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Abstract \/’

Attribute reduction have always been hot issues in the concept lattice re Eln this
paper, we define the attribute waned value, and prove that ysing attrlb W values
can simplifies the conversion of the discernibility functi utther prove the
attribute reduction can be generated by selecting eleme % att but ed values of

infimum irreducible concepts, and provide an app at uses jbute concepts to
find all infimum irreducible concepts. In addltlon e an a Lx?n to get all attribute

reductions. Because this algorithm only uses rreducibl cepts rather than all
concepts, the time and space compIeX|ty is po |aI fonK smaller
Keywords: Concept lattice; Attrl ned @ Infimum irreducible concept;

Attribute reduction s\

1. Introduction A

the mathg@s oncept and the hierarchy of concepts in the
field of Applied Mat igs[1]. Sincengoncept lattice is strictly hierarchical and it can
easily describe g iz |on and ecialization among things, it has many successful
applications, su clustering [2], symptom intelligent diagnosis,

Folksonom tlon re and file Browser, software evolution analysis, access
manageme positi tlon and so on. Although concept lattice has been broadly
applied in ma areas roblem is that the number of concept in formal context is the
exponential growth(ig\tfie wake of the size of the context (For instance, (S,<) is a

partially ordere ety concept number of reverse rated ruler N¢ =(S,S, =) is 2°1).[3] If

the context blgger the concept is hard to be calculated and the problem solution
becomes B{UH Therefore, it is important to make the formal context to be irreducible.
In rece ars, there are mainly following works about the concept lattice reduction: the
redu 0 make sure the concept lattice is an isomorphism[4,5], the reduction to make
equivalence classes of objects are constant[6], the reduction to make sure the
ts of objects are constant[7-9], and the reduction to make sure the decision rules are
complete[10]. Although above reduction methods have unique design and have made a
great success in some applications, to find all the possible reduction, the calculation time
of the methods is exponential. At present, there are a lot of new ideas and methods for the
reduction of the concept context, such as the reduction method based on axialities [11],
approximate concepts acquisition method based on k-grade relation object set [12],
homomaorphism reduction of consistent decision context[13], the object-oriented reduction
method based on attribute rank of concept[14], the method based on covering of the
object (attribute) set [15].
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Reference [4] provides an important method to find out all attribute reductions for a
given formal context. But the algorithm complexity is exponential in [4]. With the
increase of formal contexts, it is very difficult to find out all attribute reductions.
Meanwhile, the method is hard to understand, since it cannot be shown in Hasse graphs.
In this paper, we present a reduction method based on infimum irreducible concepts. The
operation process of this method is simpler, the display in the Hasse diagram is intuitive
and easy, and the form of time complexity is polynomial. The new approach improves the
algorithm complexity in [4].

The rest of the paper is organized as follows. Section 2 introduces the main definition
and theorem of concept lattice. Section 3 defines the waned value. Section 4 writes about
the infimum irreducible and the related theorems. Section 5 shows a new attribute
reduction algorithm and analyzes the complexity of the algorithm. Section 6 concludes the
paper with a summary.

*
2. Basic Definitions and Theorems of Concept Lattice \/
Definition 1[16]. A formal context K=(U,M,I) consists of two se M and a
relation 1 cU xM . The elements of G are called thehiegts*and leffients of M
are called the attributes of the context. \
Definition 2[16]. Let K=(U,M, 1) be a for Xt, c M,
f(A)={meM|vue A

g9(B) {u e}@ (u mf
The tuple (A B) is called a concgpt,\ and ag! f(A)=B, g(B)=A. A and
D

B are called as extension and inte respe . The set of all concepts of K is

denoted by B(K).
Property 1[16]. Let KSAM b %mal context, A,A,cU, B,B,cM,
then
Q AcCA A)cf( (D
§9(Az cg(A) 2
65?

(8)) (4)

(Q(b )=1(9(f(A))) (5
=9(f(g(8) ©

O\l‘ (A HAUA) @

Q 9(B)Ng(B,)=9(B UB,) (8)

e property 1(5), VAcU , (g(f (A)), f (A)) must be a concept. By the property

%VBQ M, (9(B), f(g(B))) must be a concept. Specially, if A has only one object
u, then (g(f(u)),f(u)) is called the object concept of u. If B has only one
attribute m, then (g(m), f (g(m))) is called the attribute concept of m.

Definition 3[16]. Let K=(U,M,1) be a formal context. (X,,Y,), (X,,Y,) e B(K). If
X, X,, (X.Y) is called the subconcept of (X,)Y,) , and (X,)Y,) is the
superconcept  of (X,)Y;) , the relation between two concepts is denoted as
X)) <(X,Y,) . If X, =X, , the relation is denoted as (X,,Y;)<(X,)Y,) .If
(X,.Y)) <(X,)Y,) and there is no (X,,Y,) with (X.,Y,)<(X;,Y;)<(X,,Y,) , then
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(X,.Y;) is the direct subconcept of (X,.Y,) , (X,.Y,) is the direct superconcept of
(X,,Y,), and the relation of two concepts is denoted as (X,,Y;) < (X,,Y,).

Definition 4[16]. Let be a formal context. DcB(K) , 3(X,.Y,) eB(K) ,
V(X,Y)eD, (X,Y)=(X,Y,), (X,,Y,) is called a lower bound of D. If the set of

all lower bounds of D has a maximum element, the maximum element is called the
infimum of D, denoted as AD. If there are only two element (X,,Y;) and (X,,Y,)

in D, the infimum is denoted as (X,,Y;)A(X,)Y,) . 3(X,Y,)eB(K)

V(X,Y)eD, (X,Y)<(X,,Y,), (X,,Y,) is an upper bound of D. If the set of all
upper bounds of D has a minimum element, the minimum element is called as the
supremum of D, denoted as vD. If there are only two element (X,,Y;) and (X,,Y,)

in D, the supremum is denoted as (X,,Y;) A(X,.Y,).
Definition 5[16]. Let K=(U,M,1) be a formal context. If (XO,Y)e

(X4, Yy) = A{(X,Y) e B(K) | (X,Y)>(X,.Y,)}, then (X,,Y,) is an Inflmuc? |ble
h

0

concept.

Example 1. Let K=(U,M,1) be a given formal c §ee T e Hasse
graph of the context is shown in Figure 1. The conc an infimum
irreducible concept because #7 (1268,adk) ¢® eB( )>(1268 adk)}
= #2 (123689,a) , while the concept #5 (138 is not flmum irreducible
concept % because
A(X,Y) e B(K)|(X,Y)>(138,abe)} = 36809, a),M 4578,b)} =#5 (138,abe) .

Lemma 1[16]. Let K=(U,M, I) rmal, @ Both (X,,Y;) and (X,Y,) are
concepts. Then the supremum 1, 1) an x(z)is(g(Ylez),Ylez), and the

infimumis (X; N X,, f(X; N :
Definition 6[4]. Let K= @ al context, (A,B), (A,B;) €B(K).
ABMA

dlscernlblllty attrlbute ‘.@ DIS(( B;)) =B uwB;—B MB,.Discernibility
matrix is (A,B E ,B)) (A,B).(A,B;)) eLU,M,1)) .discernibility

function is
5 R

Table 1. A Given Formal Context
@ b ¢c d e f g h i | |

a k

1 x x X X X X X X X X

% 2 x X X

o ii. .
o x

5 X X
6 X X X X X
7 X X
8 x X X X X X X X
9 X
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#1(123456789,2)

#2(123689, ) H#3(134578,b)

#4(689, ac ) o #6(157,bgj )

dhk

#9(68, acdhk) #10(18,abdefikl ) >0 O #11(17,bfgj )

*
O” #13(1,abdefgijkl ) ‘ \/

~ #14( abed m%
Figure 1. The Hasse Graph

3. Theorems of Attribute Waned Value

Definition 7. Let K=(U,M,I) be a ﬂ@al co %Xl,Y) (X,.Y,) e B(K),
(X)) <(X,Y,). Wecall Y,-Y, as a utew lue of (X,,Y,), and denote

all attribute waned values of K as
All attribute waned values in are maﬁg eside the lines.
Lemma 2. Let K= (U a fom%on ext, each attribute waned value of

B(K) is discernibility attr set.
Proof. V(X,.Y;) € B(
a direct superconce
. A=Y, LY,
Lemm

befil

#12(8,abcdefhikl )

LetADb trlbute waned value of (X,)Y;), (X,)Y,) is
2 Y, oY, LY, 0Y, =Y, Y, NY, =Y,.

) (X,.Y,)) - Aisadiscernibility attribute set.
me a formal context. Then a discernibility attribute
set DIS(( (A t be a superset of some waned value in B3(K).

Proof. EI(Xl,Y) 5) € B(K), the supremum of (X,,Y,) and (X,,Y,) is (X,,Y,).
By Lemma 1@ )=, AY,).Y,AY,) . = Y, =Y,AY, Y, « (X,Y,) is the
superconcept (X.,Y;) , and there is a direct super concept sequence
)~ (A,B)>--->(A,,B,)~(X.,Y) . ~ Y,cB cB,c---cB, Y, .
B, -Y,)u(B,-B)u---u(Y,—-B,) . Similarly,
@ (B/—Y,)U(B;—B]) L+ (Y, ~B)).

~DIS((X,,Y),(X,,Y,)) =Y, uY, =Y, NY, =Y, LY, =Y, =
(Yo W(B, —Yo) (B, —B) (Y, -B,))U
(Yo U (B —Y,) U (B; - B) -+ (Y, — B))) - Y,,
Y, does not have the same attribute with (B -Y,) ,
(B,~B) . (%, ~B,) . (B=Y,), (B;—B)) -, (Y,—B)).

" DIS((X,,Y,),(X,,Y,)) = (B, —Y,)w(B,=B) -
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(Y, —B,) W (B[ —Y,)w (B —B) - U(Y, - B)).

(Bl_Yo)y(Bz _81)1"'1(Y1_Bm);

(B/-Y,). (B, —B)),---,(Y, —B,) are attribute waned values. .. DIS((X,,Y;),(X,,Y,))
must be a superset of a certain waned value.

Example 2. The Hasse gragh is shown in Figure 1 , The supremum of concept
#9 (68,acdhk) and #11 (17,bfgj) is #1(123456789,) . Select any one direct
superconcept sequence from #9 (68,acdhk) to #1(123456789,0) : #9(68,acdhk) <
#4(689,ac) <  #2(123689,a) < #1(123456789,09) , and select any one direct
superconcept sequence from #11 (17,bfgj) to #1(123456789,9) : #11(17,bfgj) <
#6(157,bgj) < #3(134578,b) < #1(123456789,) . dhk,c,a and f,gj,b are their
attribute  waned values respectively. DIS(#9,#11) _DIS((6
(17,bfgj)) = acdhk Ubfgj —acdhk mbfgj =abcdfghjk is the superset of ab e

waned values.
Lemma 4[17]. Let A.. be a discernibility attrl hen the

discernibility function F(A..) has the same m|n|m t|v normél form as

F(AFC _{H Y
Lemma 5. Let K=(U,M,1) be a formal ont Thent cernibility function
F(Ag.) has the same minimal d|SJunct|v I for (W(K))
Proof. By Lemma 3, each H; is a

set of ttrlbute waned values. By
Lemma 4, because W(K) is the s | at Y%ganed values, the discernibility
function F(A..) has the sx@al disjunc normal form as F(W(K)).
4. Theorems of Infimum Irred %oncept

Lemma 6. Let I§ I) be a formal context. The discernibility function
F(W(K)) has th% mini nctive normal form as W, (K), where W, (K) is
d e set of

an attribute ng:x u fimum irreducible concepts.
Proofv@ m
W(K)-W, is th

e need prove that every attribute waned value in
set of some attribute waned value in W, (K). In other
words, we need that every attribute waned value of the infimum non-
irreducible con the superset of some attribute waned value of the infimum
irreducible coficept. V(X,Y) is an infimum non-irreducible concept, so (X,Y) has
more tha&nﬁ direct super concepts. Suppose (X,,Y;) and (X,,Y,) are any direct

super c ts of (X, Y), and their supremum is (Xo, Yo). We can get two direct super
c sequences: (X,.Yy) = (A,B) > (A,B,)=--->=(A,.B,) = (X.Y,)
>(A1 B)) >~ (A,B,)) >--->=(A,B!)>~(X,,Y,) . ~ (X,Y,)and (X,,Y,) are the
ct super concepts of (X,Y) . ~ Y,cBcB,c--cB,cY,cY |,
Y0 cBcBc---cB cY,cY.
S Y,u(B -Y,)u(B,-B) w---U(B,-B, )u(Y,-B,)u(Y -Y,)=Y (L
You(B -Y)u(B,=B) w---U(B =B )U(Y,-B)u(Y-Y,)=Y (2)

* Yo has no common element with both
(Bl _Yo) U(Bz - Bl) U"-U(Bm - Bm—l) U(Yl - Bm) U(Y _Yl)
And
(B -Yo)w(B;—B)u--u (B, =B ) U(Y,-B) (Y -Y,).
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4By (1) (2),
(Bl _YO)U(Bz - Bl)u"'U(Bm - Bm—l)u(Yl - Bm)U(Y _Yl) =
(B[ =Yp)w(B;—B) -~ U(B) =B ) U(Y, = B))u(Y -Y,) 3)

And = Y, =Y, NY,.

~ (B -Y,)u(B,-B)u---u(B,-B, ;)u(Y,—B,) has no common element with
(Bl -Yy)u(B;-B)u---U(B —B;)U(Y,—B).

. (Bl _Yo) U(Bz - Bl) U---U(Bm - Bm—l) U(Yl - Bm) o (Y _Yz)
Y,-B,)c(Y-Y,).

Similarly, (B/-Y,)w(B,—B)uw---u(B —B/ )u(Y,-B)cY-Y,
~ (Y,-B))c (Y -Y,). By the above deduction, attribute waned values of (X,Y)
must be the superset of some waned value which belongs to a direct super caoncep
If a direct super concept is an infimum irreducible concept, then the attrib e%yd
value set of (X,Y) must be the superset of its attribute waned value set. er
words, an infimum non-irreducible concept waned value set is the s@p of an
infimum irreducible concept waned value set.

Example 3. A given concept lattice is shown in l%
infimum non-irreducible concept, and has two dir Q

#10 and the concept #11. By Lemma 6, its
superset of one direct superconcept . #13 ha

adeikl. Among them, gj is the superse@ #11 at e”waned value: Qj and

adeikl is the superset of the #10 atrribut d value: I Both #10 and #11 are
not infimum irreducible concepts, s r attn%/ aned values must be the
superset of some superconcept w. lue % ely. Amongs them, gj is the
superset of the #6 attribute wa Y ue gj deike is the superset of the #5
attribute waned value: ae. T ept # an tnfimum irreducible concept, so the
waned value gj of #13 is erset of tribute waned value gj which belongs
to #6.

By Lemma 6, @ need minimal disjunctive normal form of
F(W,(K)), whi s to th of mﬂmum irreducible concepts W, (K)

Lemma 7. If(X ) e B( infimum irreducible concept, then (X, Y) is an
attribute cpfiCe and |t tribute waned value has no common element with the

Proof. Let (X, Y|nf|mum irreducible concept, and (Xo,Yo) the only direct
super concept of v Y-Yo={ms, mz, ..., m}. w{m}cY .. By the property 1(6),
g(m)29(Y) 2K) . I g(m) > g(Y) . then (g(m), f(g(m) is the super
concept o pof X, Y). = (Xo, Yo) is the direct super concept,
) o~ fam) < f(a() .~ mef(gm) (@(=12--k) and
b, -+ M €Y,. The conclusion contradicts with Y-Yo={m1, mz, ..., mg}. -
(i=12---k) .~ g(m)=X —and f(g(m))="F(g(¥))=Y

. Y)=(g(m), f(g(m,))). ~ (X,Y) is an attribute concept.

Let (X1,Y1) and (X2,Y2) be two different infimum irreducible concepts, and
attribute waned values are {m;,m,,---,m} and {m/,m,,---,m’} respectively. We can
get  the  equations  g(m)=g(m,)=---=g(m)=X, and  g(m)=g(m,)
=.=g(m)=X,. + X #X,, ~ {m,m,,---,;m} has no common element with
{m/,m;,,m(}.

Lemma 8. If g(m)=g({m'eM |g(m’) > g(m)}) meM, then the attribute concept
(g(m), f(g(m))) is an infimum irreducible concept.
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Proof. Y={meM|gm)>g(m} , by the property 1 (4) ,
g(v)=g{m’lg(m)>g(m}p) = ~{gm)[g(m)>g(m} .~ g(m)>g(m)
(g(MmNg(m)>g(m) .~ g(¥Y)>g(m) . Suppose 3Y', g(Y)>g(Y)>g(m) .

vmeY', gm)=2g(Y) . ~ gm)>gm) ~ Y={meM|g(m)>g(m)},
Y'cY. .~ gY)2g(Y). That contradicts with g(Y)>g(Y"), thus there is no Y’ to
make g(Y)>g(Y)>g(m) true. So (g(Y), f(g(Y)) is the direct super concept of
(g(m), f(g(m))) . Suppose I(X"Y") , (X",Y") is the direct super concept of
(g(m), f(g(m))) , and X"=g(Y) . Then g(¥Y")>g(m) .~ g(m)=2g(¥")>g9(m) ,
vm' e Y” . Similarly, Y={meM|g(m)>g(m)}

meY .. Y'cY .~ g(Y)=g(Y).w Both (X"Y") and (g(Y), f(g(Y)) are the
super concepts of (g(m), f(g(m))), ~ g(¥")>g(Y) is incorrect, and g(Y")=a(Y) is»
true. The conclusion is contradicts with X" = g(Y). Therefore, (g(m), f(g( an

infimum irreducible concept.
We can get following conclusions by the lemmas. .
Theorem 1. Let K=@U,M,I1) be a formal conx 0o (K) set of all

infimum irreducible concepts. That select an ment each attribute

waned value of the element of B3,(K) can form @n atir ute ion set.
Proof. By [4], the set X is an attribute re uc of K, d only if X contains
all attributes of any one conjunctive term Fc)o e discernibility function

F(Ar) is a discernibility functlon is ¢ d to minimal disjunctive

normal form. By Lemma 5, F ando ) have the same minimal
disjunctive normal form. 6 F( )) and F(W,(K)) have the same
minimal disjunctive norm y Le 7 and Lemma 8, the attribute concept
(g(m), f(g(m))) is an C|ble concept, if and only if

gm=g({meM |g(m (m)}) . For the set of the attribute waned value

of all infimum rr le co ts W, (K) , each attribute waned value has no

common eIem e@ ttribute waned values of attribute concepts.
0

Therefore, she ct any. on& element from each attribute waned value of the
element of ) ca n attribute reduction.
Definition 8[4]. all reductions of the formal context K=(U,M,I1) be

{D, | D, is a redu et} (ris an index set). M is made up of three parts:(1) core
attributes b: . (2) relative necessary attributes c: ceuD —nD, .(3)

i ier ier
unnecess%*al.tributes d:deM-nD,.

If tribute waned value of an infimum irreducible concept only has one

Q, the attribute is called as “core attribute”. If the attribute waned value of an

%um irreducible concept has more than one attributes mil,m2,...,mk, and

1)=g(m2)=...=g(mk), the attributes are called as “relative necessary attribute”. If

the attribute concept is not an infimum irreducible concept, the attribute is called as
“unnecessary attributes”.

Example 4. In Figure 1, concepts #2, #3, #4, #6, #7, #8 are infimum irreducible
concepts. select any one element from each attribute waned value of these concepts,
and then form an attribute reduction set. All attribute reduction set of this examle
are {a, b,c, d, f, g} {a b ckf g}{a b, c, df j} Inconcepts #2, #3, #4, #6, #7,
#8, some attribute waned values have one attribute, then those attributes are core
attributes, such as a, b, ¢, f, some attribute waned values have more than one
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attributes, then those attributes are relative necessary attributes, such as d, k, g, j,
and the attributes that do not appear in infimum irreducible concepts are
unnecessary attributes, such as e, i, I.

5. Attribute Reduction Algorithm
By Theorem 1, we present a new attribute reduction algorithm.
Input: Formal context K=(U,M,1) ,where M ={m,,---,m_}.

Output: Attribute reductions of K.
Step: Declare arrays: All:q] , B[l:q], C[1:q] , where elements of A[i] are

{m, eM|g(m;)>g(m)} , elements of B[i] are {m, eM][g(m;)=g(m)} ,
Cli]=yes|no( yes means that m, is deleted, no means that m, is un-deleted);
Fori=1toq Ali]=2 B[i]=Y C[i]:=no End For [*initialization

\/’
Fori=1toq ?\

For j=1toq 0

If g(m;)>g(m)Then Ali]:= Ali]u{m,} \* .
End For OQ \\>/

If g(m,) =g(m) Then B[i]:= B{i] {m;}
End For

Fori=1toq OQ 0\6

If g(m)=g(Ali]) Then C[i]:=yes *
By Lemma 8, the attribute conce % isp fimum irreducible concept.*/
End For { s\

Fori=1toq-1 A 6
For j=i+1toq \Q\
If B[i]=B[j] Thep Eli]=
End Fc;r Jo @ | ye\
End For Q &
Forl_

If Cli]J=no T ._Su{B[l]}
End For
Return xS@ [*Compute the Cartesian product of S to get all attribute
reductio

Exa . The formal context is shown in Table 2 (it is the same as the table of
[4]), m=a, m,=b, my=c, m,=d, m;=e, is reduced as follows.
@ Table 2. A Given Formal Context

a b ¢ d e

1 X X X X

2 X X X

3 X

4 X X X

Execute steps (2) - (7) of the algorithm :
Al=92, N2]=9, A3l={a,b}, Al4]=9, A5]={a,b,d}
B[] ={a,b}, B[2] ={a,b}, B[3] ={c}, B[4]={d}, B[5]={e}
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Execute steps (8) - (10) :

C[=no, C[2]=no, C[3]=n0, C[4]=no, C[5]=yes,

Execute steps (11) - (15) :

C[=yes, C[2]=no, C[3]=n0, C[4]=no0, C[5]= yes,

Execute steps (16) - (19) :

S ={{a,b}{c}{d}}

Execute step (20) :

{a,c,d}{b,c,d}

All attribute reductions are got.

Theorem 2. The time complexity of algorithm is O(q’k), where k is the number

of objects, and g is the number of attributes.
Proof. The time complexity of the algorithm step (1) is O(gk) , the time0

complexity of the algorithm steps (2) - (7) is O(q’k), the time compfexity/Of

the algorithm steps (8) - (10) is O(gk), the time complexity of rithm

steps (11) - (15) is O(qg’k), the time complexity .L%&Igorl s (16) -
(19) is O(gk), and the time complexity of ste q kW So the time

complexity of the whole algorithm is O(q%k).
Theorem 3. The space complexity of alg;Eith Is O(° +(k +2)q), where k

is the number of objects, and q is the nu ofattrib
Proof. Let K=U,M,I) be ¢ ormal ext, U={u,u,,---,u} ,

M ={m,m,,---,m}, T[l q is an ary number. If j-th object u,
has i-th attribute m,, the j & ] is “1”, dj -th object u; does not have i-th
attribute m, , then the j-th m«& [i] is \ eanwhile, the i-th binary number T[i]
denotes g(m,). The fo@l conte ay T[1:q] needs gk bits space. Similarly,
A[1:q] has q g- n y numbéys, and it needs g’ bitsspace. B[1:q] has q g-bit
binary number \t need® Qb» space. C[1:q] has q 1-bit binary numbers, and
it needs q@ %[MJ@ has q g-bit binary numbers, and it needs g° bits space.
Cartesian product of q° g-bit binary numbers, and it needs g° bits spaces. So,
the step (1) ne bits, the steps (2) - (7) need 2g° bits; the steps (8) -
(10) need & the steps (11) - (15) do not need space, the steps (16) -
(19) ne ? bits at most, the step (20) needs g° bits at most, and the whole
space @3+3q2+(k+2)q bits.
ple 6. For the formal context of Example 1, Suppose
m, =b,m,=c,m, =d , m,=e,m,=f,m =g,m=h ,
my=i,mg, = j,m, =k,m,=I , u=1u,=2,u;=3,u, =4 ,
U; =5,Us =6,u, =7,u; =8,uy =9

After Executing step(20), the ouputs are 111101100000, 111001100010,

111101000100, 111001000110, and they conform to the rule that use at most 12% 12-
bit binary numbers to get result.
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6. Conclusion

This paper presents a new concept reduction method, which selects elements from
each infimum irreducible concept. Then we prove that infimum irreducible concepts
must be attribute concepts.

Dually, all conclusions in this paper can convert to the object reduction method
and further get the method that can reduce both objects and attributes.

The presented algorithms maybe have some methods to simplify the steps. So
there are requirements for the further research.
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