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Abstract

In survival analysis, the accelerated failure time (AFT) model, as it is I| function
of the logarithms of survival times on covariates with yugirﬂerpr rameters, is

considered to be a useful alternative to the proportion M). To dissect
complex genetic architecture for survival traits, whi eas e’v&i}strlbutlon and are
often subject to censoring, we construct a multi eractj TL"model based on the

parametric AFT model with the baseline distripytion of log-t ution. Bayesian model
selection is proposed to estimate the and eepistatic effects of QTLs in a

computationally efficient manner, in Whl prior distripdtion of the scaled parameter
in the AFT model is specified erte I%ﬂuare distribution rather than a
constant. Simulation experiments z;&y d th d& roposed method was superior to
Bayesian method for normal pes in t f both the statistical powers of QTL
detection and the preC|5|on 0 L para estlmatlon Three new pairs of epistatic
QTLs were found in analyzqg areal r flowering time in rice.

Keywords: sunﬂ% d failure time (AFT) model, Bayesian model
selection, interac

1. Introdu@\

Survival traits, w?@e broadly defined as the length of time between two events,
have started to dr attention of some researchers for exploiting the approaches to
mapping the trai%(cept for the characteristic of skewed distribution, there traits are

also difficult 1o follow up. Many methodologies in survival analysis, including a cure-rate
model[1], ibution-free non-parametric[2-5], Cox parametric [6,7] and Cox
semi-p ric models[8-10] are sequentially applied into the interval mapping[11] of
S ait loci. In outbred populations, the variance component based on the methods

ein et al. [12] or Pankratz et al. [13] are appropriate for mapping QTL of survival
. However, all those mapping approaches just estimate and test one locus at a time.
Subsequently, Bayesian mapping method, which is able to simultaneously identify
multiple QTLs[14-19], has been introduced in QTL detection. The number of QTL is
determined either by the Bayes factor[20-21] or by reversible-jump MCMC[14].
Although such Bayesian mapping approach improves statistical power of QTL detection,
it has been noted that drawing number of QTLs with a reversible-jump MCMC procedure
may result in lower convergence efficiency and poor mixing. Moreover, the effects of
deviation from the assumption on normal distributions have not been fully addressed, nor
the censoring mechanism of survival traits has been taken into account. On the basis of
the Bayesian shrinkage mapping, Wang et al. have developed a robust mapping strategy
for analyzing continuous non-normal quantitative traits[22], by replacing the normal
distribution for residuals in multiple QTL model with a Student-t distribution[23-25].
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Their method only focused on the estimates for main-effect QTL, whereas ignored
epistatic effects of the detected QTL. The genetic architecture of quantitative trait
includes not only the number and locations of QTL, but also their main and epistatic
effects. In particular, the unknown number of QTL and possible huge epistatic effects
make the dissection for genetic architecture of quantitative trait extremely complex.

In survival analysis, besides the Cox proportional hazard model (PHM), the accelerated
failure time (AFT) model is also the natural choice for formulating the association of
phenotypes with QTL effects on the survival times[26]. The AFT model has an intuitive
physical interpretation for real-life examples, as it directly expresses the failure time,
rather than the probability as in the PHM, and therefore would be an important alternative
to the PHM[27-28]. The AFT model makes modeling simple as it relates the logarithm of
the failure time linearly to the covariates [29-30]. It also reduces the potential errer
amplifications from linking models with different structures. However, few c&héve
used AFT model to map QTL. Cheng and Tzeng[26] have proposed rZ%’Vc and
semi-parametric methods that based on AFT models for interval mapping@ fact that
using the likelihood derived by Diao et al.[6] to € tim%’mod ter greatly
increases the computational complexity. Furthermore&g apping oach does not
take any account of the interactions among QTLSs.

In this study, for dissecting complex genetic cture val traits, we firstly
construct a multiple interacting QTL model bagd on the parametpic AFT model, in which

the log-t distribution is considered as bas unctioncand ‘then develop a Bayesian
model selection strategy for estimatingat TL paraﬁ; rs, finally, demonstrate the

flexibility and utility of the method by, &Ss ctin si@]ation experiments. Then apply the
method to a real dataset for flowﬂ, me i ?&» e comparing results between the
method proposed here with EE aditiona% esian mapping under the normal
distribution on both the simulatie and the %d

ta analysis indicate that our method has
an improved power in map@g QTL wi hg al and non-normal phenotypes.

2. Theory and l\@ S %

1) Genetic ---
For simpl e Cconsj
describe the Bayesian
easily applied to oth

\rgbackcross population derived from two inbred lines to
ing model for quantitative traits. Certainly, the method can be
rimental designs, such as F, design and four-way crosses. We
measure genotype set of co-dominant molecular markers with a known genetic
linkage map as A@s phenotypes for the trait of interest on n individuals. Supposing
there are %; itative trait loci controlling the trait of interest, we formulate the

multiplicat ects of multiple interacting QTL on the survival time T, by using the
followi T model:

|09(Ti)=#+;7’jxuai + 2 i ZiS +ﬁ (1)

K> j

Where, as usual, x is the population mean; ; for j=1---,m is the additive
effect of the jth QTL; s, s the epistatic effect between jth QTL and kth QTL for
j=L2,---,mk=j,j+1---,m. Variable X; is a genotype indicator variable for
individual i at locus j and defined as +1 for genotype Qg and -1 for genotype qq,
Zy =X; Xy 5 7. 1s a binary variable for each genetic effect, indicating that the
corresponding effect is included (», =1) or excluded (y, = 0) from model (1). Through
inferring the y, , we shall adopt Bayesian model selection to Markov Chain Monte Carlo

(MCMC) sampling in an optimal model space; e, is a random environmental error,
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distributed as N (0, %) with & being residual variance; and W, is a positive random
variable which subjects to Gamma(df /2, df /2) distribution with df being a scalar

parameter.
2) Bayesian model selection
After organizing all genetic effects into g and all indicator variables or dummy

variables into x; , we can simplify the multiple interacting QTL model as the following
linear model:

W,

yi=,u+xi,8+e—\/i_ with 'y, = log(T,) )

This, in fact, is not a common linear model, because the number of independent
variables in the model and the associated design matrix are all unknown Nhe
unknown number of QTLs. Moreover, the residuals subject to student-t dis 'b%)Wrather
than normal distribution. We approximate positions for all possible QTLs (usi partition
of the entire genome into evenly spaced loci, includi a‘II obsgr
additional loci between flanking markers, and then ga the e ed values for
elements in relative design matrix to each locus b *-% the onditional probabilities of

the loci genotypes on two flanking markers. As a t,ah er of genetic effects

for main-effect and epistatic QTLs will be required to estima has been hypothesized
that the genetic variation of most quantita@ns is actually controlled by a few loci

with large effects and a large number o with sm ects[31] This suggests that
among those estimated genetic effec Iarge or significant and most of
them are small or neglectable The Bay deI selection based on a composite
space representation[17- 19 es a SI nd efficient way to identify a small

number of large or S|gn|f|can tlc effec Itlple interacting QTL model.
The Bayesian mapping approach s r presetting the upper bound of the number

of QTLs included in th I[18] v% greater than the number of detectable QTL in
a given data set. G of the number of QTL, these QTL will be drawn
from densely space | acr genome Even with a moderate humber of the upper
bound, there &fe ~$ genet t§ being estimated in the model (2). To make inference
of the existenge of the ts, we introduce a random binary variables y to indicate
which genetic effects ar uded in (, =1) or excluded from (,, = 0) the model[33-37].
Let © =diag (») | (2) becomes

Yi Z/J"')(ig)ﬁ"‘i (3)

Jw

Within \framework of Bayesian model selection, Bayesian sampling for unknown
par including 2, <, B and W, in model (3), is implemented with MCMC
a@m. In the course of Bayesian sampling, the realized sampling value fory in the
matrix ¢ at this round determines which genetic effect and position of QTL will be
drawn or estimated at next round. As a rule, the large genetic effects are included in the
model with higher probabilities than the small ones. This will greatly save the sampling
time, as just a few large main and epistatic effects are drawn in each round.

We implement MCMC sampling by following the simplified and computationally
efficient procedures:

(1) Compute the expected values for the associated design matrix with all spaced loci
over the genome:

E(X) = 7qo — 770
with 74, and 7o beINg the conditional probabilities of genotypes QQ and Qq on

two flanking markers, respectively.
(2) Initialize all variables with some legal values or values sampled from their prior
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distributions. Herein, the upper bound for the number of QTL L is estimated by

L =1, +31, » With I, being the prior expected number of QTL (including main and
epistatic effect QTLs) that is determined according to initial investigations with traditional
methods; the binary indicator » is assigned to be independence prior
p() =W @a—w)» where, the prior inclusion probability for main effect

w _1[1|£f with |~ being the expected number of main effect QTL and
™ L
[ 1—1,/L TQ(H) for epistatic effect.
w, =1—| ——"
@—w,)?

(3) Update population mean ¢ by sampling from a normal distribution Wlth mean

(ZW.] ZWi (y, —x,/3) and variance [ZWi ]1 o2

(@) Update the binary indicators y by adopting an eff|C|ent Met stlngs
algorithm [19, 37] with the probablllty of a where
WR 1-2y )
p:(m] with R - —exp b‘Q’
(5) Update the QTL effects correspondl to y=1Db wmg from the normal

distribution with mean B, _(}ylzwxﬁ&xﬁﬂﬂ) and variance
c+1 -

2 c &2 Where N f corresponding genetic effect, ¢
j

I3

= ( WX)

c+1 ol
takes n. Note that if =0, t@ue corre din ﬂ is taken to be zero.
(6) Update the re5|du®/ar|anc samplmg from an inverted Chi-square

distribution with p&aQ rs V% (v +n)S, +ZW(y, 1—X3)%, Where v,
and s_ are Q@ﬂerpara
(7) Updal by %@m from a Gamma distribution with parameters 1+df gng

O {df+—2(y, e zx”, } 2

(8) Up Lgf using the Metropolis - Hastlngs algorithm[19, 36], based on the
condition terior density of df :

(9) Update the QTL position by drawing from all spaced loci over the genome,
corresponding » =1. Note that the existence of QTL depends on whether the y =1 for

either main or epistatic effect. Each locus is sampled from a variable interval whose
boundaries are the positions of adjoining QTLs. Metropolis-Hastings algorithm is used to
determine whether each proposed (new) position should be accepted or not [38].

(10) Repeat steps (3) — (9) until the Markov chain reaches a desirable length.

Post MCMC analysis includes the monitor of the mixing behavior and convergence
rates of MCMC algorithms and the assessment of characteristics of genomic architecture.
The former can adopt visually inspecting trace plots of the sample values of scalar
quantities of interest or formal diagnostic methods provided in the package R/coda, and
the latter use model averaging accounts for model uncertainty[39-41] that averages over
possible models weighted by their posterior probabilities. We can use various methods to
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graphically and numerically summarize and interpret the posterior samples. The posterior
inclusion probability for each locus is estimated as its frequency in the posterior samples.
Bayes factor (BF) is used to show evidence for inclusion against exclusion of each QTL
locus or effect[18, 20]. Generally, a threshold of BF is empirically determined as 3,
or2In BF = 2.1, for declaring statistical significance for each QTL effect[20].

3. Simulation Studies

A single large chromosome segment with lengh of 500 ¢cM was simulated for a BC
population with sample sizes of 150 and 300, on which sixty-one co-dominant markers
were spaced evenly. Four main-effect QTLs were put along the chromosome, two palrs of
which interact. We simulated these QTLs and marker genotypes with Bayesian
based on AFT model and the traditional Bayesian mapping procedure with Worral
residuals, respectively. The population mean was taken to be ,, —5.0. Th

freedom (df) was assigned to be 3, so that the residual variance was | en these
parameters, the phenotype of quantitative trait is rand enerate% individual

according to model (1).
Before Bayesian sampling with MCMC algox a33|g th prior number of

main-effect QTL at |, =3 and the prior expect mber | ¢ QTL at 3, so that
the upper bound of the number of QTL is +3J_ e actual values for the
hyper parameters are taken to be v, = %mtlal values of all variables

are sampled from their prior distrib \s In th C sampling, the burn-in is
determined as 6000 cycles by VIS spe lots of some samples across the
rounds. MCMC is addltlonall 160 05%@3 after the burn-in period (deleted).
To reduce serial correlatlon ave ope ghservation in every 40 cycles and therefore
obtain independent posterl sample bservations for the post-MCMC analysis.
Considering each S|mu is mor&@v consuming, the simulations are repeated 50

times to evaluate s tm%v ower qf detection.
The mapplng ith botnigethods are listed in Table 1. The standard deviations
with the me’ osed h redsmaller than the ones with the traditional Bayesian

mapping method,Jespecjallysfor the interacting QTLs. Apparently, Bayesian genome-wide
mapping based on the odel performs significantly higher statistical power of QTL
detection than traditi ayesian mapping if the residual error subjects to heavy-tailed
distribution. Our can detect the QTL which cannot be detected by the traditional
Bayesian mappi ethod. The results indicate that Bayesian mapping interacting loci

based on model is able to better estimate the effects and positions of detected QTLSs.
The esti precision of parameters and the statistical power of QTL detection, as
expect rease as sample size increased. Table 1 also displays the mean estimates of

t c effects for simulated QTL obtained with AFT mapping model. It is shown
cle that the estimates of QTL effects are fairly close to the true parameter values
except a pair of interacting QTLs.
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Table 1. Mean Estimates and Sds (In Parentheses) of QTL Positions and
Effects, Statistical Power of QTL Detection Obtained with Bayesian Analysis
Based on the AFT Model and Normal Model

QTL No
Sample Methods Q;r—;_met
size P 1 2 3 4 5 6
ers
True
150 sosition % 148 267 359 56x267 148x359
True 045  0.70 030 055 0.30 0.20
effect
. 543( 147.43. 267.0( 358.7(3. 56.7(9.8)x270.2 15K4(6.2)%
AFT Position 5>y 1y 60) 5 (10.7) 35)7.8@55
044( 071001 0.41(0 o 58(0 1
effect 009) 5) 09) 0.25(0.15) / 17)
Power 06/?-0 90.0%  40.0% 70‘%{% 50.0% %@ 35.0%
145.3(14.1)
Normal  Posion — 4851 260.0 64 «3505(11.9
9) 0.0) )
Power  0.0%  20.0% §$ 25.0% 5% 20.0%
L 554 148 22. 2( 359 57.7(6.3)x268.2  151.9(5.3)x
300 AFT Position 3.3) \ 3) 6.2) 359.2(3.4)

effect ot f§ 0.3 Q@WO 0 0.290.12) 0.10(0.10)
Power ?,Q 100.0% 80. o 95.0%  85.0% 55.0%
\%33 3( 350.7(4.  46.5(10.7)x259( L49-3(10.5)

Normal P05|t Ab N 0.0) 3) 13.3) >7<)358.6(10.
2 90 oo

% A 0 5.0%  30.0% 10.0% 30.0%
\) 4
4. Case Analysis &)

Helveticaln Baye pistatic analysis, except for model (1), we also assume the
residual in mode be a normal distribution and compare mapping results from the
two models the residual is normal distribution, thew=1 in model (1) and
Baye5|an ic analysis for survival time is not required to sample w. According to the
results fr interval nonepistatic mapping[11] and two-dimensional genome scan, the

r& of main-effect QTL was set at | =3 according to the interval mapping

nd the prior expected number of all QTL (l,) was taken to be |_+ 5. The upper

bounds of the number of QTL, L, were then 16. The hyper parameters v, and S, were

assigned to be 0 and 1, respectively. The initial values of all variables were drawn from
their prior distributions. The MCMC was run for 200,000 cycles after the burn-in period
for 10000 cycles.

The estimates for main-effects QTL parameters and the estimates for epistatic-effect
QTL parameters obtained with Bayesian mapping based on AFT model and traditional
Bayesian mapping procedure with normal residuals were listed in Table 2 and 3,
respectively. For the estimates of main-effects QTL parameters, the two models behave
almost equally well. While, for the detecting results of interacting QTLs, the AFT model
detected a total of six pairs interacting QTLs, covering all the ones identified with the
traditional Bayesian mapping method. The detecting results sufficiently validated the
effectiveness and flexibility of the Bayesian mapping approach based on the parametric
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AFT model.

Table 2. Estimates for Main-Effect QTL Parameters Obtained With Bayesian
QTL Analysis for Flowering Time in Rice Based On the AFT Model and
Normal Model

Methods QTL parameters QTL no
1 2 3
AFT LG-position 6-30.18 12-1.32 14-15.06
Heritability (%) 14.20 5.25
6.51
Additive effect 0.76

0.50 che’) :
2InBF 4.37 8.26 3.34
Normal LG-position 6-30.18 12-1.32 4-16.

Heritability (%) 13814
6.46 \‘% 5.07
Additive effect 0.50 ‘@5 V 0.37
2InBF 454 .24 2.96
Q (\)

Table 3. Estimates for Epistatic- QTLP @‘neters Obtained With
Bayesian Analysis for Flowering in Ric&?a d on the AFT Model and

QTL AFT A 'mal
no. LG-positions  Heritabilit ditive .ZI% G-position  Heritability ~ Additive  2InBF
(%) effects (%) effects
L 117.9@ SN\ - -
R ««g .
3 Ei 4?1230 10.23 @ 8.76 Sﬁfgi) * 1003 0.83 8.95
4 Eg:;zgf) x ?b»b’ 9.77 Eg:;.?éZ)S) X 1159 1.45 9.44
> Eig:g:gg; f& 14 9.24 8?1:(13:(7)421; X 1556 0.75 9.02
® 82§Ef 11.97 0.29 739 — — — —
usion

Sutvival traits, which have a skewed distribution and are usually subject to censoring
due to random loss of follow-up or limited duration of the experiment, have been widely
observed in nature, for instance, flowering time in plants, failure time or survival time in
animals. In the context of the AFT model based on the log-t distribution, we develop a
genome-wide mapping strategy for detecting interacting QTLs with the aid of Bayesian
model selection, realizing the dissection of complex genetic architecture for survival traits.
Our proposed approach performs highly computational efficiency because it allows us to
carry out MCMC sampling for QTL parameters in the reduced model space. We conduct
two simulation experiments to validate the flexibility of the Bayesian mapping strategy
based on the AFT model and the superiority compared with traditional Bayesian model
analysis assuming a normal distribution. A real data analysis for flowering time also
indicates the flexibility of the method by comparing the results obtained with traditional
Bayesian model analysis.
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The AFT model we used herein is established under the assumption of log-t
distribution for survival time. Other skewed distributions, such as exponential, Weibull,
log-normal, log-logistic and Gamma distributions etc. can be also used to fit survival data
and form the likelihood function of accelerated failure time model. With those
distributions, the posteriors for genetic effects of QTL cannot be analytically integrated
out, thus requiring that these parameters be drawn with Metropolis-Hastings algorithm at
each MCMC iteration. Complex MCMC procedures increase computational burden on
sampling all model parameters and tend to have poor mixing. In addition, the mapping
strategy proposed here can be further extended to more complex experimental population,
such as multiple line crosses and outbred population and more complex QTL models
including epistatic effects between imprinted QTLs.
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