase of hybrid-copy, source node needs to transfer the state of the VCPU,
devices status and dirty_bitmap to the destination node. In addition, the destination node
needs to load the VM device status to resume VM running. We use € to describe the time

overhead of VM resume running on the destination node. W, represent the size of
VCPU. Therefore, the downtime can be calculated as the equation (4).

down

Tooum = W—Vg’“ +e @)

As for theT, .., it represents the time required to synchronize all VM memory page
completely since VM resume running on the destination node. Because there are two kinds

of synchronization mechanism, the T is the sum of time-consuming of the on-demand

resume

76 Copyright © 2016 SERSC

International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016)

request and active push mode. The parameter A as the network delay between source node
and destination node. So that the T as describe as the following equation:

resume

resume

V.,
LA Y 5)
B

In dirty page synchronization phase, the remaining dirty pages decrease with the active
push mode, so the number of the page fault in unit time is also gradually reduced. We

define the F as equation (6) where R is the access rate of VM memory and t is ——2 .

t
dirty
X+V dx
‘!(i dmyJ VdmyzR V.
F= tR= (6)
f 2BV

Vmemdx mem GE y
So that we can combine equation (3) ~ (7) to d 'ﬁsshe tota@yaﬂon time as

following: o Ve Wy VoD, /\)\) ,
mig = B B? Q x (")
'\°~’

5. Performance Evaluation %
evalua

In this section, we present % hybrid-copy compare with pre-copy
and post-copy in different e S|tuaU0

Our performance anal the V |gration in OpenStack. The OpenStack
platform consists of ac er no 0 compute nodes. The servers used for this
experiment are Da n 20r- G igabit Ethernet interfaces and installed Ubuntu

14.04. The softwa des QEM&l 6.0, Libvirt 1.2.18. The operating system of VM is
CentOS 6.5 M wi PUs, memory size range from 256 MB to 4 GB.

In order t yze the ormance of all kinds of VM live migration mechanisms, we
use the following four p ance metrics as the evaluation standard:

1) Total migrati e: The source node receives the VM live migration command
until VM resume ng on the destination node. In addition, all relevant data of the
VM has been ¢ ely synchronized to the destination node. This performance metric
determines‘%%ccupation time of all kinds of physical resources during VM migration.

2) Dm' e: The downtime is caused by synchronous VCPU state and other
necess ice information. The VM can not provide service during the downtime.

| data transferred: In the process of VM love migration, all data of the source
no ansferred to the destination node, which mainly includes memory pages, VCPU
state and other devices status such as the network. This performance metric determines
the utilization of network resources during the VM live migration.

4) Page faults: In the dirty page synchronization phase of post-copy and hybrid-copy,
VM in the destination node to resume running. Due to the memory pages of VM are not
completely synchronized in the destination node, the VM have to get memory page from
the source node through the network. This performance metric is the total number of on-
demand request. It reflects the performance loss caused by the VM live migration.

Copyright © 2016 SERSC 77

International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016)

5.1. Empty Workload

In the empty load experiment, VM with different memory size immediately lives
migrate to another node after power on. The experiment results as shown in Figure 8.

30000 - 100
o W Pre-Copy : u Pre-Copy

B Post-Copy 90 —mPost-Copy

25000 Hybrid-Copy w0 Hybrid-Copy

2 15000 0

5 :

~ 10000] .

» 5000 20 °
10

o o I | | == [] | I |
256M 16 2G 46 6 46
4500 .

I MigrationTime
Dowmt

P

=]

512M

450 3500
B Pre-Copy u Post-Copy []
4000 ® Post-Copy 00 u Hybrid y
Hybrid-Copy
3500 [
500
3000
=
2500 Z x
2000 J 500
500
1000
500 I I \ 0 I
., mmn NI n Bl N1
\ 6M G

Figure 8. O@I Perfprr@n e of Empty Workload

Because read/writ.e operg@p VM is very low under empty load, so the
amount of dirty pa 5% ated is alsowery small. In the empty load experiment, pre-copy
is able to quickly memorysiterative copy phase and enter the stop copy phase. The

post-copy mai eftes on active)push in dirty page synchronization phase. Hybrid-copy
can synchro he v@on y of the memory page in full memory synchronization

sferred (MB)
r~
=]

Total Data Trans
-
=1

phase. Therefore, the ata transferred of three kinds of migration mechanism is
broadly equivalent tq& emory size of VM. Besides, the total migration time is no big
performance diffe etween all kinds of migration mechanism.

In pre-copy, b@% all memory pages have already saved at the destination node when
VM resun@i g. So that there is no page fault in pre-copy. As the operation of access
memory i when VM under empty workload, the number of page faults in post-copy
and hypri py are very low. But compared to the post-copy, the hybrid-copy can get the
ity=of the memory access from the local memory of destination node, so the number
s faults are less than 500 times.

5.2. Memory-Bound Workload

We use V8-benchmark programs on the VM to evaluate the memory profiling. V8-
benchmark is a suite of JavaScript-based benchmarks developed by Google, and it includes
DeltaBlue, Crypto, and Splay etc. Each benchmark is about two seconds, so we repeat to
execute the program until VM live migration complete.

As shown in Figure 9, V8-benchmark as a memory intensive application will continue
to execute write operations to generate memory dirty page. Therefore, pre-copy executes
multiple rounds of iterative copy memory before stop copy phase, caused by the total
migration time and total data transferred dramatically higher than other two kinds of VM
live migration mechanisms. When the VM with 4GB memory, the total data transferred of
pre-copy as high as 8869MB. The multiple rounds of memory copy in pre-copy leads to

78 Copyright © 2016 SERSC

International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016)

the total migration time much higher than the other two mechanisms. The total migration
time of pre-copy averagely is 208% of the hybrid-copy and 277% of the post-copy.

For the hybrid-copy, due to the dirty memory page also increased under the memory-
bound workload. When the VM with 4GB memory, the total data transferred of hybrid-
copy is 4716MB. Compared to the 4104MB physical memory of VM, the dirty page is
612MB. This also makes the total migration time of hybrid-copy is higher than post-copy
in memory-bound workload.

70000 100 -
m Pre-Copy H Pre-Copy
90 B Post-Copy

B Post-Copy
Hybrid-Copy 80 Hybrid-Copy
70
[]
0000 60
. 50
30000 40
20000 30
20
100C
10 II
U D . &)

@
5]
S

w
=]
S

Total MigrationTime (ms)
Dowmtime (ms)

8

256M 512M 4G 512M

EPre-Copy “ Post-Copy
9000 EPost-Copy 18000 W Hybrid Ccp\,

8000 Hybrid-Copy]
. , o
7000 ® 4000

6000 \ £ 12000

5000

4000 8 D0

3000

2000

1000 I I

ﬁ I- I
1

512M

ge |aLI|l

Total Data Transferred (MB)

;(?‘“‘

Figure 9. @erall rformance of Memory-Bound Workload

As showr@ experi \@ results, even in the case of high memory load, the
downtime o ee ki VM lives migration mechanisms is basically in 20ms.
Therefore, regardless of %1 VM live migration mechanism, the downtime of VM is very
short and it can equirement of the performance of the most applications.

However, in L@!@mory bound workload environment, the rate of the dirty page are
increased, the pagéfault of hybrid-copy and post-copy are also increased. Compared to the
post—copyé@vd—copy significantly reduced the number of page faults. In the four group
experi the total number of page faults is 5562 times in hybrid-copy, and is 11528
ti %st-copy. This means hybrid-copy can reduce 51.8% page faults than post-copy.
R%ﬁg the number of page faults means that the more memory requests of a application
runnihg in the VM can be executed in the local memory of the destination node. The
performance loss of VM caused by post-copy also can be reduced.

5.3. CPU-bound Workload

This experiment is to test the performance of the three kinds of VM live migration
mechanisms under the CPU-bound workload. To simulate the high CPU load, we use VM
to play video in this experiment.

As shown in Figure 10, the average total migration time of hybrid-copy is 66.5% of pre-
copy and is 162.3% of post-copy. Due to the dirty page rate in CPU-bound workload
experiment is relatively lower than memory-bound workload experiment. In the
experiment of VM with 4GB memory, the total data transferred of pre-copy is 6769MB.
Compared

Copyright © 2016 SERSC 79

International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016)

60000 100
m Pre-Copy uPre-Copy
W Post-Copy B Post-Copy
50000 W Hybrid-Copy 80 m Hybrid-Copy

40000

30000

200 30
; 20
L. il 1l : 1 wal ual il
. Hull . nmll AR mEE NA
26 46 26 4G

256M 512M 16 256M 512M 16

Dowmtime (ms)

Total MigrationTime (ms)
=]

g
g

8000 14000
u Pre-Copy EPost-Copy

x) .
a Hybrid-Copy
7000 lPusl.Copv 12000 m Hybrid-Copy
u Hybrid-Copy
6000
10000
5000
8000 o
- \
3000
A
2000
1000 I I I B
N I-. .I I
26 46 16 26 46
®

i
256M 512M 16 Q 2581 %ZM

Figure 10. Overall Per %ce @J—Bound Workload

Total Data Transferred (MB)
e
2
=
Page faults

to the memory-bound worlm@s reduce SOOMB. However, it still higher than
hybrid-copy and post-copy. tal data transferred of pre-copy is 140% of hybrid-copy

and 164% of post-copy.

For hybrid-copy, the &ime of 16-copy is slightly higher than other two kinds of
VM live migratio isms. The tetal data transferred of hybrid-copy is 123.1% of
i y redu 5% page fault than post-copy averagely. Therefore, it
~copy ha antage in reducing performance loss caused by VM live
gh CRU @kload.

5.4. 1/0O-bound Wor

High 1/O wq@d is a common scene in cloud computing environment. In the
experiment, we use’Bonnie++ to simulate the high I/O workload of VM. Bonnie++ is a set
of WeII-kee benchmark tool set that can be used to test the performance of hard
disk an system. In this experiment, the test command is bonnie++ -D -x 10 -u root.
T aémter D indicates that the way of read and write disk is direct I/O pattern. The
p’%&er of -x 10 represents we repeat 10 times of test to ensure that high 1/O workload
during the VM live migration process.

80 Copyright © 2016 SERSC

International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016)

B Pre-Lopy
W Post-Copy 90
Hybrid-Copy

u Pre-Copy
B Post-Copy
80 Hybrid-Copy

= 3000 E
= 2000 30
E 20
I
10
» = =l 1l L Euf 1N
2G 4G

256M 512m 256M 512M 16

Dowmii
=
=

Copy 12000
EPre-Copy u Post-Copy

u Post-Copy W Hybrid-Copy

Total MigrationTime (ms)
o
Page faults

30000 Hybrid-Copy 10000
000
8000
0000
6000
15000
10000
- I I I ?
0
256M 512M 256M 26

Figure 11. Overall Perforn@'%of I/O.@md Workload

The experiment results as shown ure 11 %\3 use Network File System (NFS)
between the source node and t atlon e I/0 operation of VM will not be
interrupted when VM live mi cept for the stop copy phase. Because the memory
read/write rate of VM is low in gh /0 oad experiment, the average dirty memory
of the three kinds of VM live)migrati anisms respectively is 897MB, 11.5MB and
230.6MB. That is, the -copy r s to transfer 219.1MB memory data more than
post-copy. But the jd-copy c reduce 41.7% page faults than post-copy in high I/O
workload exp her hybrid-copy can effectively reduce the number of
page faults u‘ ondlté) ncreasmg some transferred data.

6. Conclusions b’

In this work,)@wplement AMVM which automatically scheduling VM live migrate
to the most appropriate node according to the real-time load data of all compute nodes to
realize autéﬁ%@us migration of VM in OpenStack. The AMVM includes the disk array
driver mo@, performance monitoring module, and VM migration scheduling module.

@rove the efficiency of VM live migration in AMVM, we use hybrid-copy
i% of pre-copy. The hybrid-copy transfers all memory page at first to ensure the
destitation node saves memory page of VM when VM resume running. Then the hybrid-
copy synchronizes dirty page from a source node through on-demand request and active
push. At last, we evaluate the performance of hybrid-copy when VM under the different
workload. The result of experiments shows that hybrid-copy can reduce page faults
compared with post-copy and reduce total data transferred compared with pre-copy.

Acknowledgments

This work is partly supported by the Ministry of Science and Technology-tube
detection technology under Grants No0.2014BAK14B04, the National High Technology
Research and Development Program of China under Grant No.2015AA01A303, the
Zhejiang Natural Science Funds under Grants NO.LY16F020018 and NO.LY13F020047,
the National Natural Science Foundation of China under Grants No. 61572163, No.

Copyright © 2016 SERSC 81

International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016)

61472112, NO.61572163, NO. 61202094 and NO.61472109, the National High
Technology Research and Development Program of China under Grant
N0.2015AA01A303, Key Laboratory of Complex Systems Modeling and Simulation
program, Ministry of Education and Chinese Postdoctoral Science Foundation
N0.2013M541780 and No0.2013M540492.

References

[1] A. Hooper, “Green computing”, Communication of the ACM, vol. 51, no. 10, (2008), pp. 11-13.

[21 G, Cook and J. Van Horn, “How dirty is your data? A look at the energy choices that power cloud
computing”, Greenpeace, (2011).

[3] G. Cook, “How clean is your cloud? Report, Greenpeace International”, (2012).

[4] L. Chen and H. Choi, “Approximation algorithms for data distribution with load balanci
servers”, In cluster: IEEE, (2001), pp. 274.

[51 H. Kameda, J. Li and C. Kim, “Optimal load balancing in distributed computer syste ringer
Science & Business Media, (2012).

[6] B. Nicolae and F. Cappello, “A hybrid local storage transfer sch :5 for live mi

i/o intensive

workloads”, Proceedings of the 21st international symposi Rligh-Pegfo Parallel and
Distributed Computing: ACM, (2012), pp. 85-96.

[71 A. Beloglazov, J. Abawajy and R. Buyya, “Energy-awa e allocation heuristics for efficient
management of data centers for cloud computing”, Fun ation ystems, vol. 28, no. 5,
(2012), pp. 755-768. w

[81 R. Buyya, A. Beloglazov and J. Abawajy, “Ener fficient manage f data center resources for
cloud computing: a vision, architectural ts, apd %%m challenges”, arXiv preprint
arXiv:1006.0308, (2010). \

[9] F.Hermenier, X. Lorca and J. M. Menaud py: a consalidation manager for clusters”, Proceedings
of the 2009 ACM SIGPLAN/SIGOP ation ce on Virtual execution environments.

ACM, (2009), pp. 41-50. @e N{
[10] H. N. Van, F. D. Tran andE x naud, “S are virtual resource management for cloud

infrastructures”, Computer an ormatiop hnology, 2009. CIT'09. Ninth IEEE International
Conference on. IEEE vol. 1 09) pp. 357- 3%

[11] H. Nguyen Van, F. Dan nd J. M! “Autonomic virtual resource management for service
hosting platforms”, Pr(%ngs of the CSE Workshop on Software Engineering Challenges of
Cloud Computing’ mputer Seciety, (2009), pp. 1-8.

[12] R. Nathuji and , “Vi ower: coordinated power management in virtualized enterprise
systems”, PS Oper il ms Review. ACM, vol. 41, no. 6, (2007), pp. 265-278.

[13] R. Nathuj@ wan an manl “VPM tokens: virtual machine-aware power budgeting in
datacenters™etUster co L@ vol. 12, no. 2, (2009), pp. 189-203.

[14] G. Jung, M. Hiltunen K. R. Joshi, “Mistral: Dynamically managing power, performance, and
adaptation cost in ¢ nfrastructures”, Distributed Computing Systems (ICDCS), 2010 IEEE 30th

on. IEEE, (2010), pp. 62-73.

d B. J. Watson, “1000 islands: Integrated capacity and workload management for

data center”, Autonomic Computing, 2008. ICAC'08. International Conference on.
IEEE, (p. 172-181.

[16] C. @ Fraser and S. Hand, “Live migration of virtual machines”, Proceedings of the 2nd

[15] X. Zhu, D. Y
the nex ratl

on Symposium on Networked Systems Design & Implementation-Volume 2. USENIX

tion, (2005), pp. 273-286.
[17 ivity, Y. Kamay and D. Laor, “kvm: the Linux virtual machine monitor”, Proceedings of the Linux

mposium, vol. 1, (2007), pp. 225-230.

[18] P. Barham, B. Dragovic and K. Fraser, “Xen and the art of virtualization”, ACM SIGOPS Operating
Systems Review, vol. 37, no. 5, (2003), 164-177.

[19] M. Nelson, B. H. Lim and G. Hutchins, “Fast Transparent Migration for Virtual Machines”, USENIX
Annual Technical Conference, General Track, (2005), pp. 391-394.

[20] M. R. Hines, U. Deshpande and K.Gopalan, “Post-copy live migration of virtual machines”, ACM
SIGOPS operating systems review, (2009), vol. 43, no. 3, pp. 14-26.

[21] M. R. Hines and K. Gopalan, “Post-copy based live virtual machine migration using adaptive pre-paging
and dynamic self-ballooning”, Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments. ACM, (2009), pp. 51-60.

[22] H, Liu, H. Jin and X. Liao, “Live migration of virtual machine based on full system trace and replay”,
Proceedings of the 18th ACM international symposium on High performance distributed computing.
ACM, (2009), pp. 101-110.

82 Copyright © 2016 SERSC

International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016)

[23] H. Jin, L. Deng and S. Wu, “Live virtual machine migration with adaptive, memory compression”,
Cluster Computing and Workshops, 2009. CLUSTER'09. IEEE International Conference on. IEEE,
(2009), pp. 1-10.

[24] W. Cerroni, “Multiple virtual machine live migration in federated cloud systems”, Computer
Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on. IEEE, (2014), pp. 25-
30.

Authors

Li Zhou, she received her Master Degree from Hangzhou Dianzi
University, Hangzhou, China, in 2003. She is currently an associate
professor in School of Computer Science and Technology, Hangzhou Dianzi
University. Her current research interests include virtual storagggys;em,

cloud storage, cloud computing and high performance computing.

Zhuoer Yu, he is a software dev@ %etEase Inc. He
i i ianzi ersi

received his Ms from Hangzh in China, 2016. His
research interests include cloud uting ibuted monitoring systems
and performance of cloud S)@

Jilin ZQ he recgivi %hD degree in Computer Application

Technolggy from Umve&nf Science Technology Beijing, Beijing, China,

|n 2 serve sistant professor of software engineering in
u Dianzi r5|ty, China. His research interests include High
ance putmg and Cloud Computing.

ian Wan, he received the PhD degree in Computer Application
nology from Zhejiang University, Zhejiang,China, in 1989. He is
urrently a professor in software engineering in Hangzhou Dianzi

University,China. His research interests include Grid Computing, Service
Computing and Cloud Computing.

Yusen Wu, he is now M.S. in School of Computer Science and
Technology in Hangzhou Dianzi University, China. His research interests
include Parallel Computing, High Performance Computing and Cloud
Computing.

Copyright © 2016 SERSC 83

International Journal of Hybrid Information Technology
Vol. 9, No.8 (2016)

84 Copyright © 2016 SERSC

