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Abstract 

Differential evolution (DE) algorithms have been extensively and frequently applied to 

solve optimizationproblems. Theoretical analyses of their properties are important to 

understand the underlying mechanismsand to develop more efficient algorithms. In this 

paper, firstly, we introduce an absorbing Markovsequence to model a DE algorithm. 

Secondly, we propose and prove two theorems that provide sufficientconditions for DE 

algorithm to guarantee converging to the global optimality region. Finally, we design two 

DE algorithms that satisfy the preconditions of the two theorems, respectively. The two 

proposed algorithmsare tested on the CEC2013 benchmark functions, and compared with 

other existing algorithms.Numerical simulations illustrate the converge, effectiveness and 

usefulness of the proposed algorithms. 

 

Keywords: Differential evolution, Absorbing Markov sequence, Global search, Local 

search, Convergent. 

 

1. Introduction 

The differential evolution (DE) algorithm is a competitiveevolutionary computing 

technique for solvingoptimization problems. It is simple in concept,  easy in 

implementation, fast in searching, and doesnot require specific domain knowledge. 

Since it isfirst introduced by Storn and Price [1,2], it has attractedthe attention of 

researchers and has obtained superiorperformance on benchmark functions and 

realworldproblems [3]. 

Eventhough DE has become a popular optimizationalgorithm and much progress 

has been made, there still exist a big room for algorithm to improveits performance 

through deeper empirical and theoreticalstudies. The empirical studies provide aDE 

researcher an empirical way to improve performance.Some studies have been 

concentrated on thetuning of the control parameters such as the mutationscale factor  

F, crossover rateCR, and populationsize NP [4-6]. Some studies have been 

concentrated ondesigning new mutation and crossover operators sothat the 

exploration and exploitation dilemma of thealgorithm are suitably balanced [7-9]. 

On the other hand, theoretical studies have alsobeen conducted to obtain better 

understanding of a DE’s execution process and to guide better 

designandimplementation. Some studies have been concentrated on the analysis of 

the population variance, crossover, and search dynamics of DE. For 

example,Zaharia et al. analyzed the impact on the expectedpopulation mean and 

variance of different mutationand crossover operators [10], and they extended 

theirwork to analyze the influence of the crossover rateon the distribution of the 

number of mutated componentsand on the probability for a component to betaken 

from the mutant vector [11]. Dasgupta et al. proposeda simple mathematical model 
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of the underlyingevolutionary dynamics of a 1-D DE-population,and the objective is 

to study the evolutionary searchdynamics in DE [12]. Some studies have been 

concentratedon the analysis of the time complexity, andthe convergence of DE. For 

example, Zielinski et al. investigated the runtime complexity of DE forvarious 

stopping criteria [13]. Xue et al. performed the mathematical modeling and 

convergence analysisof continuous multiobjective DE under simplifiedassumptions  

[14]. 

The above studies facilitated the empirical andtheoretical study of DE. However, 

in the design ofDE, there are still some issues not solved, which, ifsuitably 

addressed, can lead to more robust and efficientalgorithms. As far as DE concerned, 

how tomake the algorithm guarantee converge to an optimalsolution is still an 

unanswered issue. In this paper,to address this issue, we present and prove 

twotheorems which provide sufficient conditions for researchersto design new 

algorithms that are guaranteedto converge to an optimality solution. Thisis achieved 

in three steps. In the first step, we introduce the absorbing Markov sequence model 

intoDE methodology. In the second step, based on Solisand Wets’s convergence 

proofs for random searchalgorithms15, we propose and prove two theoremsfollowed 

by a modified DE model. Finally, based onthe proposed model, we derive two DE 

algorithms, namely StDE-C and StDE-G. The StDE-C and theStDE-G can satisfy 

the preconditions of the two algorithms, respectively. Thus they can converge tothe 

global optimality region. The framework is formulatedin such a way so that it gives 

deeper insightinto the execution process of DE as well as providesresearchers with 

ways to improve their algorithms’performance. 

The remainder of this paper is organized as follows.Section 2 describes the main 

concepts of DE.Section 3 models the DE using an absorbing Markovsequence. 

Section 4 proposes and proves two theoremsthat guarantee DE convergence. In 

Section 5,a modified stochastic DE model is proposed, withwhich two DE 

algorithms are designed. Section 6describes the test functions, and provides 

simulationresults for illustration and comparison, followed byconcluding remarks in 

Section 7. 

 

2. Basic Concepts and Formulations of Differential Evolution 

Given a solution space , and an 

objective function  DE for minimal optimization problemscan be described 

as: find , so that . In a DE system, the candidate 

solution,also referred to as chromosome, is representedby an n dimensional vector:  

   (1) 

Where NP is the population size, g is the g-th generationof the population. 

Initially, the NP chromosomesare generated randomly. For optimization, 

thealgorithm works through a cycle of stages of mutation, crossover, and selection, 

which can be describedas follows: 

1. Mutation: in the mutation process, the algorithm creates a donor chromosome 

 for each target  . The frequency used mutation operators are as follows: 

a. “DE/best/1” 

;           (2) 

b. “DE/rand/1” 

;           (3) 

c. “DE/current-to-best/1” 

;         (4) 

d. “DE/best/2” 
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;         (5) 

e. “DE/rand/2” 

;        (6) 

f. “DE/current-to-best/2” 

;    

(7) 

where  is the best ever found individual at theg-th generation, , , , ,  

are exclusive integers and are not equal to i, andF>0 is the control parameter for 

scaling the differentialvariation. 

2. Crossover: in the crossover process, the donorchromosome  mixes its 

components with the targetchromosome  to construct a trial chromosome . The 

formulation can be described as: 

 
(8) 

where  is a uniformly distributed randomnumber in the interval  [0,1], 

 is the crossover rate, and  is a randomly selected indice 

which ensures that the trial chromosome  is not identical to the target 

chromosome . 

3. Selection: the selection process determines whether the target 

chromosome or the trial chromosome  survives to the next generation. 

Theformulation can be described as: 

 
(9) 

It can be seen from Eq.(9) that the chromosomeyielding a better objective 

function value will survive. 

The procedure of a standard DE for optimizationproblem is as follows, and 

almost all variants of DEalgorithms follow the similar procedure [1, 2]. 

1. Set population size NP, and initialize the NPchromosomes; Set generation 

g=1, and identify the best chromosome  in the population. 

2. For the current population, conduct the designatedmutation, crossover, and 

selection operators. 

3. Set current generation g=g+1, identify thebest chromosome in the population 

, and update the best ever found chromosome accordingto: 

 (10) 

4. If the stopping criterion is met, output and its objective value; 

otherwise, go back toStep 2. 

 

3. Modeling DE Using Absorbing Markov Sequence 

For a minimal optimization problem with n variables,each dimension of the n 

dimensional solutionspace S represents one variable to be optimized. Eachchromosome 

can be considered as a discrete point in S, and all chromosome’s information at time t can 

beconsidered as the state of the DE. More specifically, at time t (generation t), let the state 

of all the chromosomebe pop(t), the state of the best ever foundchromosome be gbest(t). 

Then the execution processof DE can be described by a random process  
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where  denotes the state of the DE at time t. Let E be the state 

space composed by all .  Consider random process , the following lemma is 

true: 

Lemma 1. Random process  of the DE has Markov property. 

Proof. Because random process  of DE is time discrete,  can be 

represented as . According to steps from 2 to 4 described in Section 

2, the pop(t) is updated by the mutation, crossover, selection process of the DE algorithm, 

and the gbest(t) is updated by Eq.(10). Since the states pop(t−1), gbest(t−1) are known at 

time t, therefore, for any E′⊆E:  

 

which means that  has Markov property. Because  is a process with 

discrete time, it is a Markov sequence. This completes the proof. 

For a minimal optimization problem, the optimal solution  satisfies that 

. The solution sequence of DE can be described by . 

Therefore the DE convergence means that the limit of sequence  exists, 

and satisfies: 

 
(

11) 

However, for an optimization problem, there are some pathological situations such as 

when the optimal solution  occurs at a point where  when  and 

. Thus the true optimal solution will never be discovered unless the 

algorithm specifically tests . Thus lead to replacing the search for the infimum 

with the essential infimum of f on S, which is defined as follows: 

 
(

12) 

Where v(A) is the Lebesgue measure of set A. Because gbest(t) is a discrete point in n 

dimensional solution space S, v({gbest(t)})=0, therefore P{gbest(t)= }=0. It means that 

the DE can not exactly find the true optimal solution . Hence the DE seeks to establish 

convergence to a region surrounding the essential infimum α. Thus the optimal region 

should be defined as follows. 

Definition 1. A region  is said to be an optimal region, if  

 

(

13) 

Where  and M<0. 

In this section, we will describe DE as an absorbing Markov model. Let’s first give the 

definition of an optimal state space.  

Definition 2. A state space E
*⊂E is said to be an optimal state space if and only if 

ε(t)=(pop(t), gbest(t))
*
, satisfies that gbest(t) .  

It can be seen from Definition 2 that E
*
is the objective state space of DE. Given a 

random sequence of DE and an optimal state space E
*
, the following lemma is 

true:  

Lemma 2. Random process  of DE is an absorbing Markov sequence. 

Proof. According to Lemma 1,  is a Markov random sequence. At time t, if 

, according to Definition 2, . According to Step 3 of DE 

procedure, gbest(t) is updated by Eq.(10). Thus f(gbest(t+1))<f(gbest(t)) is satisfied, 

then gbest(t+1) , it means that . As a result, , 

so  is an absorbing Markov sequence. This completes the proof.
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4. Sufficient Conditions for DE Guaranteed Convergence 

In this section, we will propose two theorems that provide sufficient conditions for DE 

algorithm to be guaranteed to converge to the optimality region. Therefore the two 

theorems will provide guideline to better design and implement DEs. The first theorem 

guarantees that DE converges to the optimality region as a global search method. The 

second theorem guarantees that DE converges to the optimality region as a local search 

method. These two theorems are based on Solis and Wets’s paper which provides 

convergence proofs for random search techniques [15].  

 

4.1. Global search and Local Search Methods 

Solis and Wets distinguished ideas between global and local search methods based on 

the properties of the sequence of probability measures  utilized.  

Definition 3. Suppose{ }isthesequenceof probability measures corresponding to 

a method. The method is said to be a global search method if for any (Borel) subset 

A of S with v(A)>0, satisfies:  

 
where  is the probability of subset A being generated by . 

Definition 4. Suppose  isis the sequence of probability measures corresponding 

to a method, let be the support set of . The method is said to be a local search 

method if it has the  with  for all k, except for a finite number of k values, 

satisfies v(S∩ )<v(S).  

According to Definitions 3and 4 above, global search method can be explained as 

follows: given any subset A of S with positive “volume”, when a global search method 

generating random samples, the probability for it repeatedly miss set A is zero. For a local 

search method, the support set  of  is bounded and v(S∩ )<v(S). So there may 

exists a set M′, satisfying v(M′)>0 and M′∩( )= , 

thus . Thatmeansthat there may exist some regions with 

positive “volume” that will never be searched.  

In a DE system,  is the probability measure corresponding to chromosome i at time 

kin the solution space S, and  is the support set of . is the probability measure 

corresponding to all the chromosomes at time k in the solution space S, and 

 is the support set of . In the following sections, for the purpose of 

convenience, we call  the support set of chromosome i at time k, and  the support 

set of the whole population. 

 

4.2. DE Convergence as a Global Search Method 

In this subsection, we will propose a theorem that provides sufficient condition for DE 

to be guaranteed to converge as a global search method.  

Theorem 3. Given a random process of DE, and an optimality state space E . 

Let be the support set of chromosome i at time k, and  be the support 

set of the whole population. If forall ,then:  

 (11) 

where NP is the number of chromosomes in the population. 

Theorem 1 can be explained intuitively as follows. Because , 

thus . Because  the probability of repeatedly missing optimality 

region , when generating new chromosomes, is zero. With the fact that DE has 
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absorbing Markov sequence property, the DE will guarantee converging to the optimality 

region.  

According to Theorem 1, in order to guarantee DE converging to the optimality region, 

one way is to make the support set of the whole population  covers the entire solution 

space S at each time step.  

 

4.3. DE Convergence as a Local Search Method 

In this subsection, we will propose the second theorem that provides sufficient 

condition for DE to be guaranteed to converge as a local search method. 

Theorem 4. Given a random process of DE, and an optimality state space E
*
. 

Let  be the support set of chromosomeiat time k, and  be the support 

set of the whole population. If there exist  and  for all , at least one of 

the following is satisfied: 

1. Set  satisfies that 

; 

2.  

It can be seen that for a DE at each iterat ion step k, if the “volume” of 

is larger than zero, with the fact that DE has absorbing Markov 

sequence property, the the DE can guarantee converging to the optimality region. For the 

p u r p o s e  o f  v i s u a l i z a t i o n ,  F i g u r e  1  

 

 

Figure 1. Relationship of , , and , case: . 

shows an example of the relationship among , , and for a 2-dimensional 

optimization problem, where the shading area is .  

According to Theorem 2, in order to guarantee DE to converge to the optimality 

solution space, another way is to make the support set  of the whole population covers 

the area that is “closer” to  at each time step.  

 

5. Stochastic Differential Evolution Algorithms 

As aforementioned, we have two theorems that guarantee DE converging to the 

optimality region when the conditions in either theorem are satisfied. The first theorem 

requires having the support set of the whole population covering the entire solution space. 

The second theorem requires having the support set of the whole swarm covering the area 

that is “closer” to the optimality region. In this section, we will design a stochastic 

differential evolution model according to the two theorems, which results in two StDE 

algorithms, respectively. The first StDE, namely StDE-C, is designed to satisfy the 
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precondition of Theorem 1, while the other StDE, namely StDE-G, is designed to satisfy 

the precondition of Theorem 2.  

 

5.1. Stochastic Differential Evolution Optimizer  

In the following, we will design the StDE model. The exclusive features of the StDE 

model include:  

1. Each chromosomeirepresentsastochastic region that is described by a specific 

distribution function, but not represents a point in the solution space. It uses 

its chromosome vector , to represent the center of the 

stochastic region. 

2. After the operators of mutation, crossover, and selection are conducted, a 

proportion of the chromosomes undergo a sampling process. The sampling 

process is achieved by firstly generating a new chromosome vector according 

to the distribution function, and replacing the old chromosome vector with the 

new generated one, regardless of the objective function value deterioration.    

3. The parameters that are used to describe the distribution function are 

dynamically adjusted.    

Based on the above features, the procedure of StDE model for optimization is as 

follows. 

1. Set population size NP, and initialize the NP chromosomes; Set generation 

g=1, and identify the best chromosome in the population; Initialize the 

parameters that describe the stochastic regions of each chromosome; Set the 

parameter c(0<c<1) that represents the sampling rate;  

2. For the current population, conduct the designated mutation, crossover, and 

selection operators.  

3. Set current generation g= g+1, identify the best chromosome in the 

population, and update the best ever found chromosome according to Eq.(10).  

4. For each chromosome i, generate a random real number r in the interval [0,1], 

if r<c, generate a new chromosome  in its corresponding stochastic region, 

replace with ; update the parameters that describe the stochastic region.  

5. If the stopping criterion is met, output  and its objective value; 

otherwise, go back to Step 2.  

We derive two StDE algorithms using different types of stochastic region. In the 

first StDE algorithm, the so calledStDE-C, the stochastic region is described by 

Cauchy distribution. Thus, the stochastic region of chromosome iis represented by 

, where  and 

 are position vector and scale vector of the Cauchy distribution, 

respectively. In the second StDE algorithm, the so calledStDE-G, the stochastic 

region is described by Gaussian distribution. Thus, the stochastic region of 

chromosome i is represented by , where 

 and are position vector and variance vector 

of the Gaussian distribution, respectively.  

As mentioned above, the parameters that describe the stochastic region are 

adjusted during the execution process. The rules of how to adjust these parameters 

are designed empirically. In StDE-C, at the k-th iteration, the following rule is 

adopted:  

 (14) 

In StDE-G, at the k-th iteration, the following rule is adopted:  

 
(15) 
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whereT1 and T2 are positive integers, bjl and bju are the lower and upper 

boundaries of the j-th dimension, and ε > 0 is a real number.  

To further improve the performance of the StDE-C and StDE-G, the cross-cluster 

mutation pro- posed in our previous work in Ref. 17 is incorporated. The cross-cluster 

mutation is designed to enhance exploitation and exploration ability of the algorithm. 

Firstly, the operators in Eqs.(2)-(6) are identified as exploitation-biased or exploration- 

biased according to the Hopkins test value (h-value). Following this, the population of the 

entire population is divided into subpopulations. For the chromosomes taken from the 

same subpopulation, the exploitation-biased operators are applied, and for the 

chromosomes taken from different subpopulation, the exploration-biased operators are 

applied.  

 

Figure 2. Comparison between Cauchy and Gaussian Density Functions 

 

5.2. Convergence Analysis 

According to Step 4 of the StDE model, each chromosome undergoes a sampling 

process with a certain probability. It means that its support set is further expanded to its 

corresponding stochastic region. Let’s examine the properties of the stochastic region of 

StDE-C and StDE-G, respectively. The one dimensional Cauchy density function 

centered at zero is defined by:  

 
(16) 

wheret>0 is the scale parameter. The corresponding distribution function is:  

 
(17) 

The one dimensional Gaussian density function centered at zero is defined by:  

 
(16) 

where σ>0 is the variance parameter. The corresponding distribution function is:  

 
(17) 

The Cauchy density function and Gaussian density function are of the same shape but 

not identical to each other. Figure 2 shows the difference between them 

bysettingt=1andσ=1.  

It can be seen from Figure .2 that Cauchy distributed region is more likely to generate a 

new position further away from its current center due to its long flat trails. On the other 

hand, the Gaussian distributed region has a higher probability to generate a new position 
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around its current center, and the probabilities to generate new positions in intervals 

[−σ,σ], [−1.98σ, 1.98σ] and 2.58σ , 2.58σ are 68.27%, 95% and 99%, respectively.  

As analyzed above, because the support set of StDE-C covers the entire solution space, 

thus StDE-C is a global search method. According to Theorem 1, StDE-C can guarantee 

chromosomes converging to the optimality region. On the other hand, although the 

support set of StDE-G covers the entire solution, it has a much lower probability of 

generating new position beyond the interval [−2.58σ , 2.58σ ] at each dimension, so the 

S t D E - G  c a n  b e  

 

Figure 3. Surface Landscapes of F9 And F24. 

regarded as a local search method. However, for the chromosome j whose position 

denotes the whole population’s best position , its support set is 

. According to Eq.(15), the variance is larger 

than ε, then  v(  ∩ )>u is satisfied. According to Theorem 2, the StDE-G can 

guarantee chromosomes converging to the optimality region.  

 

6. Simulation and Discussions 
 

6.1. Test Functions and Experimental Settings 

In the experiment, we select the CEC2013 as benchmarks, which include the shifted, 

rotated, expanded, and combined variants of the basic functions. The CEC2013 has 28 

functions, the properties and formulas of them are reported in Ref. 16. Among the 

functions, 5 of them are unimodal, 15 of them are multimodal, and 8 of them are 

composition functions. As an example, Figure 3 shows the surface landscapes of f9 and f24 

on the first and second dimensions. They are designed to test the performance of 

algorithms on moderate scale optimization problems. While testing, the explicit equations 

of the problems are not allowed being used by the algorithms. Generally, for unimodal 

functions, the convergence speeds are of more interesting than the final results of 

optimization. On the contrary, for multimodal and composition functions, the 

quality of final results is much more important since they reflect an algorithm’s 

ability of escaping from pseudo- optima and locating a good near global optimum. 

The experiments are carried out following the instructions reported in the literature 

associated to the CEC2013 [16]. The dimensions of the functions are taken as 30 and 50, 

respectively. Throughout the experiments, the number of function evaluations (FEs) is 

used to measure the computational efforts. For each function, the maximum number of 

FEs is 3 × 105 for 30 dimensional problems, and 5×10
5
 for 50 dimensional problems. The 

results are presented in terms of function error value , where  

denotes the objective function value of chromosome , and  denotes the global 

optimum value of the function. The algorithm terminates when the maximum number of 
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FEs is reached or the error value is smaller than 10
−8

. To test the stability of the algorithm, 

the experiment on each function is repeated for 51 times, and the best, worst, median 

values, the mean value, and the standard derivation of the 51 runs are presented. In the 

experiment, the involved parameters are selected empirically so that the best computation 

results having high quality solution can be obtained.  

 

Table 1. Results of StDE-C and StDE-G (Dim=30) 

 
 

6.2. Simulation Results and Discussions 

 

6.2.1. Results for 30-D Problems 

This subsection presents the results of the StDE-C and StDE-G for the 30-D problems. 

The best, worst, median values, the mean value and the standard derivation of the 51 runs 

are presented in Table 1. It can be seen from Table 1 that both the StDE-C and StDE-G 

can obtain error value smaller than 10−8 for the unimodal functions f1−f5 and basic 

multimodal functions f6, f10. As for the rest of the 13 basic multimodal functions, the 

StDE-C obtains better results on 4 instances, while StDE-G obtains better results on 9 

instances. As for the composition functions, the StDE-C obtains better results on 6 

instances, while StDE-G obtains better results on 2 instances.  

For the purpose of comparison, the top ranked algorithms in the CEC2013 competition 

are selected, which include the NBIPOPaCMA [18] ,icmaesils [19] and DRMA-LSCh-

CMA [20]. Table 2 presents the results of the StDE-C, StDE-G, and the compared 

algorithms. It can be seen from Table 2 that the StDE-G obtains the best or the same best 

results for 18 instances, and the StDE-G obtains the best or the same best results for 15 

instances. To illustrate the statistical difference between the StDE-C, StDE-G, and the 

compared algorithms, the Friedman test and the Holm test are conducted [21]. The results 

are presented in Table 3.  
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Table 2. Comparison Results of Stde-C And Stde-G with Other Algorithms 
(Dim=30). 

 

Table 3. Results of The Friedman Test and Holm Test. ( ) 

 
 

It can be seen from the Friedman test results that the differences among the five 

algorithms are statistically relevant with 95% certainty. The StDE-G obtains the first rank, 

and the StDE-C obtains the second rank. When we compare the StDE-C and the StDE-G 

with each other, the Holm test result shows that the difference is not statistically relevant. 

The StDE-C obtains slightly better results, as indicated by p = 0.5636. When we compare 

the StDE-C and the StDE-G with the NBIPOPaCMA, the icmaesils, and the DRMA- 

LSCh-CMA, the Holm test shows that both the StDE-C and the StDE-G obtains better 

results, and the difference are statistically relevant with 95% certainty.  
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Table 4. Results of StDE-C and StDE-G (Dim=50). 

 
 

6.2.2. Results for the 50-D Problems 

The subsection presents the results of the StDE-C and the StDE-G for the 50-D 

problems. The experiments on the 30-D problems are repeated on the 50-D problems. The 

best, worst, median values, the mean value and the standard derivation of the 51 runs are 

presented in Table 4. It can be seen from Table 4 that the StDE-C and StDE-G can obtain 

error value smaller than 10
−8

for 4 of the unimodal functions f1, f2, f4, f5, and the basic 

multimodal function f10. As for the rest of the 14 basic multimodal functions, the StDE-C 

obtains better results on 6 instances, while the StDE-G obtains better results on 8 

instances. As for the composition functions, the StDE-C obtains better results on 3 

instances, the StDE-G obtains better results on 4 instances, and the two algorithms obtain 

the same result on 1 instance.  

The StDE-C and the StDE-G are also com- pared with the NBIPOPaCMA, the 

icmaesils and the DRMA-LSCh-CMA. The comparison results are presented in Table 5. 

It can be seen from Table 5 that the StDE-C obtains the best or the same best results for 

12 instances, and the StDE-G obtains the best or the same best results for 16 instances. 

The Friedman test and the Holm test results are presented in Table 6. It can be seen from 

the Friedman test results that the difference among the five algorithms are statistically 

relevant with 95% certainty. The StDE-G obtains the first rank, and the StDE-C obtains 

the second rank. When we compare the StDE-C and the StDE-G with each other, the 

Holm results result shows that the difference is not statistically relevant. The StDE-C 

obtains slightly better results, as indicated by p = 0.3611. When we compare the StDE-C 

and the StDE-G with the NBIPOPaCMA, the icmaesils, and the DRMA-LSCh-CMA, the 

Holm test shows that both the StDE-C and the StDE-G obtains better results, and the 

differences are statistically relevant with 95% certainty.  
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Table 5. Comparison Results of Stde-C and Stde-G with Other Algorithms 
(Dim=50) 

 

Table 6. Results of the Friedman Test and Holm test.( ) 

 

 

6.2.3. Discussions 

The simulation results of the StDE-C and the StDE- G on the 28 CEC2013 functions 

can be summarized as follows.  

1. On the unimodal functions f1−f5, both the StDE-C and the StDE-G can perform 

very well, which indicates that both algorithms maintain good performance in 

terms of their final results.  

2. On the basic multimodal functions f6−f20, when solving the 30-D problems, the 

StDE-C obtains better results on 4 instances (f7, f11,   f15, f20), and the StDE-G 

obtains better results on 9 instances (f8, f9, f12−f14, f16−f19). When solving the 50-D 

problems, the StDE-C obtains better results on 6 instances   (f6, f7, f11, f15, f18, 

f20), and the StDE-G obtains better results on 7 instances ( f9, f12−f14, f16, f17, f19).  

3. On the composition multimodal functions f21 − f28, when solving the 30-D 

problems, the StDE-C obtains better results on 7 instances (f21−f23, f25−f28), while 

the StDE-G obtains better results on 1 instances f24. When solving the 50-D 
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problems, the StDE-C obtains better results on 4 instances ( f23, f25−f27), while the 

StDE-G obtains better results on 3 instances ( f21, f22, f24).  

According to the technical report associated with the CEC2013, the multimodal 

functions have more local optima than the unimodal functions, and the composition 

multimodal functions have the most number of local optima. Moreover, the 50-D 

problems are obviously difficult than the 30-D problems. The simulation results indicate 

that the StDE-C may outperform StDE-G when the algorithm traps into pseudo optimum, 

but may not converge as fast as StDE-G when the algorithm does not trap into pseudo 

optimum. This outcome can be referred as the “no free lunch theorems” for optimization 

[22], i.e., “ any elevated performance over one class of problems is offset by performance 

over another class”. The reason that we get such results is that in StDE-C, the stochastic 

region of each chromosome is described by Cauchy distribution. And the Cauchy 

distribution has a higher probability to generate a new position far away from its current 

center. While in StDE-G, the stochastic region of each chromosome is described by 

Gaussian distribution. And the Gaussian distribution has a higher probability to generate a 

new position far away from its current center. While in StDE-G, the stochastic region of 

each chromosome is described by Gaussian distribution. And the Gaussian distribution 

has a higher probability to generate a new position close to its current center. So it can be 

hypothesized that it is better to apply StDE-C when the quality of the final result is more 

concerned, and to apply StDE-G when the convergence speed is of more importance.  

From the above experimental results and discussions, we can observe that the proposed 

the two StDE algorithms can converge to the optimality region for the utilized test 

functions. This validates the correctness of Theorems 1 and 2. There are inexhaustible 

optimization problems in the real world, we cannot exhaust all of them to validate the 

correctness of the proposed theorems, the experiment here however serves as an 

illustration of usefulness of the theorems and provides a guideline fore researchers to 

design their algorithms.  

 

7. Conclusions 

In this paper, we aimed at designing convergent differential evolution algorithms. In 

the theoretical aspect, firstly, we proposed and proved that the DE can be modeled using 

an absorbing Markov sequence. Secondly, we proposed two theorems that give sufficient 

conditions for DE converging to the optimality region with probability one. From the 

theorems, we concluded that the first sufficient condition to have DE converge to the 

optimality region is to make the support set of the whole population covering the entire 

solution space during the DE execution process. The second is to make the support set of 

the whole population covers the area that is “closer” to the optimality region during the 

DE execution process.  

In the empirical and application aspect, we proposed a stochastic DE model based on 

the two proposed theorems. Depending on the properties of the stochastic region, we 

derived two stochastic DE algorithms, i.e., StDE-C and StDE-G. In StDE-C, the 

stochastic region is described by Cauchy distribution. The StDE-C satisfies the 

precondition of the proposed Theorem 1 and can be considered as a global search method. 

In StDE-G, the stochastic region is described by Gaussian distribution. The StDE-G 

satisfies the precondition of the proposed Theorem 2 and can be considered as a local 

search method. According to the proposed Theorems 1 and 2, both StDE-C and StDE-G 

can converge to the optimality region. Furthermore both the StDE-C and StDE-G are 

simple to implement and are similar to the standard DE except for replacing each 

chromosome’s position vector with a pre-described stochastic region. The performance of 

the StDE-C and StDE-G are tested on the CEC2013 moderate dimensions benchmark 

functions from three different categories. Simulation results show that both of them are 

able to find the global solutions for all these test functions. Based on these results, we can 



International Journal of Hybrid Information Technology 

Vol. 9, No.7 (2016) 

 

 

Copyright © 2016 SERSC 205 

conclude that they can find the optimality region for all the selected test functions. The 

proposed algorithms exhibit their ability of escaping from pseudo optima and locating 

global optimality region, thus enhances the usefullness and effectiveness of the proposed 

theorems.  

One main contribution of the paper is the two theorems according to which when the 

sufficient conditions of either theorem are satisfied, the DE converges to an optimal 

solution. Two applications are provided to illustrate the easiness and effective- ness of 

applying the theorems. The future work includes investigating and designing even more 

effective convergent DE algorithms according to the two theorems, analyzing the 

convergence speed of DE, and designing algorithms that could speed up the convergence. 
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