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Abstract 

Attribute reduction have always been hot issues in the concept lattice research. In this 

paper, we define the attribute waned value, and prove that using attribute waned values 

can simplifies the conversion of the discernibility function. Furthermore, we prove the 

attribute reduction can be generated by selecting elements from attribute waned values of 

infimum irreducible concepts, and provide an approach that uses attribute concepts to 

find all infimum irreducible concepts. In addition, we give an algorithm to get all attribute 

reductions. Because this algorithm only uses infimum irreducible concepts rather than all 

concepts, the time and space complexity is polynomial form and smaller. 
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1. Introduction 

Concept lattice belongs to the mathematics concept and the hierarchy of concepts in the 

field of Applied Mathematics[1]. Since concept lattice is strictly hierarchical and it can 

easily describe generalization and specialization among things, it has many successful 

applications, such as the spatial clustering [2], symptom intelligent diagnosis, 

Folksonomy, information revi-sion and file Browser, software evolution analysis, access 

management, proposition reduction and so on. Although concept lattice has been broadly 

applied in many areas, the problem is that the number of concept in formal context is the 

exponential growth in the wake of the size of the context (For instance, ( , )S   is a 

partially ordered set, concept number of reverse rated ruler ( , , )c

s S S N  is | |2 S ).[3] If 

the context is slightly bigger, the concept is hard to be calculated and the problem solution 

becomes difficult. Therefore, it is important to make the formal context to be irreducible. 

In recent years, there are mainly following works about the concept lattice reduction: the 

reduction to make sure the concept lattice is an isomorphism[4,5], the reduction to make 

sure the equivalence classes of objects are constant[6], the reduction to make sure the 

extents of objects are constant[7-9], and the reduction to make sure the decision rules are 

complete[10]. Although above reduction methods have unique design and have made a 

great success in some applications, to find all the possible reduction, the calculation time 

of the methods is exponential. At present, there are a lot of new ideas and methods for the 

reduction of the concept context, such as the reduction method based on axialities [11], 

approximate concepts acquisition method based on k-grade relation object set [12], 

homomorphism reduction of consistent decision context[13], the object-oriented reduction 

method based on attribute rank of concept[14], the method based on covering of the 

object (attribute) set [15]. 
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Reference [4] provides an important method to find out all attribute reductions for a 

given formal context. But the algorithm complexity is exponential in [4]. With the 

increase of formal contexts, it is very difficult to find out all attribute reductions. 

Meanwhile, the method is hard to understand, since it cannot be shown in Hasse graphs. 

In this paper, we present a reduction method based on infimum irreducible concepts. The 

operation process of this method is simpler, the display in the Hasse diagram is intuitive 

and easy, and the form of time complexity is polynomial. The new approach improves the 

algorithm complexity in [4]. 

The rest of the paper is organized as follows. Section 2 introduces the main definition 

and theorem of concept lattice. Section 3 defines the waned value. Section 4 writes about 

the infimum irreducible and the related theorems. Section 5 shows a new attribute 

reduction algorithm and analyzes the complexity of the algorithm. Section 6 concludes the 

paper with a summary. 

 

2. Basic Definitions and Theorems of Concept Lattice 

Definition 1[16]. A formal context ( , , )U M IK  consists of two sets G, M and a 

relation I U M  . The elements of G are called the objects and the elements of M 

are called the attributes of the context. 

Definition 2[16]. Let ( , , )U M IK  be a formal context, A U , B M , 

    , ,f A m M u A u m I      

    , ,g B u U m B u m I      

The tuple  ,A B  is called a concept, if and only if  f A B ,  g B A . A and 

B  are called as extension and intention respectively. The set of all concepts of K  is 

denoted by  KB . 

Property 1[16]. Let ( , , )U M IK be a formal context, 1 2,A A U , 1 2,B B M , 

then 

   1 2 2 1A A f A f A     （）

   1 2 2 1A A g A g A     （）

  1 1A g f A   （3） 

  1 1B f g B   （4） 

     1 1f A f g f A   （5） 

     1 1g B g f g B   （）

     1 2 1 2f A f A f A A  （）

     1 2 1 2g B g B g B B  （）

By the property 1(5), A U  , ( ( ( )), ( ))g f A f A must be a concept. By the property 

1(6), B M  , ( ( ), ( ( )))g B f g B must be a concept. Specially, if A  has only one object 

u , then ( ( ( )), ( ))g f u f u  is called the object concept of u . If B  has only one 

attribute m , then ( ( ), ( ( )))g m f g m  is called the attribute concept of m . 

Definition 3[16]. Let ( , , )U M IK  be a formal context. 1 1( )X ,Y , 2 2( )X ,Y ( ) KB . If 

21X X , 1 1( )X ,Y  is called the subconcept of 2 2( )  X ,Y , and 2 2( )  X ,Y is the 

superconcept  of 1 1( )X ,Y  , the relation between two concepts is denoted as 

1 1 2 2( ) ( ) X ,Y X ,Y . If 1 2X X , the relation is denoted as 1 1 2 2( ) ( ) X ,Y X ,Y .If 

1 1 2 2( ) ( ) X ,Y X ,Y and there is no 3 3( )X ,Y  with 1 1 3 3 2 2( , ) ( , ) ( , )X Y X Y X Y  , then 
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1 1( )X ,Y  is  the direct subconcept of 2 2( )  X ,Y , 2 2( )  X ,Y is the direct superconcept of 

1 1( )X ,Y , and the relation of two concepts is denoted as 1 1 2 2( ) ( )X ,Y X ,Y .  

Definition 4[16]. Let be a formal context. ( ) KD B , 0 0( , ) ( )X Y  KB , 

( , )X Y D, 0 0( , ) ( , )X Y X Y , 0 0( , )X Y  is called a lower bound of D. If the set of 

all lower bounds of D has a maximum element, the maximum element is called the 

infimum of D,  denoted as D. If there are only two element 1 1( )X ,Y  and 2 2( )X ,Y  

in D , the infimum is denoted as 1 1 2 2( ) ( )X ,Y X ,Y . 0 0( , ) ( )X Y  KB , 

( , )X Y D , 0 0( , ) ( , )X Y X Y , 0 0( , )X Y  is an upper bound of D . If the set of all 

upper bounds of D has a minimum element, the minimum element is called as the 

supremum of D, denoted as D. If there are only two element 1 1( )X ,Y  and 2 2( )X ,Y  

in D, the supremum is denoted as 1 1 2 2( ) ( )X ,Y X ,Y . 

Definition 5[16]. Let ( , , )U M IK be a formal context. If 0 0( , ) ( )X Y  KB  and 

0 0 0 0( , ) {( , ) ( ) | ( , ) ( , )}X Y X Y X Y X Y   KB , then 0 0( , )X Y  is an Infimum Irreducible 

concept. 

Example 1. Let ( , , )U M IK  be a given formal context (see Table 1). The Hasse 

graph of the context is shown in Figure 1. The concept #7 (1268, )adk  is an infimum 

irreducible concept because #7 (1268, )adk {( , ) ( ) | ( , ) (1268, )}X Y X Y adk   KB  

= #2 (123689, )a , while the concept #5 (138, )abe is not an infimum irreducible 

concept because 

{( , ) ( ) | ( , ) (138, )}X Y X Y abe  KB {#2(123689, ),#3(134578, )}a b  #5 (138, )abe . 

Lemma 1[16]. Let ( , , )U M IK  be a formal context. Both 1 1( )X ,Y  and 2 2( )X ,Y  are 

concepts. Then the supremum of 1 1( )X ,Y  and 2 2( )X ,Y is 1 2 1 2(g( ) )Y Y ,Y Y  , and the 

infimum is 1 2 1 2( ( ))X X , f X X  . 

Definition 6[4]. Let ( , , )U M IK  be a formal context, ( , )i iA B , ( , )j jA B  ( ) KB . 

discernibility attribute set is (( , ),( , ))i i j jDIS A B A B i j i jB B B B    .Discernibility 

matrix is ( (( , ),( , )),( , ),( , ) ( , , ))FC i i j j i i j jDIS A B A B A B A B L U M I   .discernibility 

function is  

( ) ( )
FC

FC
H h H

F h
 

    . 

Table 1. A Given Formal Context 

 a b c d e f g h i j k l 

1 × ×  × × × ×  × × × × 

2 ×   ×       ×  

3 × ×   ×        

4  ×    ×       

5  ×     ×   ×   

6 ×  × ×    ×   ×  

7  ×    × ×   ×   

8 × × × × × ×  × ×  × × 

9 ×  ×          
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#1(123456789,    )

#3(134578,b )#2(123689, a )

#4(689, ac )

#9(68, acdhk)

#7(1268,adk)

#5(138,abe)

#8(1478,bf )

#6(157,bgj )

#11(17,bfgj )#10(18,abdefikl )
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gj

f
befil

ch
gj

dk

c

ch

dhk
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adeikl
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Figure 1. The Hasse Graph of Table 1 

3. Theorems of Attribute Waned Value 

Definition 7. Let ( , , )U M IK  be a formal context. 1 1( )X ,Y , 2 2( )X ,Y ( ) KB , 

1 1 2 2( ) ( )X ,Y X ,Y . We call 1 2Y Y  as an attribute waned value of 1 1(X ,Y ) , and denote 

all attribute waned values of K  as ( )KW . 

All attribute waned values in Fig. 1 are marked beside the lines. 

Lemma 2. Let ( , , )U M IK  be a formal context, each attribute waned value of 

( )KB  is discernibility attribute set. 

Proof. 1 1( )X ,Y ( ) KB , Let A be an attribute waned value of 1 1( )X ,Y , 2 2( )X ,Y  is 

a direct superconcept  and 1 2A Y Y  . ∵ 1 2Y Y , 1 2 1Y Y Y   , 1 2 2Y Y Y  .  

∴ 1 2 1 2 1 1 2 2(( , ),( , ))A Y Y Y Y DIS X Y X Y       ∴ A is a discernibility attribute set. 

Lemma 3. Let ( , , )U M IK  be a formal context. Then a discernibility attribute 

set (( , ),( , ))i i j jDIS A B A B  must be a superset of some waned value in ( )KB . 

Proof. 1 1 2 2( , ),( , ) ( )X Y X Y  KB , the supremum of 1 1( , )X Y  and 2 2( , )X Y  is 0 0( , )X Y . 

By Lemma 1, 0 0 1 2 1 2( , ) ( ( ), )X Y g Y Y Y Y   . ∵  0 1 2 1Y Y Y Y   , ∴ 0 0( , )X Y  is the 

superconcept of 1 1( , )X Y , and there is a direct super concept sequence 

0 0 1 1 2 2 1 1( , ) ( , ) ( , ) ( , ) ( , )m mX Y A B A B A B X Y . ∴ 0 1 2 1mY B B B Y     . 

1 0 1 0 2 1 1( ) ( ) ( )mY Y B Y B B Y B         . Similarly, 

2 0 1 0 2 1( ) ( )Y Y B Y B B         2( )nY B  . 

1 1 2 2 1 2 1 2 1 2 0(( , ),( , ))DIS X Y X Y Y Y Y Y Y Y Y         

 0 1 0 2 1 1( ) ( ) ( )mY B Y B B Y B      

 0 1 0 2 1 2 0( ) ( ) ( )nY B Y B B Y B Y           , 

0Y  does not have the same attribute with 1 0( )B Y , 

2 1( )B B , , 1( )mY B , 1 0( )B Y  , 2 1( )B B  , , 2( )nY B . 


1 1 2 2 1 0 2 1(( , ),( , )) ( ) ( )DIS X Y X Y B Y B B      
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1 1 0 2 1 2( ) ( ) ( ) ( )m nY B B Y B B Y B            .  

1 0 2 1 1( ),( ), ,( ),mB Y B B Y B    

1 0 2 1 2( ),( ), ,( )nB Y B B Y B       are attribute waned values. 1 1 2 2(( , ),( , ))DIS X Y X Y  

must be a superset of a certain waned value. 

Example 2. The Hasse gragh is shown in Figure 1 , The supremum of concept 

#9 (68, )acdhk  and #11 (17, )bfgj  is #1(123456789, ) . Select any one direct 

superconcept  sequence from #9 (68, )acdhk  to #1(123456789, ) ： #9(68, )acdhk  

#4(689, )ac  #2(123689, )a  #1(123456789, ) , and select any one direct 

superconcept  sequence from #11 (17, )bfgj  to #1(123456789, ) : #11(17, )bfgj  

#6(157, )bgj  #3(134578, )b  #1(123456789, ) . , ,dhk c a  and , ,f gj b  are their 

attribute waned values respectively. (#9,#11)DIS ((68, ),DIS acdhk  

(17, ))bfgj acdhk bfgj acdhk bfgj    abcdfghjk  is the superset of above attribute 

waned values. 

Lemma 4[17]. Let FC  be a discernibility attribute matrix, 
ij pqH H . Then the 

discernibility function ( )FCF   has the same minimal disjunctive normal form as  

( { })FC pqF H  . 

Lemma 5. Let ( , , )U M IK  be a formal context. Then the discernibility function 

( )FCF   has the same minimal disjunctive normal form as ( ( ))F KW . 

Proof. By Lemma 3, each 
ijH  is a superset of some attribute waned values. By 

Lemma 4, because ( )KW  is the set of all attribute waned values, the discernibility 

function ( )FCF   has the same minimal disjunctive normal form as ( ( ))F KW . 

 

4. Theorems of Infimum Irreducible Concept 

Lemma 6. Let ( , , )U M IK  be a formal context. The discernibility function 

( ( ))F KW  has the same minimal disjunctive normal form as 0 ( )KW , where 0 ( )KW  is 

an attribute waned value set of all infimum irreducible concepts. 

Proof. By Lemma 4, we need prove that every attribute waned value in 

0( ) ( )K KW W  is the superset of some attribute waned value in 0 ( )KW . In other 

words, we need prove that every attribute waned value of the infimum non-

irreducible concept is the superset of some attribute waned value of the infimum 

irreducible concept. ( , )X Y  is an infimum non-irreducible concept, so ( , )X Y  has 

more than one direct super concepts. Suppose 1 1( , )X Y  and 2 2( , )X Y are any direct 

super concepts of (X, Y), and their supremum is (X0, Y0). We can get two direct super 

concept sequences: 0 0 1 1 2 2 1 1( , ) ( , ) ( , ) ( , ) ( , )m mX Y A B A B A B X Y , 

0 0 1 1 2 2 2 2( , ) ( , ) ( , ) ( , ) ( , )n nX Y A B A B A B X Y      . ∵  1 1( , )X Y and 2 2( , )X Y are the 

direct super concepts of ( , )X Y . ∴ 0 1 2 1mY B B B Y Y      , 

0 1 2 2nY B B B Y Y        . 

∴ 0 1 0 2 1( ) ( )Y B Y B B    1 1 1( ) ( ) ( )m m mB B Y B Y Y Y         （1） 

0 1 0 2 1( ) ( )Y B Y B B      1 2 2( ) ( ) ( )n n nB B Y B Y Y Y
           （）

∵  Y0 has no common element with both  

1 0 2 1 1( ) ( ) ( )m mB Y B B B B       1 1( ) ( )mY B Y Y    

And  

1 0 2 1( ) ( )B Y B B      1 2 2( ) ( ) ( )n n nB B Y B Y Y
       
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

1 0 2 1 1 1 1( ) ( ) ( ) ( ) ( )m m mB Y B B B B Y B Y Y           

1 0 2 1 1 2 2( ) ( ) ( ) ( ) ( )n n nB Y B B B B Y B Y Y
               

And ∵ 0 1 2Y Y Y  .  

∴ 1 0 2 1 1 1( ) ( ) ( ) ( )m m mB Y B B B B Y B          has no common element with 

1 0 2 1 1 2( ) ( ) ( ) ( )n n nB Y B B B B Y B
            . 

∴ 1 0 2 1 1 1 2( ) ( ) ( ) ( ) ( )m m mB Y B B B B Y B Y Y           ∴  

1 2( ) ( )mY B Y Y   .  

Similarly, 1 0 2 1 1 2 1( ) ( ) ( ) ( )n n nB Y B B B B Y B Y Y
              . 

∴ 2 1( ) ( )nY B Y Y   . By the above deduction, attribute waned values of ( , )X Y  

must be the superset of some waned value which belongs to a direct super concept. 

If a direct super concept is an infimum irreducible concept, then the attribute waned 

value set of (X,Y) must be the superset of its attribute waned value set. In other 

words, an infimum non-irreducible concept waned value set is the superset of an 

infimum irreducible concept waned value set.  

Example 3. A given concept lattice is shown in Figure 1, the concept #13 is an 

infimum non-irreducible concept, and has two direct super concepts: the concept 

#10 and the concept #11. By Lemma 6, its attribute waned values must be the 

superset of one direct superconcept . #13 has two attribute waned values:gj and 

adeikl. Among them, gj is the superset of the #11 attribute waned value:gj, and 

adeikl is the superset of the #10 atrribute waned value: adeikl. Both #10 and #11 are 

not infimum irreducible concepts, so their attribute waned values must be the 

superset of some superconcept waned value respectively. Amongs them, gj is the 

superset of the #6 attribute waned value: gj, and adeike is the superset of the #5 

attribute waned value: ae. The concept #6 is an infimum irreducible concept, so the 

waned value gj of #13 is the superset of the attribute waned value gj which belongs 

to #6.  

By Lemma 6, we just need get the minimal disjunctive normal form of 

0( ( ))F KW , which belongs to the set of infimum irreducible concepts 0 ( )KW  

Lemma 7. If ( , )X Y ( ) KB  be an infimum irreducible concept, then (X, Y) is an 

attribute concept, and its attribute waned value has no common element with the 

other attribute concepts. 

Proof. Let (X,Y) be an infimum irreducible concept, and (X0,Y0) the only direct 

super concept of (X,Y), Y-Y0={m1, m2, …, mk}. { }im Y .∴ By the property 1(6), 

( ) ( ) ( 1,2, , )ig m g Y i k  . If ( ) ( )ig m g Y , then ( ( ), ( ( ))i ig m f g m  is the super 

concept of (X, Y). ∵ (X0, Y0) is the direct super concept, 

∴ 0( ) ( )ig m g Y ,∴ 0( ( )) ( ( ))if g m f g Y ,∵ ( ( )) ( 1,2, , )i im f g m i k   and 

0 0( ( ))f g Y Y , ∴ 0im Y . The conclusion contradicts with Y-Y0={m1, m2, …, mk}. ∴  

( ) ( )ig m g Y ( 1,2, , )i k .∵ ( )ig m X  and ( ( )) ( ( ))if g m f g Y Y  . 

∴ ( , ) ( ( ), ( ( )))i iX Y g m f g m . ∴ (X,Y) is an attribute concept. 

Let (X1,Y1) and (X2,Y2) be two different infimum irreducible concepts, and 

attribute waned values are 1 2{ , , , }km m m  and 1 2{ , , , }tm m m    respectively. We can 

get the equations 1 2 1( ) ( ) ( )kg m g m g m X     and 1 2( ) ( )g m g m   

2( )tg m X   . ∵ 1 2X X , ∴ 1 2{ , , , }km m m  has no common element with 

1 2{ , , , }tm m m   . 

Lemma 8. If ( ) ({ | ( ) ( )})g m g m M g m g m     m M , then the attribute concept 

( ( ), ( ( )))g m f g m  is an infimum irreducible concept. 
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Proof. { | ( ) ( )}Y m M g m g m    , by the property 1（4）, 

( ) ({ | ( ) ( )})g Y g m g m g m     { ( ) | ( ) ( )}g m g m g m   .∵ ( ) ( )g m g m  , ∴  

 ( ) ( ) ( )g m g m g m  .∴ ( ) ( )g Y g m . Suppose Y  , ( ) ( ) ( )g Y g Y g m  . 

∵ m Y   , ( ) ( )g m g Y  . ∴ ( ) ( )g m g m   ∵  { | ( ) ( )}Y m M g m g m    , ∴   

Y Y  . ∴ ( ) ( )g Y g Y  . That contradicts with ( ) ( )g Y g Y  , thus there is no Y   to 

make ( ) ( ) ( )g Y g Y g m   true. So ( ( ), ( ( ))g Y f g Y  is the direct super concept of 

( ( ), ( ( )))g m f g m . Suppose ( , )X Y  , ( , )X Y   is the direct super concept of 

( ( ), ( ( )))g m f g m , and ( )X g Y  . Then ( ) ( )g Y g m  .∴ ( ) ( ) ( )g m g Y g m   , 

m  Y  . Similarly, ∵  { | ( ) ( )}Y m M g m g m    . 

∴ m Y .∴ Y Y  .∴ ( ) ( )g Y g Y  .∵ Both ( , )X Y   and ( ( ), ( ( ))g Y f g Y  are the 

super concepts of ( ( ), ( ( )))g m f g m , ∴ ( ) ( )g Y g Y   is incorrect, and ( ) ( )g Y g Y   is 

true. The conclusion is contradicts with ( )X g Y  . Therefore, ( ( ), ( ( )))g m f g m  is an 

infimum irreducible concept. 

We can get following conclusions by the lemmas. 

Theorem 1. Let ( , , )U M IK  be a formal context. 0 ( )KB  is the set of all 

infimum irreducible concepts. That select any one element from each attribute 

waned value of the element of 0 ( )KB can form an attribute reduction set. 

Proof. By [4], the set X is an attribute reduction of K , if and only if X contains 

all attributes of any one conjunctive term of ( )FCF  , where discernibility function 

( )FCF   is a discernibility function which is converted to minimal disjunctive 

normal form. By Lemma 5, ( )FCF   and ( ( ))F KW  have the same minimal 

disjunctive normal form. By Lemma 6, ( ( ))F KW  and 0( ( ))F KW  have the same 

minimal disjunctive normal form. By Lemma 7 and Lemma 8, the attribute concept 

( ( ), ( ( )))g m f g m  is an infimum irreducible concept, if and only if 

( ) ({ | ( ) ( )})g m g m M g m g m    , m M . For the set of the attribute waned value 

of all infimum irreducible concepts 0 ( )KW , each attribute waned value has no 

common element with the other attribute waned values of attribute concepts. 

Therefore, that select any one element from each attribute waned value of the 

element of 0 ( )KB  can form an attribute reduction. 

Definition 8[4]. Let all reductions of the formal context ( , , )U M IK be 

{ |i iD D is a reduction, }i   ( is an index set). M is made up of three parts:(1) core 

attributes b: i
i

b D


 . (2) relative necessary attributes c: i i
i i

c D D
  

  .(3) 

unnecessary attributes d: i
i

d M D


  . 

If the attribute waned value of an infimum irreducible concept only has one 

attribute, the attribute is called as “core attribute”. If the attribute waned value of an 

infimum irreducible concept has more than one attributes m1,m2,…,mk, and 

g(m1)=g(m2)=…=g(mk), the attributes are called as “relative necessary attribute”. If 

the attribute concept is not an infimum irreducible concept, the attribute is called as 

“unnecessary attributes”. 

Example 4. In Figure 1, concepts #2, #3, #4, #6, #7, #8 are infimum irreducible 

concepts. select any one element from each attribute waned value of these concepts, 

and then form an attribute reduction set. All attribute reduction set of this examle 

are {a, b, c, d, f, g}, {a, b, c, k, f, g},{a, b, c, d, f, j}. In concepts #2, #3, #4, #6, #7, 

#8, some attribute waned values have one attribute, then those attributes are core 

attributes, such as a, b, c, f, some attribute waned values have more than one 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Hybrid Information Technology 

Vol. 9, No.8 (2016) 

 

 

8  Copyright ©  2016 SERSC 

attributes, then those attributes are relative necessary attributes, such as d, k, g, j, 

and the attributes that do not appear in infimum irreducible concepts are 

unnecessary attributes, such as e, i, l.  

 

5. Attribute Reduction Algorithm 

By Theorem 1, we present a new attribute reduction algorithm. 

Input: Formal context ( , , )U M IK ,where 
1{ , , }qM m m . 

Output: Attribute reductions of K . 

Step: Declare arrays: [1: ]A q , [1: ]B q , [1: ]C q , where elements of [ ]A i  are 

{ | ( ) ( )}j j im M g m g m  , elements of [ ]B i  are { | ( ) ( )}j j im M g m g m  , and 

[ ] |C i yes no ( yes  means that im is deleted, no  means that im  is un-deleted); 

1For i to q  [ ]: [ ]: [ ]:A i B i C i no    End For       /*initialization   

1For i to q    

  1For j to q    

( ) ( ) [ ]: [ ] { }j i jIf g m g m Then A i A i m     

( ) ( ) [ ]: { ] { }j i jIf g m g m Then B i B i m      

  End For    

End For  

1For i to q  

( ) ( [ ]) [ ]:iIf g m g A i Then C i yes   

By Lemma 8, the attribute concept of im is not an infimum irreducible concept.*/ 

End For  

1 1For i to q   

  1For j i to q   

     [ ] [ ] [ ]:If B i B j Then C i yes     

  End For  

End For  

:S   

1For i to q  

   [ ] : { [ ]}If C i no Then S S B i     

End For  

Return S       /*Compute the Cartesian product of S to get all attribute 

reductions 

Example 5. The formal context is shown in Table 2 (it is the same as the table of 

[4]), where 1m a , 2m b , 3m c , 4m d , 5m e , is reduced as follows. 

Table 2. A Given Formal Context 

 a b c d e 

1 × ×  × × 

2 × × ×   

3    ×  

4 × × ×   

 

Execute steps（2）-（7） of the algorithm： 

[1]A  , [2]A  , [3] { , }A a b , [4]A  , [5] { , , }A a b d   

[1] { , }B a b , [2] { , }B a b , [3] { }B c , [4] { }B d , [5] { }B e  
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Execute steps（8）-（10）: 

[1]C no , [2]C no , [3]C no , [4]C no , [5]C yes , 

Execute steps（11）-（15）: 

[1]C yes , [2]C no , [3]C no , [4]C no , [5]C yes , 

Execute steps（16）-（19）: 

{{ , },{ },{ }}S a b c d  

Execute step（20）: 

{ , , },{ , , }a c d b c d   

All attribute reductions are got. 

Theorem 2. The time complexity of algorithm is 
2( )O q k , where k is the number 

of objects, and q is the number of attributes. 

Proof. The time complexity of the algorithm step (1) is ( )O qk , the time 

complexity of the algorithm steps（2）-（7） is 
2( )O q k , the time complexity of 

the algorithm steps（8）-（10）is ( )O qk , the time complexity of the algorithm 

steps（11）-（15）is 
2( )O q k , the time complexity of the algorithm steps（16）-

（19）is ( )O qk , and the time complexity of step（20）is 
2( )O q k . So the time 

complexity of the whole algorithm is 
2( )O q k . 

Theorem 3. The space complexity of algorithm is 
3 2( 3 ( 2) )O q q k q   , where k 

is the number of objects, and q is the number of attributes. 

Proof. Let ( , , )U M IK be a formal context, 1 2{ , , , }kU u u u , 

1 2{ , , , }qM m m m ,  1:T q  is an array of k  bits binary number. If j-th object 
ju  

has i-th attribute im , the j-th bit of  T i  is “1”, and j-th object 
ju  does not have i-th 

attribute im , then the j-th bit of  T i  is “0”. Meanwhile, the i-th binary number  T i  

denotes ( )ig m . The formal context array  1:T q  needs qk  bits  space. Similarly, 

 1:A q  has q q-bit binary numbers, and it needs 
2q bits space.  1:B q  has q q-bit 

binary numbers, and it needs 
2q bits space.  1:C q  has q 1-bit binary numbers, and 

it needs q- bits space.  1:S q  has q q-bit binary numbers, and it needs 
2q bits space. 

Cartesian product of S has 
2q  q-bit binary numbers, and it needs 

3q bits spaces. So, 

the step (1) needs qk  bits, the steps（2）-（7） need 
22q  bits; the steps（8）-

（10） need 2q bits, the steps（11）-（15）do not need space, the steps（16）-

（19）need 
2q  bits at most, the step（20）needs 

3q  bits at most, and the whole 

space are 
3 23 ( 2)q q k q    bits. 

Example 6. For the formal context of Example 1, Suppose 

1 2 3 4, , ,m a m b m c m d    , 5 6 7 8, , ,m e m f m g m h    ,

9 10 11 12, , ,m i m j m k m l    , 1 2 3 41, 2, 3, 4u u u u    ,

5 6 7 8 95, 6, 7, 8, 9u u u u u      

After Executing step(20), the ouputs are 111101100000, 111001100010, 

111101000100, 111001000110, and they conform to the rule that use at most 212  12-

bit binary numbers to get result. 
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6. Conclusion 

This paper presents a new concept reduction method, which selects elements from 

each infimum irreducible concept. Then we prove that infimum irreducible concepts 

must be attribute concepts.  

Dually, all conclusions in this paper can convert to the object reduction method 

and further get the method that can reduce both objects and attributes.  

The presented algorithms maybe have some methods to simplify the steps. So 

there are requirements for the further research.  
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