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Abstract 

In survival analysis, the accelerated failure time (AFT) model, as it is a linear function 

of the logarithms of survival times on covariates with easily interpretable parameters, is 

considered to be a useful alternative to the proportional hazards model (PHM). To dissect 

complex genetic architecture for survival traits, which have a skewed distribution and are 

often subject to censoring, we construct a multiple interacting QTL model based on the 

parametric AFT model with the baseline distribution of log-t distribution. Bayesian model 

selection is proposed to estimate the main and epistatic effects of QTLs in a 

computationally efficient manner, in which, the prior distribution of the scaled parameter 

in the AFT model is specified as the inverted chi-square distribution rather than a 

constant. Simulation experiments showed that our proposed method was superior to 

Bayesian method for normal phenotypes in terms of both the statistical powers of QTL 

detection and the precision of QTL parameter estimation. Three new pairs of epistatic 

QTLs were found in analyzing a real dataset for flowering time in rice.  

 

Keywords: survival trait, accelerated failure time (AFT) model, Bayesian model 

selection, interacting loci  

 

1. Introduction 

Survival traits, which are broadly defined as the length of time between two events, 

have started to draw the attention of some researchers for exploiting the approaches to 

mapping the traits. Except for the characteristic of skewed distribution, there traits are 

also difficult to follow up. Many methodologies in survival analysis, including a cure-rate 

model[1], distribution-free non-parametric[2-5], Cox parametric [6,7] and Cox 

semi-parametric models[8-10] are sequentially applied into the interval mapping[11] of 

survival trait loci. In outbred populations, the variance component based on the methods 

of Epstein et al. [12] or Pankratz et al. [13] are appropriate for mapping QTL of survival 

traits. However, all those mapping approaches just estimate and test one locus at a time. 

Subsequently, Bayesian mapping method, which is able to simultaneously identify 

multiple QTLs[14-19], has been introduced in QTL detection. The number of QTL is 

determined either by the Bayes factor[20-21] or by reversible-jump MCMC[14]. 

Although such Bayesian mapping approach improves statistical power of QTL detection, 

it has been noted that drawing number of QTLs with a reversible-jump MCMC procedure 

may result in lower convergence efficiency and poor mixing. Moreover, the effects of 

deviation from the assumption on normal distributions have not been fully addressed, nor 

the censoring mechanism of survival traits has been taken into account. On the basis of 

the Bayesian shrinkage mapping, Wang et al. have developed a robust mapping strategy 

for analyzing continuous non-normal quantitative traits[22], by replacing the normal 

distribution for residuals in multiple QTL model with a Student-t distribution[23-25]. 
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Their method only focused on the estimates for main-effect QTL, whereas ignored 

epistatic effects of the detected QTL. The genetic architecture of quantitative trait 

includes not only the number and locations of QTL, but also their main and epistatic 

effects. In particular, the unknown number of QTL and possible huge epistatic effects 

make the dissection for genetic architecture of quantitative trait extremely complex.  

In survival analysis, besides the Cox proportional hazard model (PHM), the accelerated 

failure time (AFT) model is also the natural choice for formulating the association of 

phenotypes with QTL effects on the survival times[26]. The AFT model has an intuitive 

physical interpretation for real-life examples, as it directly expresses the failure time, 

rather than the probability as in the PHM, and therefore would be an important alternative 

to the PHM[27-28]. The AFT model makes modeling simple as it relates the logarithm of 

the failure time linearly to the covariates [29-30]. It also reduces the potential error 

amplifications from linking models with different structures. However, few studies have 

used AFT model to map QTL. Cheng and Tzeng[26] have proposed parametric and 

semi-parametric methods that based on AFT models for interval mapping, but the fact that 

using the likelihood derived by Diao et al.[6] to estimate model parameter greatly 

increases the computational complexity. Furthermore, the mapping approach does not 

take any account of the interactions among QTLs.  

In this study, for dissecting complex genetic architecture for survival traits, we firstly 

construct a multiple interacting QTL model based on the parametric AFT model, in which 

the log-t distribution is considered as baseline function, and then develop a Bayesian 

model selection strategy for estimating the QTL parameters, finally, demonstrate the 

flexibility and utility of the method by conducting simulation experiments. Then apply the 

method to a real dataset for flowering time in rice. The comparing results between the 

method proposed here with the traditional Bayesian mapping under the normal 

distribution on both the simulation and the real data analysis indicate that our method has 

an improved power in mapping QTL with normal and non-normal phenotypes.  

 

2. Theory and Methods 

1) Genetic model  

For simplicity, we consider a backcross population derived from two inbred lines to 

describe the Bayesian mapping model for quantitative traits. Certainly, the method can be 

easily applied to other experimental designs, such as F2 design and four-way crosses. We 

measure genotypes of a set of co-dominant molecular markers with a known genetic 

linkage map as well as phenotypes for the trait of interest on n individuals. Supposing 

there are m quantitative trait loci controlling the trait of interest, we formulate the 

multiplicative effects of multiple interacting QTL on the survival time 
iT  by using the 

following AFT model: 

1

log( )
m m

i
i j ij j jk ijk jk

j k j i

e
T x z

w
    

 

                      (1) 

Where, as usual,   is the population mean; 
j  for 1, ,j m  is the additive 

effect of the jth QTL; 
jk  is the epistatic effect between jth QTL and kth QTL for 

1, 2, , ; , 1, ,j m k j j m   . Variable ijx  is a genotype indicator variable for 

individual i at locus j and defined as +1 for genotype Qq and -1 for genotype qq, 

ijk ij ikz x x ;    is a binary variable for each genetic effect, indicating that the 

corresponding effect is included (  =1) or excluded (  = 0) from model (1). Through 

inferring the  , we shall adopt Bayesian model selection to Markov Chain Monte Carlo 

(MCMC) sampling in an optimal model space; 
ie  is a random environmental error, 
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distributed as 2(0, )N  with 2  being residual variance; and iw  is a positive random 

variable which subjects to ( / 2, / 2)Gamma df df  distribution with df  being a scalar 

parameter. 

2) Bayesian model selection  

After organizing all genetic effects into   and all indicator variables or dummy 

variables into ix , we can simplify the multiple interacting QTL model as the following 

linear model: 

i
i i

i

e
y x

w
     with log( )i iy T                     (2) 

This, in fact, is not a common linear model, because the number of independent 

variables in the model and the associated design matrix are all unknown due to the 

unknown number of QTLs. Moreover, the residuals subject to student-t distribution rather 

than normal distribution. We approximate positions for all possible QTLs using a partition 

of the entire genome into evenly spaced loci, including all observed markers and 

additional loci between flanking markers, and then calculate the expected values for 

elements in relative design matrix to each locus based on the conditional probabilities of 

the loci genotypes on two flanking markers. As a result, a huge number of genetic effects 

for main-effect and epistatic QTLs will be required to estimate. It has been hypothesized 

that the genetic variation of most quantitative traits is actually controlled by a few loci 

with large effects and a large number of loci with small effects[31]. This suggests that 

among those estimated genetic effects, only a few are large or significant and most of 

them are small or neglectable. Therefore, Bayesian model selection based on a composite 

space representation[17-19, 32] provides a simple and efficient way to identify a small 

number of large or significant genetic effects in multiple interacting QTL model. 

The Bayesian mapping approach starts with presetting the upper bound of the number 

of QTLs included in the model[18], which is greater than the number of detectable QTL in 

a given data set. Given the upper bound of the number of QTL, these QTL will be drawn 

from densely spaced loci across the genome. Even with a moderate number of the upper 

bound, there are many genetic effects being estimated in the model (2). To make inference 

of the existence of these effects, we introduce a random binary variables   to indicate 

which genetic effects are included in ( 1  ) or excluded from ( 0  ) the model[33-37]. 

Let diag ( )  , model (2) becomes 

i
i i

i

e
y x

w
                               (3) 

Within the framework of Bayesian model selection, Bayesian sampling for unknown 

parameters including ,  ,   and iw  in model (3), is implemented with MCMC 

algorithm. In the course of Bayesian sampling, the realized sampling value for  in the 

matrix   at this round determines which genetic effect and position of QTL will be 

drawn or estimated at next round. As a rule, the large genetic effects are included in the 

model with higher probabilities than the small ones. This will greatly save the sampling 

time, as just a few large main and epistatic effects are drawn in each round.    

We implement MCMC sampling by following the simplified and computationally 

efficient procedures: 

(1) Compute the expected values for the associated design matrix with all spaced loci 

over the genome: 

( ) QQ QqE x     

with  and QQ Qq  being the conditional probabilities of genotypes QQ and Qq  on 

two flanking markers, respectively. 

(2) Initialize all variables with some legal values or values sampled from their prior 
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distributions. Herein, the upper bound for the number of QTL L is estimated by 

0 03L l l  , with 0l  being the prior expected number of QTL (including main and 

epistatic effect QTLs) that is determined according to initial investigations with traditional 

methods; the binary indicator   is assigned to be independence prior 

(1 )( ) (1 )p w w
    , where, the prior inclusion probability for main effect 

1

3

1 1 m
m

l
w

L

 
   

 

with ml  being the expected number of main effect QTL and 

1/9( 1)

0

3

1 /
1

(1 )

L

e

m

l L
w

w



 
   

 

for epistatic effect. 

(3) Update population mean   by sampling from a normal distribution with mean 

 
1

1 1

n n

i i i i

i i

w w y x 



 

 
 

 
  and variance 

1

2

1

n

i

i

w 





 
 
 
 .  

(4) Update the binary indicators   by adopting an efficient Metropolis-Hastings 

algorithm [19, 37] with the probability of acceptance min (1, ρ), where 
1 2

1

wR

w







 
  

 
with  

2

2

ˆ
exp

ˆ1 2

j

j

c
R

c





 
  

 
 

. 

(5) Update the QTL effects corresponding to 1   by drawing from the normal 

distribution with mean 2 1

1 1

ˆ ( ) ( )
1

n n

j i ij i ij i i ij j

i i

c
w x w x y x x

c
  

 

  

  and variance 

2 2 1 2

1

ˆ ( )
1

n

j i ij

i

c
w x

c
 







, where j is the numbering of corresponding genetic effect, c 

takes n. Note that if 0  , then the corresponding j is taken to be zero. 

(6) Update the residual variance 2  by sampling from an inverted Chi-square 

distribution with parameters ev n  and 2

1

( ) ( )
n

e e i i i

i

v n S w y x 


    , where ev  

and 
eS  are prior hyperparameters. 

(7) Update w  by drawing from a Gamma distribution with parameters 1

2

df  and 

1

2

2
1 1

1
2 ( )

qn

i ij j

i j

df y x b




 

 
   

 
  . 

(8) Update df using the Metropolis–Hastings algorithm[19, 36], based on the 

conditional posterior density of df : 

  
2

2 2

1

2 exp ln
2 2

n
df ndf n

i i

i

df df
pdf df ww






   
    
   


. 

(9) Update the QTL position by drawing from all spaced loci over the genome, 

corresponding 1  . Note that the existence of QTL depends on whether the 1   for 

either main or epistatic effect. Each locus is sampled from a variable interval whose 

boundaries are the positions of adjoining QTLs. Metropolis-Hastings algorithm is used to 

determine whether each proposed (new) position should be accepted or not [38]. 

(10) Repeat steps (3) – (9) until the Markov chain reaches a desirable length. 

Post MCMC analysis includes the monitor of the mixing behavior and convergence 

rates of MCMC algorithms and the assessment of characteristics of genomic architecture. 

The former can adopt visually inspecting trace plots of the sample values of scalar 

quantities of interest or formal diagnostic methods provided in the package R/coda, and 

the latter use model averaging accounts for model uncertainty[39-41] that averages over 

possible models weighted by their posterior probabilities. We can use various methods to 
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graphically and numerically summarize and interpret the posterior samples. The posterior 

inclusion probability for each locus is estimated as its frequency in the posterior samples. 

Bayes factor (BF) is used to show evidence for inclusion against exclusion of each QTL 

locus or effect[18, 20]. Generally, a threshold of BF is empirically determined as 3, 

or 2ln 2.1BF  , for declaring statistical significance for each QTL effect[20]. 

 

3. Simulation Studies 

A single large chromosome segment with lengh of 500 cM was simulated for a BC 

population with sample sizes of 150 and 300, on which sixty-one co-dominant markers 

were spaced evenly. Four main-effect QTLs were put along the chromosome, two pairs of 

which interact. We simulated these QTLs and marker genotypes with Bayesian mapping 

based on AFT model and the traditional Bayesian mapping procedure with normal 

residuals, respectively. The population mean was taken to be 5.0  . The degree of 

freedom (df) was assigned to be 3, so that the residual variance was 3.0. Given these 

parameters, the phenotype of quantitative trait is randomly generated on each individual 

according to model (1). 

Before Bayesian sampling with MCMC algorithm, we assign the prior number of 

main-effect QTL at 3ml   and the prior expected number of epistatic QTL at 3, so that 

the upper bound of the number of QTL is 6 3 6 13L    . The actual values for the 

hyper parameters are taken to be 0ev   and 1es  . The initial values of all variables 

are sampled from their prior distributions. In the MCMC sampling, the burn-in is 

determined as 6000 cycles by visually inspecting the plots of some samples across the 

rounds. MCMC is additionally run for 160,000 cycles after the burn-in period (deleted). 

To reduce serial correlation, we save one observation in every 40 cycles and therefore 

obtain independent posterior sample of 4,000 observations for the post-MCMC analysis. 

Considering each simulation is more time consuming, the simulations are repeated 50 

times to evaluate statistical power of QTL detection. 

The mapping results with both methods are listed in Table 1. The standard deviations 

with the method proposed here are smaller than the ones with the traditional Bayesian 

mapping method, especially for the interacting QTLs. Apparently, Bayesian genome-wide 

mapping based on the AFT model performs significantly higher statistical power of QTL 

detection than traditional Bayesian mapping if the residual error subjects to heavy-tailed 

distribution. Our method can detect the QTL which cannot be detected by the traditional 

Bayesian mapping method. The results indicate that Bayesian mapping interacting loci 

based on AFT model is able to better estimate the effects and positions of detected QTLs. 

The estimating precision of parameters and the statistical power of QTL detection, as 

expected, increase as sample size increased. Table 1 also displays the mean estimates of 

the genetic effects for simulated QTL obtained with AFT mapping model. It is shown 

clearly that the estimates of QTL effects are fairly close to the true parameter values 

except a pair of interacting QTLs.  
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Table 1. Mean Estimates and Sds (In Parentheses) of QTL Positions and 
Effects, Statistical Power of QTL Detection Obtained with Bayesian Analysis 

Based on the AFT Model and Normal Model 

Sample 

size 
Methods 

QTL 

paramet

ers 

QTL No 

1 2 3 4 5 6 

150  
True 

position 
56 148 267 359 56×267 148×359 

  
True 

effect 
0.45 0.70 0.30 0.55 0.30 0.20 

 AFT Position 
54.3(

5.2) 

147.4(3.

1) 

267.0(

6.0) 

358.7(3.

5) 

56.7(9.8)×270.2

(10.7) 

151.4(6.2)×

357.8(9.1) 

  effect 
0.44(

0.09) 
0.71(0.1

5) 
0.41(0

.09) 
0.58(0.1

2) 
0.25(0.15) 0.05(0.17) 

  Power 
65.0

% 
90.0% 40.0% 70.0% 50.0% 35.0% 

 Normal Position － 
148.5(1.

9) 

260.0(

0.0) 

360.4(1.

7) 

46.6(11.8)×264.

6(14.3) 

145.3(14.1)

×359.5(11.9

) 

  Power 0.0% 20.0% 5.0% 25.0% 5.0% 20.0% 

300 AFT Position 
55.4(

3.3) 

148.2(2.

7) 

266.2(

3.3) 

359.2(2.

9) 

57.7(6.3)×268.2

(6.2) 

151.9(5.3)×

359.2(3.4) 

  effect 
0.44(

0.08) 
0.71(0.1

0) 
0.30(0

.08) 
0.56(0.0

6) 
0.29(0.12) 0.10(0.10) 

  Power 
80.0

% 
100.0% 80.0% 95.0% 85.0% 55.0% 

 Normal Position 
53.0(

4.2) 

148.0(4.

9) 

263.3(

0.0) 

359.7(4.

3) 

46.5(10.7)×259(

13.3) 

149.3(10.5)

×358.6(10.

7) 

  Power 
10.0

% 
25.0% 5.0% 30.0% 10.0% 30.0% 

 

4. Case Analysis 

HelveticaIn Bayesian epistatic analysis, except for model (1), we also assume the 

residual in model (1) to be a normal distribution and compare mapping results from the 

two models. When the residual is normal distribution, the 1w   in model (1) and 

Bayesian epistatic analysis for survival time is not required to sample w. According to the 

results from the interval nonepistatic mapping[11] and two-dimensional genome scan, the 

prior number of main-effect QTL was set at 3ml   according to the interval mapping 

results and the prior expected number of all QTL ( 0l ) was taken to be 5ml  . The upper 

bounds of the number of QTL, L, were then 16. The hyper parameters ev  and es were 

assigned to be 0 and 1, respectively. The initial values of all variables were drawn from 

their prior distributions. The MCMC was run for 200,000 cycles after the burn-in period 

for 10000 cycles. 

The estimates for main-effects QTL parameters and the estimates for epistatic-effect 

QTL parameters obtained with Bayesian mapping based on AFT model and traditional 

Bayesian mapping procedure with normal residuals were listed in Table 2 and 3, 

respectively. For the estimates of main-effects QTL parameters, the two models behave 

almost equally well. While, for the detecting results of interacting QTLs, the AFT model 

detected a total of six pairs interacting QTLs, covering all the ones identified with the 

traditional Bayesian mapping method. The detecting results sufficiently validated the 

effectiveness and flexibility of the Bayesian mapping approach based on the parametric 
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AFT model. 

Table 2. Estimates for Main-Effect QTL Parameters Obtained With Bayesian 
QTL Analysis for Flowering Time in Rice Based On the AFT Model and 

Normal Model 

Methods QTL parameters  QTL no 

1 2 3 

AFT LG-position 6-30.18 12-1.32 14-15.06 

 Heritability (%) 

6.51 

14.20 5.25 

 Additive effect 

0.50 

0.76 

0.38 

 2lnBF 4.37 8.26 3.34 

Normal LG-position 6-30.18 12-1.32 14-15.06 

 Heritability (%) 

6.46 

13.81 

5.07 

 Additive effect 0.50 0.75 0.37 

 2lnBF 4.54 8.24 2.96 

Table 3. Estimates for Epistatic-Effect QTL Parameters Obtained With 
Bayesian Analysis for Flowering Time in Rice Based on the AFT Model and 

Normal Model 

QTL 

no. 

AFT Normal  

LG-positions Heritability 

(%) 

Additive 

effects 

2lnBF LG-position Heritability 

(%) 

Additive  

effects 

2lnBF 

1 (3-29.91) ×

(4- 74.22) 
11.79 1.49 6.07 － － － － 

2 (3-40.96) ×

(9-0.00) 
12.15 1.40 7.94 － － － － 

3 (5-8.25) ×

(14-1.04) 
10.23 0.97 8.76 

(5-9.29) ×

(14-1.04) 
10.03 0.83 8.95 

4 (6-16.48) ×

(8-9.55) 
12.58 1.42 9.77 

(6-17.55)×

(8-8.26) 
11.59 1.45 9.44 

5 (10-4.52) ×

(14-0.00) 
10.73 1.14 9.24 

(10-6.72)×

(14-1.04) 
15.56 0.75 9.02 

6 (10-3.39) ×

(15-26.43) 
11.97 0.29 7.39 － － － － 

 

6. Conclusion 

Survival traits, which have a skewed distribution and are usually subject to censoring 

due to random loss of follow-up or limited duration of the experiment, have been widely 

observed in nature, for instance, flowering time in plants, failure time or survival time in 

animals. In the context of the AFT model based on the log-t distribution, we develop a 

genome-wide mapping strategy for detecting interacting QTLs with the aid of Bayesian 

model selection, realizing the dissection of complex genetic architecture for survival traits. 

Our proposed approach performs highly computational efficiency because it allows us to 

carry out MCMC sampling for QTL parameters in the reduced model space. We conduct 

two simulation experiments to validate the flexibility of the Bayesian mapping strategy 

based on the AFT model and the superiority compared with traditional Bayesian model 

analysis assuming a normal distribution. A real data analysis for flowering time also 

indicates the flexibility of the method by comparing the results obtained with traditional 

Bayesian model analysis. 
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The AFT model we used herein is established under the assumption of log-t 

distribution for survival time. Other skewed distributions, such as exponential, Weibull, 

log-normal, log-logistic and Gamma distributions etc. can be also used to fit survival data 

and form the likelihood function of accelerated failure time model. With those 

distributions, the posteriors for genetic effects of QTL cannot be analytically integrated 

out, thus requiring that these parameters be drawn with Metropolis-Hastings algorithm at 

each MCMC iteration. Complex MCMC procedures increase computational burden on 

sampling all model parameters and tend to have poor mixing. In addition, the mapping 

strategy proposed here can be further extended to more complex experimental population, 

such as multiple line crosses and outbred population and more complex QTL models 

including epistatic effects between imprinted QTLs.  
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