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Abstract 

Random number generation is an art and science of deterministically generating a 

Sequence of numbers that is difficult to distinguish from a true random sequence. It is 

become important tool in cryptography to generate secrete key. There are so many 

approaches to generate a pseudo random number. But they have some limitations too. In 

this paper we represent a new random number generation algorithm with the help of 

existing conventional methods & some new tricks to enhance the programs randomness. 

We already know some methods like mid-square or congruent. But, in our random 

numbers, we just use a congruential method which is pretty much different with 

conventional methods. That’s why we can consider it as a hybrid method of pseudo 

random number generator. 

 

Keywords: Cryptography, PRNG, NIST, DIEHARD, TRNG, Monte Carlo Method, 
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1. Introduction 

Random numbers are essential elements in a great number of solutions in computer 

science. Randomized algorithms require a random source to ensure computational 

complexity bounds and sampling methods often require randomness to accurately 

represent the terms they are surveying. However, one of the most important uses of 

random numbers originated from cryptographic security protocols and algorithms. 

Cryptographic applications use random numbers to generate public/private keys, create 

initial parameter values, and to generate random numbers into protocols and padding 

schemes. Basically, the term random number originated from the Pseudorandom Number 

Generator (PRNG) which is a deterministic software algorithm which create randomness. 

A PRNG takes an input string of bits, or a bit-vector, and generates a longer output bit-

vector which “appears” random. Although there are so many definitions of what it means 

for a bit-vector to “appear” random, one basic rule needs that a pseudorandom number is 

indistinguishable from a “true” random number. That is, given a true random number and 

a pseudorandom number, it is totally computationally uncontrolled to execute an 

algorithm that could recognize the pseudorandom numbers. It is strongly related to a basic 

criteria which requires that every “next” output bit from the generated random number 

must be unpredictable or not correlated to all prior bits. 

Today there are so many pseudorandom number generators algorithm found, but not all 

of them satisfy the basic requirement and are therefore not cryptographically sound. For 

example, the built in C rand() function would not create “good” cryptographic keys. It can 

be shown, that any candidate from one-way function can be used directly as 

pseudorandom number generator that is cryptographically sound. Therefore, we 

commonly used as a PRNG. Unfortunately, PRNGs suffer from two major security 

disadvantages. Firstly, PRNGs demand some inputs which deterministically governs the 

output. To securely use a PRNG, this input also called “seed” must be kept secret. 
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Secondly, All PRNGs can only generate a fixed number bits before they cycle and repeat 

themselves. On the other hand Hardware random number generators (HRNG) do not 

suffer from these two issues since they generate aperiodic “random” output without input 

any seed value. To avoid this, they generate output bits by exploiting inherent 

unpredictability in complex physical systems and procedures. That’s why, the security of 

any HRNG is directly tied to the probability of modeling and imitating the underlying 

physical system. Although hardware generators are quite difficult to design, and even 

more difficult to validate, a number of candidate HRNG designs have been developed [3, 

6, 8, 12]. 

 

1.1. Formal Definition 

The random variable  is a moderate function from the set of possible 

outcomes  to some set . The technical axiomatic definition refers  to be a probability 

space and  to be a measurable space (see Measure-theoretic definition) [15]. 

Although  is basically a real-valued function (  ), it does not return a 

probability. The probabilities of different outcomes or a set of outcomes (events) are 

already given by the probability measure  with which  is equipped. Rather,  denotes 

some numerical property that outcomes in  may have. e.g. the number of heads in a 

random collection of coin flips, the height of a random person etc. The probability that  

takes value is the measure of the set of outcomes , 

denoted  [14]. 

 

 

Figure 1. Random Variable 

A new random variable Y can be defined by applying a real Borel measurable function 

to the outcomes of a real-valued random variable X. The cumulative 

distribution function of is  

If function g is invertible, i.e. g−1 exists, and is either increasing or decreasing, then the 

previous relation can be extended to obtain 

 
and, again with the same hypotheses of inevitability of g, assuming also 

differentiability, we can find the relation between the probability density functions by 

differentiating both sides with respect to y, in order to obtain 

 
If there is no invertibility of g but each y admits at most a countable number of roots 

(i.e. a finite, or countably infinite, number of xi such that y = g(xi)) then the previous 

relation between the probability density functions can be generalized with 
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Where, xi = gi
−1(y). The formulas for densities do not demand g to be increasing. 

SSOO,,  a random variable's possible values might represent the possible outcomes of a yet-

to-be-performed experiment, or the possible outcomes of a past experiment whose 

already-existing value is uncertain (for example, due to imprecise measurements or 

quantum uncertainty). They may also conceptually represent either the results of an 

"objectively" random process (such as rolling a die) or the "subjective" randomness that 

results from incomplete knowledge of a quantity. The meaning of the probabilities 

assigned to the potential values of a random variable is not part of probability theory itself 

but is instead related to philosophical arguments over the interpretation of probability. 

The mathematics works the same regardless of the particular interpretation in use [13]. 

  

1.2. Properties of a Pseudo Random Number  

A sequence of random numbers has two important statistical properties. 

1. Uniformity and, 

2. Independence. 

Each random number is an independent sample drawn from a continuous uniform 

distribution between an interval 0 and 1. Probability density function of this distribution is 

given by, 

 
Reader can see that equation (4.1) is same as equation (2.8) with a = 0 and b = 1. The 

expected value of each random number Ri whose distribution is given by (4.1) is given 

by, 

 
and variance is given by, 

 
Test for the Uniformity of Random Numbers: If the interval between 0 and 1 is 

divided into n equal intervals and total of m (where m > n) random numbers are generated 

between 0 and 1 then the test for uniformity is that in each of n intervals, approximately 

(m/n) random numbers will fall. 

 

1.3. Area of Applications 

Random numbers are used in various sections, some of are given below: 

1. Cryptography 

2. Random sampling 

3. Monte Carlo Method 

4. Statistics 

5. Simulation & Modeling 

6. Lottery 

7. Random distribution 

 

1.4. Different Types of Generator  

Here we concerned with the generation of random numbers (uniform) using digital 

computers. In chapter three, we have given one of the method of generating random 

https://en.wikipedia.org/wiki/Quantum_uncertainty
https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Interpretation_of_probability
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numbers, which is dice rolling. With this method we can generate random numbers 

between two and twelve. Some other conventional methods are coin flipping, card 

shuffling and roulette wheel. But these are very slow ways of generating random 

numbers. We can generate thousands of random numbers using computers in no time. 

Random number hereafter will also be called random variant. 

Congruential or Residual Generators 

One of the common methods, used for generating the pseudo uniform random numbers 

is the congruence relationship given by, 

 
Where, multiplier a, the increment c and modulus m are non-negative integers. It 

means, if (aXi + c) is divided by m, then the remainder is i 1 X + . In this equation m is a 

large number such that m ≤ 2w – 1, where w is the word length of the computer in use for 

generating the (m– 1) numbers and (i = 0) is seed value. By seed value, we mean any 

initial value used for generating a set of random numbers. Seed value should be different 

for different set of random numbers. 

In order, the numbers falling between 0 and 1, we must divide all Xis’ by (m– 1). To 

illustrate the equation, let us take, a = 3, X0 = 5, c = 3 and m = 7. Then 

(i)  X1 ≡ (3 × 5 + 3) (mod 7) = 4 

(ii)  X2 ≡ (3 × 4 + 3) (mod 7) = 1 

(iii)  X3 ≡ (3 × 1 + 3) (mod 7) = 6 

(iv)  X4 ≡ (3 × 6 + 3) (mod 7) = 0 

(v)  X5 ≡ (3 × 0 + 3) (mod 7) = 3 

(vi)  X6 ≡ (3 × 3 + 3) (mod 7) = 5 

(vii)  X7 ≡ (3 × 5 + 3) (mod 7) = 4 

Thus we see that numbers generated are, 4, 1, 6, 0, 3, 5, 4. Thus there are only six non 

repeating numbers for m = 7. Larger is m, more are the non-repeated numbers. Thus 

period of these set of numbers is m. There is a possibility that these numbers may repeat 

before the period m is achieved. Let in the above example m = 9, then we see that number 

generated are 0, 3, 3, 3, 3,… This means after second number it starts repeating. It has 

been shown [53] that in order to have non-repeated period m, following conditions are to 

be satisfied, 

(i) c is relatively prime to m, i.e., c and m have no common divisor. 

(ii) a ≡ 1 (mod g) for every prime factor g of m. 

(iii) a ≡ 1 (mod 4) if m is a multiple of 4. 

Condition (i) is obvious whereas condition (ii) means a = g{a/g} + 1, where number 

inside the bracket { } is integer value of a/g. Let g be the prime factor of m; then if {a/g} 

= k, then we can write 

a = 1 + gk 

Condition (iii) means that 

a = 1 + 4{a/4} 

if m/4 is an integer. Based on these conditions we observe that in the above example m 

= 9 had a common factor with a, thus it did not give full period of numbers. Name pseudo 

random numbers, is given to these random numbers. Literal meaning of pseudo is false. 

They are called pseudo because to generate them, some known arithmetic operation is 

used, which can generate non-recurring numbers but they may not be truly uniformly 

random. 

The MATLAB code is given below: 
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m= input('Enter the higher range of random number: ');       
lmt= input('How many number you want to generate   : ');     
a=13;b=1;r=1; 

  
disp('SN      Random Numbers ')  
disp('---     -------------- ') 

  
for i=1:lmt 

 
    n=(a*r)+b;                         
    x=mod(n,m);                                             
    fprintf('%d              %d\n',i,x);                  
    r=x; 

                                                     
end 

 
Output of Congruence random number: 

 

 
 

Mid Square Random Number Generator 

This is one of the earliest method for generating the random numbers. This was used in 

1950s, when the principle use of simulation was in designing thermonuclear weapons. 

Method is as follows: 

1. Take some n digit number. 

2. Square the number and select n digit number from the middle of the square number. 

3. Square again this number and repeat the process. 

 

For example Let us assume a three digit seed value as 123. 

Step 1: Square of 123 is 15129. We select mid three numbers which is 512. 

Step 2: Square of 512 is 262144. We select mid two numbers which is 21. 

Step 3: Repeat the process. Thus random numbers are 512, 21, … 
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The MATLAB code is given below: 

 
n= input('Enter the length random number      : ');       

lmt= input('How many number you want to generate: ');       
seed=5673;                                                  
disp('SN      Random Numbers ')                             
disp('---     -------------- ') 

  
for i=1:lmt 

     
temp=num2str(seed^2); 
    s=size(temp);                                           
    st=(s(1,2)/2); 

    x=str2num(temp(st:(st+n-1)));                           

    fprintf('%d              %d\n',i,x); 

    seed=x;                                                 

     
end 

 
Output of Mid-square random number: 

 

 
 

2. Motivation 

There are so many random number generation models that are used in real-world. But 

each of them have some limitations as: 

1. Mid-Square random number generator is useless if any output consist lots of zeros 

2. Congruence random number generator have redundancy problem 

According to these reason we are motivated to construct a new generation algorithm 

that show the maximum optimized result. 
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3. Proposed Model 
 

3.1. Idea 

For every random number generation algorithm we see that a seed value is given at the 

initialization of the program. If the seed value is same each time and we use an arithmetic 

operations to generate a number, then it show the same sequence of random numbers each 

trial. To optimize it we use system time stamps millisecond part as a seed value. The 

millisecond is rapidly change within a very short time. So, using this trick; same sequence 

have not returned anymore. On the other hand we use a multiplicative congruence method 

for arithmetic operation. After each trail we update the input value for the next iteration. 

For the better concept of our method we can consider the following image: 

 

 

 

 

 

Figure 2. Mechanism of our Model 

Well, this is our proposed model.  It is very much similar to conventional model, but 

the difference is in input seed & the arithmetic formula of generator. 

 

3.2. Algorithm 

For implementing this model we need to follow the following algorithm: 

 

1. Input m & n from user where m=maximum limit and n=quantity of random number 

2. Take timestamp & clip microsecond part’s 4 digits into c which considered as seed 

value 

3. Set x=1 

4. for i=1 to n 

5. x=(n2 + ax) mod (m+1) 

6. r(1,i)=floor(x) 

7. Update c 

8. Loop end 

9. Return r 

 
3.3. Code implementation 

The MATLAB code for the random number generation function is given below: 

 

Hour 

Input Time Stamp 

Min Sec Millisecond 
Hybrid Random 

Number generator 

Output 

Sequence 
Seed 
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3.4. Output 

 Here some output pattern for different input parameters are given below: 
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4. Simulation & Randomness Analysis 

For checking randomness of a sequence of random numbers, there we use various 

methods of technique to determine the acceptance of random number. Some are given 

below for our model: 

 

Kolmogorov Test: 

 

 

Figure 3. Kolmogorov Test at Confidence Level 0.1 

Comparative Kolmogorov Test: 

Here we apply Kolmogorov test for several times with different generator, that are 

currently presented in the world. Then make average of them and compare it with our 

model. The demographics of comparative Kolmogorov test is given below: 

Table 2. Comparative Kolmogorov Test 

SN Generator Degree of 

Freedom 

Accuracy 

Rate 

Average 

Kolmogorov 

test value 

Result 

01 C 10 95% 0.91 Rejected 

02 C++ 10 95% 0.73 Rejected 

03 java 10 95% 0.53 Accepted 

04 php 10 95% 0.67 Rejected 

05 MATLAB 10 95% 0.71 Rejected 

06 Our Model 10 95% 0.51 Accepted 
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Chi-square Test: 

 

 

Figure 4. Chi-Square Test at Confidence Level 0.1 

Comparative Chi-square Test: 

Here we apply Chi-square test for several times with different generator, that are 

currently presented in the world. Then make average of them and compare it with our 

model. The demographics of comparative Chi-square test is given below: 

Table 2. Comparative Chi-square Test 
SN Generator Degree of 

Freedom 

Accuracy 

Rate 

Average Chi-

square 

test value 

Result 

01 C 10 95% 18.98 Rejected 

02 C++ 10 95% 16.39 Rejected 

03 java 10 95% 14.25 Accepted 

04 php 10 95% 15.80 Accepted 

05 MATLAB 10 95% 13.87 Accepted 

06 Our Model 10 95% 11.20 Accepted 
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5. Outputs & Results 

We apply various types of randomness test on our model using MATLAB. After 

complete them, we investigate the actual view of our model.  

 

5.1. Demographics of Randomness Test 

Here we generate 30 number between 0-100 using different random number generators 

and apply following randomness test strategy. The Demographics of those samples are 

depicted by the following table: 

Table 3. Demographics of All Randomness Test 

SN Generator Degree 

of 

Freedom 

Accuracy 

Rate 

Acceptance Test Average Value Result 

Kolmogorov Chi-

Square 

Poker 

01 C 10 95% 0.91 18.98 4.75 Reject 

02 C++ 10 95% 0.73 16.39 1.29 Accept 

03 java 10 95% 0.53 14.25 7.48 Reject 

04 php 10 95% 0.67 15.80 8.34 Reject 

05 MATLAB 10 95% 0.71 13.87 4.68 Accept 

06 Our Model 10 95% 0.51 11.20 0.75 Accept 

 

 

Figure 5. Bar-Chart for Generated Random Numbers of Our Model 

6. Advantages & Disadvantage 

Every system or model has some good or bad sides. Here we consider both portions. 

After observing everything of our proposed model following advantages are found: 

1. No need to fix any seed value, here seed is collected from current 

microsecond which is rapidly changed after each iteration. 

2. No need to scaling it, because a higher limit is predetermined. 

3. It has high randomness & don’t make any cycle. 

4. It is used to any kind of applications. 
On the other hand this model has some limitations. The flipping points are: 

1. Its randomness depends on current time c & previous value of x 
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2. If the value of higher limit m is less than 10 then increasing the repetition of same 

number. 

3. If m is greater than 264-1 then it cannot calculate the random number. 

 

7. Conclusions 

Random numbers are prevalent in many computer science applications. These 

applications include network protocols design (e.g., TCP sequence number), 

algorithmic research (e.g., random algorithms), various unique identifiers (e.g., 

UUID) and security protocols (e.g., TLS). Random numbers are considered a basic 

building block in almost every cryptographic scheme. 

Having a right source of random numbers is a complex assumption of many 

protocol systems. There have been several high profile failures in random numbers 

generators that led to severe practical problems.  

For this wide application of random numbers we just trying to find a robust & efficient 

algorithm to make it more effective in the relevant domain. In this connection, we also 

enjoy to work with such kind of challenging research. We think it is truly successful. 
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