
International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016), pp. 11-32

http://dx.doi.org/10.14257/ijhit.2016.9.6.02

ISSN: 1738-9968 IJHIT

Copyright © 2016 SERSC

Top Fifty Software Risk Factors and the Best Thirty Risk

Management Techniques in Software Development Lifecycle for

Successful Software Projects

Abdelrafe Elzamly
1*

, Burairah Hussin
2
 and Norhaziah Md Salleh

3

1, 2, 3
Information and Communication Technology, Universiti Teknikal Malaysia

Melaka (UTeM)
1
Department of Computer Science, Al-Aqsa University, Gaza, Palestine

*

1
E-mail: Abd_elzamly@yahoo.com{alaqsa.edu.ps}

Abstract

The concern of this study is to identify software risks and controls in the software

development lifecycle. The aim of this study is to rank the software risks factors according

to their importance and occurrence frequency based on the data source. The survey

questionnaire is used to collect data and method of sample selection referred to as

‘snowball’ and distribution personal regular sampling was used. The seventy six software

project managers have participated in this study who works in the Palestinian software

development. Fifty software risk factors in all phases SDLC and thirty risk management

techniques were presented to respondents. The results show that all risks in software

projects were significant and important in software project manager's perspective.

However, the ranking of the importance of the risks is assigned according to it: Analysis,

planning, maintenance, design, and implementation. In addition, the top ten software risk

factors in software development are selected and used for further analysis such as:

Risk13, Risk 14, Risk15, Risk16, Risk11, Risk18, Risk12, Risk50, Risk19, and Risk 9. The

concern of this paper the top ten controls are used to model its relationship with the risk,

such as: C29, C30, C20, C27, C21, C19, C28, C25, C26, and C23. Software risks can be

modelled empirically with risk management control techniques. We recommended

applying more studies in software risk management practices with real world companies

and building tools to identification and analysis software risks based on quantitative and

intelligent techniques.

Keyword: Software Project, Software Risks, Risk Control Techniques, Software

Development Lifecycle (SDLC), software risk management

1. Introduction

Software development projects still fail to deliver acceptable systems on time and

within budget. Due to the involvement of risk management in monitoring the

success of a software project, analyzing potential risks, and making decisions about

what to do with potential risks, the risk management is considered the planned

control of risk. Integrating formal risk management with project management is a

new phenomenon in software engineering and product management community. In

addition, risk is an uncertainty that can have a negative or positive effect on meeting

project objectives. According to Al-Ahmad (2012), there are no studies that identify

the risk of incorporating these factors into Software Development Life Cycle

(SDLC) [1]. In the process of understanding the factors that contribute to software

* Corresponding Author

http://www.google.ps/url?sa=t&rct=j&q=utem&source=web&cd=1&cad=rja&sqi=2&ved=0CCYQFjAA&url=http%3A%2F%2Fwww.utem.edu.my%2F&ei=RijMUb5hk5OFB4icgdgP&usg=AFQjCNFlZUFAE2tsaeL4BcNGkSqnLEqnSw&bvm=bv.48340889,d.Yms
http://www.google.ps/url?sa=t&rct=j&q=utem&source=web&cd=1&cad=rja&sqi=2&ved=0CCYQFjAA&url=http%3A%2F%2Fwww.utem.edu.my%2F&ei=RijMUb5hk5OFB4icgdgP&usg=AFQjCNFlZUFAE2tsaeL4BcNGkSqnLEqnSw&bvm=bv.48340889,d.Yms

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

12 Copyright © 2016 SERSC

project success, risk is becoming increasingly important. This is a result of the size,

complexity and strategic importance of many of the information systems currently

being developed. In fact, there are many articles were interestingly and describe risk

management theoretically, but we need practical models to assess risk and predict

risk in software project. Indeed, risk management approach needs more effort from

scholars and researchers in quantitative and intelligent risk models [2]. However,

the development of software with software risk management methodology is rarely

found. Thus, it is important to combine between software life cycle with software

risk management such as qualitative, quantitative, and mining techniques to help

software manager tracking and mitigate software. The objectives of this study are:

To identify the software risk factors of software projects and risk control techniques

in the Palestinian software development organizations, to rank the software risk

factors according to their importance and occurrence frequency based on the data

source.

2. Literature Review

Elzamly and Hussin [3] improved quality of software projects of the participating

companies while estimating the quality–affecting risks in IT software projects. The

results show that there were 40 common risks in software projects of IT companies

in Palestine. The amount of technical and non-technical difficulties was very large.

In addition [4], we also used new techniques the regression test and effect size test

proposed to manage the risks in a software project and reducing risk with software

process improvement. Also, they introduced the linear stepwise discriminant

analysis model to predict software risks in software analysis development process.

These methods were used to measure and predict risks by using control techniques

[5]. Additionally, we proposed artifact model of the software risk management for

mitigating risks. It has the five levels to mitigate risks through software project [6].

Also, they used the chi-square test to control the risks in a software project [7].

Therefore, the model‟s accuracy slightly improves in stepwise multiple regression

rather than fuzzy multiple regression. However, this methodology based on

literature review, the objectives of this paper will achieve followed by survey and

discussions with 76 software project managers to estimate the software risk factors

and risk management techniques that affect the software project success.

2.1. Software Project

A software project that solution is a functioning software-based information

system such as enterprise resource planning system, software package, reports, tools

analysis, reengineering software, and website design [8]. Furthermore, increasing

demand for new software project is expected to further compound quality risks in

software lifecycle [9]. Islam (2009) reported that software project is usually faced

with an unexpected problem that is difficult to estimate issues within the software

development process. He classified the issues into technical and non-technical

during the development of software project [10]. Every software project has

challenges which need to be alleviated to make it a successful completion [11]. In

addition, the success of software project increasingly important to the survival of

business. However, these kinds of software projects are the ones with the highest

rate of failure [12]. Risk management projects are increasingly recognized as the

practices in the software project organizations for mitigating risks before they occur

[13]. Islam (2009) also contributed to a risk management project model to reduce

risk at the requirement stage. According to Begum et al. [14], a key success for

software project factors in software organizations is the software process

improvement. Therefore, it is clear that without a good process, a software

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

Copyright © 2016 SERSC 13

organization will fail to produce high quality software, mitigating risks and possibly

fail to reach its objectives. Such problems in the software process model are missing

in the target set for software process and improvement, low involvement of quality

control activities, and the absence of standard business expertise practice. Many

solutions to enhance software process measurement by tools, techniques, and

practices have been suggested [15]. Therefore, it is important to identify the

Critical Success Factors (CSFs) that increase the probability of project success.

Indubitably, there is a need to focus on software project risk management practice in

order to estimate software project risks.

2.2. Software Development Life Cycle (SDLC)

SDLC is a framework that is used to recognize and develop an information

system or software project [16]. It is an approach to develop a software project that

is characterized by a sequence of steps that progress from the beginning to the end.

The SDLC model is one of the oldest systems development model and is still

probably the most commonly applied in software development projects [14].

Furthermore, every software project has risks at every stage of the software

development lifecycle [17]. A software development life cycle methodology is a

structure imposed on the development of a software product [18]. Therefore, there

are many methodologies for software development life cycle such as waterfall, V -

model, Evolutionary model, spiral development, rapid application development,

agile methods, etc. as described in Table 2.2. Thus, the agile software development

methodology is widely used to collect the values, principles and practices for

modelling software in SDLC as well as used to identify and maintain a clear and

correct understanding of the software development project being built [19], [20].

Furthermore, it don‟t contain any risk management techniques because it is believed

that short iterative development cycles [21]. The waterfall model is a systematic

sequence design process of phases starting with the capture and definition of the

requirements, the analysis of these requirements, the formalizing of a system and

software design, the implementation of the design, and the testing and maintenance

of the software [19]. In particular, the waterfall process model encourages the

software development team to specify what the software is supposed to do (gather

and define system requirements) before developing the software project [22].

Moreover, the spiral model methodology involves a series of iterations around the

requirements capture or specification, implementation, testing, validation, delivery,

and operation loop together with periodic reviews of the overall project and the

analysis of risks that have been identified during the course of the software project.

Rapid applications development and evolutionary delivery are similar sorts of

approaches that are built around the idea of building and demonstrating, and in the

latter case delivering, parts of the system as the project goes along [19]. The

extreme programming (XP) model is used to understand the fundamental values

that include its reason for existence and the reason for the successful software

project [20]. The V-model is a software development process that can be considered

as an extension of the waterfall model. It divides the whole process as verification

and validation phases, and each verification phase has a corresponding validation

phase. Generally, the component of SDLC consists of planning, analysis, design,

implementation, and maintenance. Briefly, the discussion about phases is described

below [23]:

 Planning: During this phase, the group that is responsible for creating the system

must first determine what the system need to do for the organization and

evaluation of the existing systems/software.

http://databasemanagement.wikia.com/index.php?title=SDLC&action=edit§ion=2

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

14 Copyright © 2016 SERSC

 Analysis: It includes looking at any existing system to see what it does for the

organization and how well that system does its job.

 Design: It involves the actual creation and design of a system. This involves

putting together the different pieces that creates the system.

 Implementation: It involves the actual construction and installation of a system.

 Maintenance: It includes any future updates or expansion of the system.

Figure 1. Standard Software Development Life Cycle (SDLC) [23]

Figure 2. Software Development Life Cycle SDLC methodologies: Waterfall,
V- model, Evolutionary model, spiral development, and agile [18–20, 23]

Planning

Analysis

Design

Implementation

Maintenance

http://databasemanagement.wikia.com/index.php?title=SDLC&action=edit§ion=3
http://databasemanagement.wikia.com/index.php?title=SDLC&action=edit§ion=4
http://databasemanagement.wikia.com/index.php?title=SDLC&action=edit§ion=5

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

Copyright © 2016 SERSC 15

2.3. Software Risk Management

Although there are many methods in software risk management, software

development projects have a high rate of risk failure. Thus, if the complexity and

the size of the software projects are increased, managing software development risk

becomes more difficult [24]. In addition, the optimization method was tested with

various software project risk prediction models that have been developed [25].

Following is a discussion on several software risk management approaches, models,

and frameworks based on past literature. It is reported that Carr and Tah (2001)

have proposed a methodology in software development that covers both process and

information system models that are based on the software risk management

framework [26]. In terms of economy this methodology provides software

managers with a sixth sense that there may be something wrong with the software

risk management approach thus enabling them to utilize their knowledge and self -

judgment according to their experiences [27]. Fakhar et al. (2013) proposed a risk

management system based on three risk management steps that include risk

identification, risk reduction and risk control [28]. According to Ernawati et al.

(2012), presented framework for software risk management depends on ISO 31000

and it utilizes a designed architecture that includes the basic components of

software risk management like risk identification and risk analysis [29].

Furthermore, Bannerman (2010) postulates that risk management approach practices

need to be increased with extra analysis so as to identify, analyze and assess

structural risks and to mitigate software risks in software projects [30]. Büyüközkan

and Ruan (2010) present incorporated multi-criteria to estimate the methodology for

software managers to mitigate software risks. The method relied on a special fuzzy

operator, namely a two-additive Choquet integral that enables the modeling of

various effects of importance and interactions among software risks [31]. In

addition, Oracle Corporation (2010) proposed risk management solutions that enable

a standardized approach for identifying, assessing and mitigating risk throughout the

software project lifecycle [32]. Dhlamini et al. (2009) demonstrated the need for an

intelligent risk assessment and management tool for either agile or traditional

methods in a software development [33]. Therefore, they proposed a model that

could be investigated for use in developing intelligent software risk management

tools. Islam (2009) also proposed a Goal-driven Software Development Risk

Management Model (GSRM) that supports the identification, assessment, treatment,

and documentation of risks in relation to software project-specific goals [10]. Costa

et al. (2005) proposed a method to measure the possibility for the distribution of

harms and earnings that can be incurred by a software development organization

according to its software development [34].

Besides, Miler & Górski (2004) proposed a framework modeling the process

evolution, which contains techniques to identify process risks and to derive at

suggestions for improvement in the software process improvement [35]. Padayachee

(2002) designed a new software risk management framework by determining the

risk performance measure based on a quantitative survey, which was then applied to

a risk management strategy [36]. Carr and Tah (2001) posit on a systematic

approach to software risk management that involves the identification of risk

sources, the quantification of their effects, the development of responses to these

risks; and the control of residual risks in the software project estimates. In addition,

it was proposed that the principles to manage software project risks by using risk

management approach that is proactive, integrated, systematic, and disciplined

[37]. Boehm (1991) reiterate that software risk management involves two main

phases such as the risk assessment phase that comprise risk identification, risk

analysis, and risk prioritization as well as the risk control phase that includes risk

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

16 Copyright © 2016 SERSC

planning, risk resolution, and risk monitoring [38]. The approaches and methods

reviewed above do not focus on the modelling of software risks based on

quantitative and intelligent techniques for predicting the reliability of a sof tware

project. Furthermore, there was no integration between the software development

life cycle and the real software risk management phases, which were based on

techniques to manage software risks. Therefore, it was evident that previous studies

for approach in software risk management limited phases and techniques, thus did

not create a relation between the software risk factors in software development

lifecycle and risk management techniques to mitigate risks. Besides, none of them

used the modelling approach to mitigate failure risks in software development.

Hence, this study attempts to propose a modelling software risk management for

successful software project. On the other hand, the modelling software project for

risk management focused on activities that include three factors that are follows as

Data source: Questionnaire, historical data, etc. Models: Risk stepwise multiple

regression modelling, risk fuzzy multiple regression modelling. Methods: Risk

identification that rely on risk qualitative models, risk analysis that relies on risk

quantitative techniques and risk intelligent techniques, and risk controlling that rely

on quantitative and intelligent techniques, etc. Unfortunately, quantitative and

intelligent techniques are used merely as restrictions in software risk management

practice to mitigate risks. However, the software project manager determines the

software risk factors and control factors affecting the Software Development Life

Cycle phases through the execution of the software projects. Notably, previous

studies in software risk management, stress on various phases that must be

implemented to mitigate software risks such as risk planning, risk identification,

risk prioritization, risk analysis, risk evaluation, risk treatment, risk controlling, and

risk communication and documentation [39]. Undeniably, a comfortable model for

quantitative risk management approach with software development lifecycle is thus

needed. It is applicable to manage risks with stepwise and fuzzy multiple regression

analysis techniques. These techniques were used to construct predictive models

between risks and controls in the iterative process risk management approach.

Furthermore, the display of these phases in Figure 3 is based on the review of

literature in above-mentioned section:

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

Copyright © 2016 SERSC 17

 Figure 3. Software Risk Management Phases for Successful Software
Project

2.4. Top 50 Software Security Risks in Software Development Lifecycle

This study displays the top 50 software risk factors in software development

lifecycle that common in the literature review. The „Top 10 software risk factors‟

lists differ to some extent from author to author, but some essential software risk

factors that appear almost on any list can be distinguished. These factors need to be

addressed and thereafter need to be controlled. Consequently, the list consists of the

10 most serious risks of a software project ranked from one to ten, each risk's status,

and the plan for addressing each risk [40]. However, the software risk factors listed

in Table 1 below are considered in this study. In addition, these factors are the most

common factors used by researchers and experts when studying the software risk

factors in software development lifecycle.

Table 1. Illustrate Top Software Risk Factors in Software Project Lifecycle
Based on Researchers

Phase No Software risk factors Frequency

P
la

n
n
in

g
[5

],
 [

4
1
]–

[4
3

] 1 Low key user involvement. 14

2 Unrealistic schedules and budgets. 14

3 Unrealistic scope and objectives (goals). 8

4 Insufficient/inappropriate staffing. 8

5 Lack of senior management commitment and technical

leadership.

8

6 Poor/inadequate planning. 7

7 Lack of effective software project management 6

Risk

Controlling

Risk

Treatment

Risk Planning

Risk Analysis

Risk

Evaluation

Risk

Identification

Risk

Prioritization

Risk Communication and

Documentation

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

18 Copyright © 2016 SERSC

Phase No Software risk factors Frequency

methodology.

8 Change in organizational management during the

software project.

5

9 Ineffective communication software project system. 3

10 Absence of historical data (templates). 2

Total frequency 75

A
n

al
y

si
s[

5
],

 [
4

0
],

 [
4
4

]

1 Unclear, incorrect, continually and rapid changing

software project requirements.

19

2 Failure to incomplete or missing detailed requirements

analysis.

9

3 Developer software gold-plating. 7

4 Lack of IT Management. 6

5 Software project requirements not adequately

identified and mismatch.

6

6 Inadequate knowledge about tools and programming

techniques.

5

7 Lack of traceability, confidentiality, correctness and

inspection of the software project planning.

4

8 Major requirements change after software project plan

phase.

3

9 Changing software project specifications. 2

10 Inadequate value analysis to measure progress. 2

Total frequency 63

D
es

ig
n
[4

5
],

 [
4
6
]

1 Introduction of new technology. 5

2 Developing the wrong software functions and

properties.

5

3 Developing the wrong user interface. 4

4 Insufficient procedures to ensure security, integrity

and availability of the database.

4

5 Lack of integrity/consistency. 4

6 Lack of architecture and quality software project. 3

7 Absence of quality architectural and design

documents.

3

8 Failure to redesign and design (blueprints) software

processes.

2

9 Lack of effective software project team integration

between clients, the supplier team and the supply

chain.

1

10 Misalignment of software project with local practices

and processes.

1

Total frequency 32

Im
p
le

m
en

ta
ti

o
n

[4
7
]–

[4
9

] 1 Failure to gain user commitment. 5

2 Personnel shortfalls. 4

3 Failure to utilize a phased delivery approach. 2

4 Too little attention to breaking development and

implementation into manageable steps.

2

5 Inadequate training team members. 1

6 Inadequacy of source code comments. 1

7 Inadequate test cases and generate test data. 1

8 Real-time performance shortfalls. 1

9 Test case design and Unit-level testing turns out very 1

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

Copyright © 2016 SERSC 19

Phase No Software risk factors Frequency

difficult.

10 Lack of adherence to programming standards. 1

Total frequency 19
M

ai
n
te

n
an

ce
[5

0
]–

[5
2

]

1 Inadequate knowledge/skills. 11

2 Inadequate change management. 6

3 Corporate politics with negative effect on software

project.

5

4 Lack of resources and reference facilities. 4

5 Lack of top management commitment and support and

involvement.

4

6 Shortfalls in externally furnished components, COTS. 3

7 Legacy software project. 1

8 Acquisition and contracting process mismatches. 1

9 User documentation missing or incomplete. 1

10 Harmful competitive actions. 1

Total frequency 37

2.5. Risk Management Techniques

Through reading the existing literature on software risk management, we listed

thirty risk management techniques that are considered important in reducing the

software risk factors identified. In the study, we summarize 30 control techniques in

mitigating risk as follows[44], [51], [53], [52]: C1: Using of requirements

scrubbing, C2: Stabilizing requirements and specifications as early as possible, C3:

Assessing cost and scheduling the impact of each change to requirements and

specifications, C4: Develop prototyping and have the requirements reviewed by the

client, C5: Developing and adhering a software project plan, C6: Implementing and

following a communication plan, C7: Developing contingency plans to cope with

staffing problems, C8: Assigning responsibilities to team members and rotate jobs,

C9: Have team-building sessions, C10: Reviewing and communicating progress to

date and setting objectives for the next phase, C11: Dividing the software project

into controllable portions, C12: Reusable source code and interface methods, C13:

Reusable test plans and test cases, C14: Reusable database and data mining

structures, C15: Reusable user documents early, C16: Implementing/Utilizing

automated version control tools, C7: Implement/Utilize benchmarking and tools of

technical analysis, C18: Creating and analyzing process by simulation and

modeling, C19: Provide scenarios methods and using of the reference checking,

C20: Involving management during the entire software project lifecycle, C21:

Including formal and periodic risk assessment, C22: Utilizing change control board

and exercise quality change control practices, C23: Educating users on the impact of

changes during the software project, C24: Ensuring that quality-factor deliverables

and task analysis, C25: Avoiding having too many new functions on software

projects, C26: Incremental development (deferring changes to later increments),

C27: Combining internal evaluations by external reviews, C28: Maintain proper

documentation of each individual's work, C29: Provide training in the new

technology and organize domain knowledge training, C30: Participating users

during the entire software project lifecycle.

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

20 Copyright © 2016 SERSC

3. Empirical Strategy (A Case Study)

3.1. Data Collection: Quantitative

Data collection method was achieved using a structured questionnaire for

assisting in estimating the quality of software through determining the risks that

were common to the majority of software projects in the analyzed software

companies. Besides, the method of sample selection referred to as „snowball‟ and

distribution of personal regular sampling was used. This procedure is appropriate

when members of homogeneous groups (such as software project managers, IT

managers) are difficult to locate. The seventy six software project managers

participated in this case study. The project managements that participated in this

survey came from specific, mainly software project managements in software

development organizations. Fifty software risk factors and thirty risk management

techniques were presented to respondents. The targeted data for this study is

undertaken for various software project experts in various software companies in

Palestine. There are two data collection process is conducted during the study. The

first is a pilot study to validate the instrument to develop during the study, and

secondly a mass survey to a target group with the final survey instrument.

3.2. Design of Questionnaire Tools

Respondent was presented with various questions relates to software risks and

risk management techniques. The respondents were presented with various

questions, which used scales 1-7. For presentation purposes in this paper and for

effectiveness, the point scale was the following: For choices, being headed,

„unimportant‟ equals one and „extremely important‟ equals seven. Similarly, seven

frequency categories were scaled into „never‟ equals one and „always‟ equals seven.

All questions in software risk factors were measured on a seven–point Likert scale

from unimportant to extremely important and software control factors were

measured on a seven–point Likert scale from never to always. Therefore, the more

extreme categories were combined in a way such that seven- point scales were

reduced to five-point scale as follows: A category called „Somewhat Important‟ was

created, combining the two ratings „Very Slightly Important‟ and „Slightly

Important‟. Similarly, a category called „Very Important‟ combined the two ratings

„very important‟ and „Extremely Important‟. Similarly, seven frequency categories

were rescaled into five subcategories for presentation purposes. „Rarely‟ combined

the two ratings: „Rather seldom‟ and „Seldom‟. „Never‟, „Sometimes‟ and „Often‟

was unchanged, while „Most of the time‟, combined the two ratings: „Usually‟ and

„Always‟. All questions in the software risk factors measure in a seven point Like rt

scale and risk management techniques also a seven scales, but with different

notation that follow in Table 2 below:

Table 2. Measures Scale Software Risks and Controls

Scale Software risk
management

Risk management
techniques

1 Unimportant Never

2 Very Slightly Important Rather Seldom

3 Slightly Important Seldom

Software Organization Environment

Risk

Identification(S

oftware Risk

Factors)

Software Project

Risk Management

phases /Control

factors

Software project success

Mining,

Quantitative and

Qualitative

Techniques

Phase1: Planning

Phase4:

Implementation

Phase2: Analysis

Phase3: Design

Phase5: Maintenance

Software Development Life

Cycle (SDLC) (Risk

Identification Phases)

RA&E

RC&D RC

RT

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

Copyright © 2016 SERSC 21

4 Moderately Important Sometimes

5 Important Often

6 Very Important Usually

7 Extremely Important Always

The software project managers that participated in this survey are coming from

specific mainly software project manager in software development organizations.

We identify the software risks that are involved in software projects in Palestinian

software development organizations, ranking the risks due to their importance and

occurrence frequency, identifying the activities performed by project managers to

control the risks that are identified and analyzed. The main survey was sent to the

software project manager, IT manager in Palestine organization's individual. Twenty

software project managers are working for development software to conduct the

pilot survey and 76 to conduct the main survey. The summary of responses for each

item from the pilot survey is listed in below. However, the survey questionnaires

distributed just the company‟s top IT manager, software project manager in the

software development organizations.

3.3. Pilot Study

A pilot survey questionnaire executed before conducting the main survey

questionnaire. The purpose of this pilot survey questionnaire is to examine whether

or not the proposed model was well developed to manage software project risks. It is

also examined how well the survey is designed for respondents to answer properly.

The conceptual managing software project risks and contents of the main survey

will be modified depending on the results of the pilot survey. The pilot survey test

conducted on software project manager within the population and the feedback

received after distributing it to experts in software engineering area, we considered

in the pilot survey before sending the main survey and it's available for software

project managers, top IT managers more than the experts reviewed it and give us

feedback to update an unclear items before sending the main survey to population

sample.

3.4. Study Population and Sampling Criteria

The population was all software development organizations in Palestine that have

top manager, software project managers. However to describe “Software

Development Companies in Palestine” which have in-house software development

system and supplier of software for local or international market, we depended on

Palestinian Information Technology Association (PITA) Members‟ web page on

PITA‟s website [http://www.pita.ps/, PITA 2012], Palestinian investment promotion

agency [http://www.pipa.gov.ps/, PIPA 2012] to select top IT manager, software

project managers in our case study. However, we depend on special criteria to select

software companies and participate in our questionnaire by visiting web pages and

phone calls before start distributed it.

3.5. Research Instrument Validation and Reliability Pilot Tests

Based upon the pilot study, we believed that the questionnaire is valid and can

further use to distribute to the target respondent. For this, 76 software managers for

various software companies have participated in the study. The method of sample

selection referred to as „snowball‟ and distribution personal regular sampling was

used. This procedure is appropriate when members of homogeneous groups (such as

software project managers, IT managers) are difficult to locate. The survey

questionnaire provided with covering letter, that explained the aims of our study and

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

22 Copyright © 2016 SERSC

the information will secure to encourage higher response. In this section, there are

three parts of the survey questionnaire: Information about software project

managers; software risk factors; and risk management techniques.

3.6. Construct Validity

To assess the validity of managing software project risks instrument, the

correlation was employed and identified five factors in their instrument. Validity

tests were performed correlation coefficients between the realize construct were

examined. Table 2, 3, 4, 5, 6 and 7 illustrate the correlation between items and total

factor planning, analysis, design, implementation, and maintenance. The results

reveal that most items are significant at the 0.01 and 0.05 levels 2-tailed except q3,

q20, and q36. So the validation of instrument is high, hence the instrument is

acceptance except risk3, risk20, and risk36 are no significance, However, we must

rewrite these risks to enhance the instrument. Furthermore, it illustrates the

correlation among factors and overall risk factors.

Table 3. Correlation between Item and Phases

Phase Item Value R VALUE SIG.

P
la

n
n
in

g

1 .722 .000**

2 .697 .001**

3 .149 .531***

4 .545 .013*

5 .846 .000**

6 .788 .000**

7 .820 .000**

8 .520 .019*

9 .744 .000**

10 .559 .010*

A
n
al

y
si

s

11 .545 .013*

12 .830 .000**

13 .579 .007**

14 .565 .009**

15 .584 .007**

16 .609 .004**

17 .634 .003**

18 .578 .008**

19 .753 .000**

20 .174 .463***

D
es

ig
n

21 .669 .001**

22 .495 .026*

23 .865 .000**

24 .823 .000**

25 .699 .001**

26 .601 .005**

27 .505 .023*

28 .606 .005**

29 .559 .010*

30 .548 .012*

Im p
le

m
e

n
ta ti
o n
 31 .709 .000**

32 .725 .000**

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

Copyright © 2016 SERSC 23

Phase Item Value R VALUE SIG.

33 .704 .001**

34 .732 .000**

35 .732 .000**

36 .424 .062***

37 .573 .008**

38 .749 .000**

39 .810 .000**

40 .673 .001**

M
ai

n
te

n
an

ce

41 .849 .000**

42 .558 .011*

43 .574 .008**

44 .566 .009**

45 .716 .000**

46 .477 .033*

47 .487 .029*

48 .470 .037*

49 .577 .008**

50 .471 .036*

* Correlation is significant at the 0.05 level (2-tailed).

**Correlation is significant at the 0.01 level (2-tailed).

*** No significance Correlations

Table 4. Correlations among Factors and Overall Risk Factors

F
A

C
T

O
R

P
la

n
n

in
g

A
n

a
ly

si
s

D
es

ig
n

Im
p

le
m

en
ta

ti
o
n

M
a
in

te
n

a
n

ce

T
o
ta

l
ri

sk

fa
ct

o
rs

Planning 1 .788(**) .673(**) .688(**) .816(**) .915(**)

Analysis .788(**) 1 .467(*) .791(**) .757(**) .874(**)

Design .673(**) .467(*) 1 .645(**) .668(**) .793(**)

Implementation .688(**) .791(**) .645(**) 1 .673(**) .878(**)

Maintenance .816(**) .757(**) .668(**) .673(**) 1 .891(**)

Total .915(**) .874(**) .793(**) .878(**) .891(**) 1

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at

the 0.05 level (2-tailed).

3.7. Instrument Reliability Tests

Reliability can create the stability, consistency of a measuring instrument or tool

follow bellow the techniques:

3.7.1. Cronbach’s Alpha

In order to assess reliability, the Cronbach‟s alpha was determined for each factor

and total risk factors and risk management techniques. If the Cronbach‟s alpha is

greater than 0.7, the construct is deemed to be reliable.

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

24 Copyright © 2016 SERSC

Table 5. Reliability Tests

Factors N of items Cronbach’s Alpha

R
is

k
 f

a
ct

o
rs

 Planning 10 0.836

Analysis 10 0.789

Design 10 0.836

Implementation 10 0.872

Maintenance 10 0.777

 Total risk factors 50 0.951

C
o

n
tr

o
l

fa
ct

o
rs

Planning and requirement

techniques

7 0.931

Communication techniques 5 0.920

Modeling and tools 18 0.964

 Total Control factors 30 0.973

Table 5 shows that all constructs met the reliability criteria, as the lowest alpha

was 0.777. In addition, the reliability coefficient of the scale was established by

Cronbach‟s alpha using the SPSS package; the reliability coefficient resulted by

Cronbach‟s alpha for 20 samples are 0.836, 0.789, 0.836, 0.872, 0.777, 0 .951 and

0.973. It is considered to be highly significant at the 0.01 level and this ensures the

reliability of the scale.

3.7.2. Two Split Half

Table 6. Spearman-Broun Split Half and Guttman Split Half

Factor N of items R Spearman-Brown

 R
is

k
 f

a
ct

o
rs

 Planning 10 0.733 0.846

Analysis 10 0.547 0.707

Design 10 0.471 .640

Implementation 10 0.589 .741

Maintenance 10 0.497 0.664

Total risk factors 50 0.846 0.916

C
o
n

tr
o
l

fa
ct

o
rs

Modeling and tools 18 0.936 0.967

- - - Guttman Coefficient

Planning and Requirement

techniques

7 0.883

Communication techniques 5 0.875`

Control factors 30 0.814 0.898

Table 6 shown the reliability coefficient resulted by Guttman Split -Half and

Spearman-Broun Split Half which they represent highly significant.

3.8. Results and Discussion

3.8.1. The Importance of Risk Factors in Software Development Lifecycle

Table 7 illustrates all respondents indicated that the risk of “Ineffective

communication software project system” and “absence of historical data

(templates)” were the highest risk factors and important. In fact, the all risk factors

in planning phase were important; aggregating the responses resulted in the

following ranking of the importance of the listed risks (in order of importance):

Risk9, Risk 10, Risk3, Risk1, Risk 6, Risk 8, Risk 7, Risk2, Risk 4, and Risk 5.

Furthermore, all respondents indicated that the risk of “developer software gold–

plating” was the highest risk factors and very important in analysis phase. In fact,

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

Copyright © 2016 SERSC 25

the risk factors for risk number 13, 14, 15, 16, 11, 18, 12 were identified as very

important, the risk factors for risk number 19, 17, 20 in descending means were

identified as important, aggregating the responses resulted in the following ranking

of the importance of the listed risks (in order of importance): Risk 13, Risk 14,

Risk15, Risk 16, Risk 11, Risk 18, Risk 12, Risk 19, Risk 17, Risk 20. However,

Table 7 also illustrates all respondents indicated that the risk of “introduction of

new technology” was the highest risk factors and important in design phase. In fact,

all risk factors were important; aggregating the responses resulted in the following

ranking of the importance of the listed risks (in order of importance): Risk 21, Risk

22, Risk 24, Risk 25, Risk 27, Risk 28, Risk 23, Risk 26, Risk 30, and Risk 29.

In addition, Table 7 illustrates all respondents indicated that the risk of

“Inadequacy of source code comments” was the highest risk factors and importance

in implementation phase. In fact, all risk factors important, aggregating the

responses resulted in the following ranking of the importance of the listed risks (in

order of importance): Risk 36, Risk 33, Risk32, Risk 40, Risk 31, Risk 34, Risk 39,

Risk 35, Risk 37, and Risk 38. Also all respondents indicated that the risk of

“Harmful competitive actions” was the highest risk factors and important in

maintenance phase. In fact, all risk factors were important; aggregating the

responses resulted in the following ranking of the importance of the listed risks (in

order of importance): Risk 50, Risk 49, Risk 45, Risk 48, Risk 46, Risk 41, Risk 44,

Risk 42, Risk 43, and Risk 47. However, the ranking of the importance of phases

risks (in order of importance): Analysis, planning, maintenance, design , and

implementation.

Table 7. Mean Score for Each Risk Factor in SDLC

% percent Std. Deviation Mean N Risk Phase

78.684 0.806 3.934 76 R9

P
la

n
n

in
g

77.368 0.806 3.868 76 R10

76.842 0.801 3.842 76 R3

76.053 0.749 3.803 76 R1

75.789 0.736 3.789 76 R6

74.211 0.877 3.711 76 R8

73.947 0.766 3.697 76 R7

73.684 0.716 3.684 76 R2

73.158 0.946 3.658 76 R4

72.368 0.848 3.618 76 R5

75.211 0.543 3.761 76 Total

82.895 .743 4.145 76 R13

A
n

a
ly

si
s

81.842 .819 4.092 76 R14

81.579 .796 4.079 76 R15

80.526 .748 4.026 76 R16

80.526 .588 4.026 76 R11

80.263 .792 4.013 76 R18

80 .849 4 76 R12

78.947 .728 3.947 76 R19

78.421 .963 3.921 76 R17

77.895 .793 3.895 76 R20

80.289 0.544 4.014 76 Total

76.579 0.737 3.829 76 R21

D
es

ig

n

76.053 0.633 3.803 76 R22

74.737 0.772 3.737 76 R24

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

26 Copyright © 2016 SERSC

% percent Std. Deviation Mean N Risk Phase

74.211 0.708 3.711 76 R25

72.895 0.725 3.645 76 R27

72.632 0.709 3.632 76 R28

72.632 0.69 3.632 76 R23

72.105 0.784 3.605 76 R26

71.842 0.615 3.592 76 R30

71.316 0.736 3.566 76 R29

73.5 0.451 3.675 Total

73.421 0.661 3.671 76 R36

Im
p

le
m

en
ta

ti
o

n

73.158 0.793 3.658 76 R33

72.632 0.746 3.632 76 R32

71.053 0.79 3.553 76 R40

71.053 0.807 3.553 76 R31

70.263 0.757 3.513 76 R34

70 0.808 3.5 76 R39

69.737 0.808 3.487 76 R35

69.474 0.739 3.474 76 R37

69.474 0.774 3.474 76 R38

71.026 0.562 3.551 76 Total

78.947 0.781 3.947 76 R50

M
a
in

te
n

a
n

ce

76.842 0.731 3.842 76 R49

76.316 0.761 3.816 76 R45

74.737 0.822 3.737 76 R48

74.211 0.78 3.711 76 R46

74.211 0.708 3.711 76 R41

73.947 0.8 3.697 76 R44

73.421 0.839 3.671 76 R42

73.158 0.758 3.658 76 R43

72.895 0.778 3.645 76 R47

74.86 0.567 3.743 76 Total

3.8.2. Ranking of Importance of Risk Factors for Project Managers' Experience

Table 8 shows that most of the risks are very important and important the overall

ranking of importance of each risk factor for the three categories of project

managers' experience.

Table 8. The Overall Risk Ranking of Each Risk Factor

Experience

>10 years

Experience

6-10 years

Experience

2-5 years

Risk
Phase

R10 R3 R9 R 1

P
la

n
n
in

g

R1 R10 R1 R2

R5 R9 R6 R 3

R3 R6 R10 R 4

R9 R1 R3 R 5

R7 R8 R8 R 6

R6 R7 R5 R 7

R8 R2 R2 R 8

R4 R4 R4 R 9

R2 R5 R7 R 10

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

Copyright © 2016 SERSC 27

Experience

>10 years

Experience

6-10 years

Experience

2-5 years

Risk
Phase

R15 R13 R13 R 11

A
n

al
y

si
s

R14 R14 R12 R 12

R13 R16 R11 R 13

R18 R15 R16 R 14

R17 R17 R18 R 15

R12 R11 R15 R 16

R20 R19 R14 R 17

R19 R18 R19 R 18

R16 R20 R20 R 19

R11 R12 R17 R 20

R21 R24 R21 R 21

D
es

ig
n

R22 R22 R22 R 22

R25 R21 R30 R 23

R27 R23 R28 R 24

R26 R26 R27 R 25

R28 R25 R24 R 26

R24 R29 R23 R 27

R30 R28 R25 R 28

R29 R27 R29 R 29

R23 R30 R26 R 30

R33 R36 R36 R 31

Im
p
le

m
en

ta
ti

o
n

R40 R33 R32 R 32

R39 R31 R33 R 33

R32 R32 R37 R 34

R34 R38 R40 R 35

R31 R40 R35 R 36

R35 R39 R31 R 37

R37 R34 R34 R 38

R36 R37 R38 R 39

R38 R35 R39 R 40

R50 R50 R50 R 41

M
ai

n
te

n
an

ce

R45 R41 R49 R 42

R49 R49 R46 R 43

R46 R45 R48 R 44

R44 R48 R44 R 45

R48 R47 R42 R46

R47 R42 R45 R47

R43 R43 R43 R48

R42 R44 R41 R49

R41 R46 R47 R50

3.8.3. Top Ten Software Risk Factors

We selected top ten software risk factors from fifty factors. In fact, all software

risk factors in top ten were very important, aggregating the responses resulted in

the following ranking of the importance of the listed risks (in order of importance):

Risk13, Risk 14, Risk15, Risk16, Risk 11, Risk 18, Risk 12, Risk 50, Risk 19, and

Risk 9. Table 9 illustrates the top ten checklists of software risk factors on software

projects based on a survey of experienced software project managers.

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

28 Copyright © 2016 SERSC

Table 9. Illustrate the Top Ten Risk Factors

% percent Std. Deviation Mean N Risk

82.895 0.743 4.145 76 R13

81.842 0.819 4.092 76 R14

81.579 0.796 4.079 76 R15

80.526 0.748 4.026 76 R16

80.526 0.588 4.026 76 R11

80.263 0.792 4.013 76 R18

80 0.849 4 76 R12

78.947 0.781 3.947 76 R50

78.947 0.728 3.947 76 R19

78.684 0.806 3.934 76 R9

3.8.4. Frequency of Occurrence of Controls

Table 10 shows the mean and the standard deviation for each control factors. The

results of this study show that most of the controls have used most of the time and

often.

Table 10. the Mean Score for Each Control Factor

% percent Std. Deviation Mean N Control

88.15789 0.803 4.408 76 C29

87.36842 0.907 4.368 76 C30

83.68421 0.668 4.184 76 C20

83.42105 0.755 4.171 76 C27

83.42105 0.7 4.171 76 C21

83.15789 0.612 4.158 76 C19

83.15789 0.767 4.158 76 C28

82.63158 0.718 4.132 76 C25

82.36842 0.653 4.118 76 C26

82.10526 0.741 4.105 76 C23

81.84211 0.786 4.092 76 C22

81.57895 0.726 4.079 76 C18

81.57895 0.726 4.079 76 C10

81.31579 0.718 4.066 76 C17

81.31579 0.639 4.066 76 C24

81.31579 0.736 4.066 76 C8

81.05263 0.728 4.053 76 C5

80.78947 0.756 4.039 76 C11

80.78947 0.621 4.039 76 C15

80.78947 0.756 4.039 76 C9

80.26316 0.683 4.013 76 C14

80.26316 0.721 4.013 76 C7

80 0.693 4 76 C16

79.73684 0.841 3.987 76 C12

79.73684 0.739 3.987 76 C6

79.73684 0.757 3.987 76 C4

79.47368 0.783 3.974 76 C3

78.68421 0.66 3.934 76 C2

77.89474 0.665 3.895 76 C1

77.36842 0.754 3.868 76 C13

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

Copyright © 2016 SERSC 29

4. Conclusions

The results show that all risks in software projects were very important and

important in software project manager's perspective, whereas all controls are used

most of the time, and often. However, the ranking of the importance of phases risks

(in order of importance): Analysis, planning, maintenance, design, and

implementation. In particular, top ten software risk factors in software development

Lifecycle were very important, aggregating the responses resulted in the following

ranking of the importance of the listed risks (in order of importance): Risk13,

Risk14, Risk15, Risk16, Risk11, Risk18, Risk12, Risk50, Risk19, and Risk9. In

addition, the concern of this study the top ten controls have used most of the time.

However, “provide training in the new technology and organize domain knowledge

training” is the highest; aggregating the responses resulted in the following ranking

of the importance of the listed controls (in order of importance): C29, C30, C20,

C27, C21, C19, C28, C25, C26, and C23. To achieve our goals, proposed in this

study is identifying risks in software project in software organizations in Palestine.

The study population is all software project managers, IT managers in Palestinian

software development companies. Software project manager can identify the level of

importance and probability of occurrence to mitigate risks through a questionnaire.

Meanwhile, the results show that rank of software risk factors and control factors,

the importance of the factors. However, we also recommended applying more

studies in risk management software practices with real world companies and

building tools to identification and analysis risks based on qualitative, quantitative

and intelligent techniques. As future work, we will intend to apply these study

results on a real-world software project to verify the effectiveness of the new

techniques and approach on a software project. Likewise, we can use more

techniques useful to manage software project risks such as neural network, genetic

algorithm, Bayesian statistics, and so on.

Acknowledgments

The authors would like to thank Faculty of Information and Communication

Technology, Universiti Teknikal Malaysia Melaka (UTeM) and Al-Aqsa University,

Palestine.

References

[1] W. Al-Ahmad, “Knowledge of IT Project Success and Failure Factors: Towards an Integration into the

SDLC”, Int. J. Inf. Technol. Proj. Manag., vol. 3, no. 4, (2012), pp. 56–71.

[2] A. Elzamly and B. Hussin, “Quantitative and Intelligent Risk Models in Risk Management for

Constructing Software Development Projects : A Review”, Int. J. Softw. Eng. Its Appl., vol. 10, no. 2,

(2016), pp. 9–20.

[3] A. Elzamly and B. Hussin, “Estimating Quality-Affecting Risks in Software Projects”,Int. Manag. Rev.

Am. Sch. Press, vol. 7, no. 2, (2011), pp. 66–83.

[4] A. Elzamly and B. Hussin, “Managing Software Project Risks with Proposed Regression Model

Techniques and Effect Size Technique”, Int. Rev. Comput. Softw., vol. 6, no. 2, (2011), pp. 250–263.

[5] A. Elzamly, B. Hussin, S. Naser, and M. Doheir, “Predicting Software Analysis Process Risks Using

Linear Stepwise Discriminant Analysis : Statistical Methods”, Int. J. Adv. Inf. Sci. Technol., vol. 2015,

no. June, (2015), pp. 108–115.

[6] A. Elzamly, B. Hussin, and N. Salleh, “Methodologies and techniques in software risk management

approach for mitigating risks: A review”, Asian J. Math. Comput. Res., vol. 2, no. 4, (2015), pp. 184–

198.

[7] K. Khanfar, A. Elzamly, W. Al-Ahmad, E. El-Qawasmeh, K. Alsamara, and S. Abuleil, “Managing

Software Project Risks with the Chi-Square Technique”, Int. Manag. Rev., vol. 4, no. 2, (2008), pp. 18–

29.

[8] J. Miler, “A Method of Software Project Risk Identification and Analysis”, Gdansk University of

Technology, (2005).

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

30 Copyright © 2016 SERSC

[9] J. Liu, V. Chen, C. Chan, and T. Lie, “The impact of software process standardization on software

flexibility and project management performance: Control theory perspective”, Inf. Softw. Technol., vol.

50, no. 9–10, (2008), pp. 889–896

[10] S. Islam, “Software Development Risk Management Model – A Goal Driven Approach,” in Proceedings

of the doctoral symposium for ESEC/FSE on Doctoral symposium, (2009), pp. 5–8.

[11] R. Bhujang and S. V., “Risk Impact Analysis across the Phases of Software Development”, Lect. Notes

Softw. Eng., vol. 2, no. 3, (2014), pp. 282–287.

[12] A. Kanane, “Challenges related to the adoption of Scrum”, (2014).

[13] J. Liu, H. Chen, C. Chen, and T. Sheu, “Relationships among interpersonal conflict, requirements

uncertainty, and software project performance”, Int. J. Proj. Manag., vol. 29, no. 5, (2011), pp. 547–556

[14] Z. Begum, M. Khan, M. Hafiz, S. Islam, and M. Shoyaib, “Software Development Standard and

Software Engineering Practice: A Case Study of Bangladesh”, J. Bangladesh Acad. Sci., vol. 32, no. 2,

(2008), pp. 131–139.

[15] T. Dyba and T. Dingsoyr, “Empirical studies of agile software development: A systematic review”, Inf.

Softw. Technol., vol. 50, no. 9–10, (2008), pp. 833–859.

[16] R. Dash and R. Dash, “Risk Assessment Techniques for Software Development”, Eur. J. Sci. Res., vol.

42, no. 4, (2010), pp. 629–636.

[17] S. Islam, H. Mouratidis, and E. Weippl, “An empirical study on the implementation and evaluation of a

goal-driven software development risk management model”, Inf. Softw. Technol., vol. 56, no. 2, (2014),

pp. 117–133.

[18] L. Enfei, “Risk Factors of Software Development Projects in Chinese IT Small and Medium Sized

Enterprises”, Kth Royal Institute of Technology ,Stockholm, Sweden, (2015).

[19] M. Holcombe, Running an Agile Software Development Project. John Wiley & Sons, Inc., (2008).

[20] S. Thomas and U. Hansmann, Agile Software Development: Best Practices for Large Software

Development Projects, Springer-Verlag Berlin Heidelberg, (2010).

[21] M. Tomanek and J. Juricek, “Project Risk Management Model Based on Prince2 and Scrum

Frameworks”, Int. J. Softw. Eng. Appl., vol. 6, no. 1, (2015), pp. 81–88.

[22] S. Kan, Metrics and Models in Software Quality Engineering, Second. Addison Wesley, (2002).

[23] J. Hoffer, J. George, and J. Valacich, Modern Systems Analysis and Design, 6th ed. Prentice Hall,

(2011).

[24] H. Hoodat and H. Rashidi, “Classification and Analysis of Risks in Software Engineering”, Eng.

Technol., vol. 56, no. 32, (2009), pp. 446–452.

[25] F. Reyes, N. Cerpa, A. Candia, and M. Bardeen, “The optimization of success probability for software

projects using genetic algorithms”, J. Syst. Softw., vol. 84, no. 5, (2011), pp. 775–785.

[26] V. Carr and J. Tah, “A fuzzy approach to construction project risk assessment and analysis: construction

project risk management system”, Adv. Eng. Softw., vol. 32, no. 10–11, (2001) , pp. 847–857.

[27] C. Pandian, Applied software risk management: A guide for software project managers. Auerbach

Publications is an imprint of the Taylor & Francis Group, (2007).

[28] M. Fakhar, M. Abbas, and M. Waris, “Risk Management System for ERP Software Project”, in Science

and Information Conference 2013, (2013), pp. 223–228.

[29] T. Ernawati, Suhardi, and D. Nugroho, “IT Risk Management Framework Based on ISO 31000:2009”, in

International Conference on System Engineering and Technology (ICSET), (2012) , pp. 1–8.

[30] P. Bannerman, “Managing Structure-Related Software Project Risk: A New Role for Project

Governance”, in 21st Australian Software Engineering Conference, (2010), pp. 129–138.

[31] G. Büyüközkan and D. Ruan, “Choquet integral based aggregation approach to software development

risk assessment”, Inf. Sci. (Ny)., vol. 180, no. 3, (2010), pp. 441–451.

[32] Oracle, “A Standardized Approach to Risk Improves Project Outcomes and Profitability”, (2010).

[33] J. Dhlamini, I. Nhamu, and A. Kachepa, “Intelligent Risk Management Tools for Software

Development”, in Proceeding SACLA “09 Proceedings of the 2009 Annual Conference of the Southern

African Computer Lecturers” Association, (2009), pp. 33–40.

[34] H. Costa, M. Barros, and G. Travassos, “A risk based economical approach for evaluating software

project portfolios”, ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, (2005), p. 1.

[35] J. Miler and J. Górski, “Identifying Software Project Risks with the Process Model”, in proc. of 17th

International Conference “Software & Systems Engineering and their Applications, no. 4, (2004), pp. 1–

9.

[36] K. Padayachee, “An Interpretive Study of Software Risk Management Perspectives,” in annual research

conference of the South African institute of computer scientists and information technologists on

Enablement through technology, (2002), pp. 118 –127.

[37] SQAS, “Software Risk Management A Practical Guide.”, (2000).

[38] B. Boehm, “Software Risk Management: Principles and Practices,” IEEE Softw., vol. 8, no. 1, (1991),

pp. 32–40.

[39] A. Elzamly and B. Hussin, “An Enhancement of Framework Software Risk Management Methodology

for Successful Software Development”, Journal Theor. Appl. Inf. Technol., vol. 62, no. 2, (2014), pp.

410–423.

[40] A. Elzamly and B. Hussin, “Managing Software Project Risks (Analysis Phase) with Proposed Fuzzy

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

Copyright © 2016 SERSC 31

Regression Analysis Modelling Techniques with Fuzzy Concepts”, J. Comput. Inf. Technol., vol. 22, no.

2, (2014), pp. 131–144.

[41] A. Elzamly and B. Hussin, “Managing Software Project Risks (Planning Phase) with Proposed Fuzzy

Regression Analysis Techniques with Fuzzy Concepts”, Int. J. Inf. Comput. Sci., vol. 3, no. 2,

(2014),.pp. 31–40.

[42] A. Elzamly, B. Hussin, S. A. Naser, and M. Doheir, “Classification of Software Risks with Discriminant

Analysis Techniques in Software planning Development Process”, Int. J. Adv. Sci. Technol., vol. 81, no.

2015, (2015), pp. 35–48.

[43] A. Elzamly and B. Hussin, “Modelling and Evaluating Software Project Risks with Quantitative Analysis

Techniques in Planning Software Development”, J. Comput. Inf. Technol., vol. 23, no. 2, (2015), pp.

123–139.

[44] A. Elzamly and B. Hussin, “A Comparison of Stepwise And Fuzzy Multiple Regression Analysis

Techniques for Managing Software Project Risks : Analysis Phase”, J. Comput. Sci., vol. 10, no. 10,

(2014) , pp. 1725–1742.

[45] A. Elzamly and B. Hussin, “Managing Software Project Risks (Design Phase) with Proposed Fuzzy

Regression Analysis Techniques with Fuzzy Concepts”, Int. Rev. Comput. Softw., vol. 8, no. 11, (2013),

pp. 2601–2613.

[46] A. Elzamly and B. Hussin, “Estimating Stepwise and Fuzzy Regression Analysis for Modelling Software

Design Project Risks”, Asian J. Math. Comput. Res., vol. 3, no. 4, (2015), pp. 234–241.

[47] A. Elzamly and B. Hussin, “Modelling and mitigating Software Implementation Project Risks with

Proposed Mining Technique,” Inf. Eng., vol. 3, no. 2014, (2014), pp. 39–48.

[48] A. Elzamly and B. Hussin, “A Comparison of Fuzzy and Stepwise Multiple Regression Analysis

Techniques for Managing Software Project Risks : Implementation Phase”, Int. Manag. Rev., vol. 10, no.

1, (2014), pp. 43–54.

[49] A. Elzamly and B. Hussin, “Managing Software Project Risks (Implementation Phase) with Proposed

Stepwise Regression Analysis Techniques”, International Journal on Information Technology (IREIT),

vol. 1, no. 5, (2013), pp. 300–312.

[50] A. Elzamly and B. Hussin, “Evaluation of Quantitative and Mining Techniques for Reducing Software

Maintenance Risks”, Appl. Math. Sci., vol. 8, no. 111, (2014), pp. 5533–5542.

[51] A. Elzamly and B. Hussin, “Identifying and Managing Software Project Risks with Proposed Fuzzy

Regression Analysis Techniques : Maintenance Phase”, in 2014 Conference on Management and

Engineering (CME2014), no. Cme, (2014), pp. 1868–1881.

[52] A. Elzamly and B. Hussin, “Mitigating Software Maintenance Project Risks with Stepwise Regression

Analysis Techniques”, J. Mod. Math. Front., vol. 3, no. 2, (2014), pp. 34–44.

[53] A. Elzamly and B. Hussin, “Classification and identification of risk management techniques for

mitigating risks with factor analysis technique in software risk management”, Rev. Comput. Eng. Res.,

vol. 2, no. 1, (2015), pp. 22–38.

Authors

Abdelrafe Elzamly, He got a Ph.D. in Information and

Communication Technology from the Technical University Malaysia

Melaka (UTeM) in 2016. He received his Master degree in Computer

Information Systems from the University of Banking and Financial

Sciences in 2006. He received his B.Sc. degree in Computer from

Al-Aqsa University, Gaza in 1999. He is currently working as

Assistant Professor in Al-Aqsa University as a full time. Also, from

1999 to 2007 he worked as a part time lecturer at the Islamic

University in Gaza. Between 2010 and 2012 he worked as a Manager

in the Mustafa Center for Studies and Scientific Research in Gaza.

His research interests are in risk management, quality software,

software engineering, cloud computing security, and data mining.

 Burairah Hussin, He received his Ph.D. degree in Management

Science- Condition Monitoring Modelling, from the University of

Salford, UK in 2007. Before that, he received a M.Sc. degree in

Numerical Analysis and Programming from the University of

Dundee, UK in 1998 and a B.Sc. degree in Computer Science from

the University of Technology Malaysia in 1996. He currently works

International Journal of Hybrid Information Technology

Vol. 9, No.6 (2016)

32 Copyright © 2016 SERSC

as a Professor at the Technical University Malaysia Melaka (UTeM).

He also worked as the Dean at the Faculty of Information and

Communication Technology, Technical University of Malaysia

Melaka (UTeM). His research interests are in data analysis, data

mining, maintenance modelling, artificial intelligence, risk

management, numerical analysis, and computer network advising and

development.

Norhaziah Md Salleh, She has a M.Sc. in Computing from

University of Bradford, United Kingdom in 1993 after getting her

B.Sc. in Computer Science from Indiana State University, USA in

1984. She was a systems analyst at Universiti Utara Malaysia from

1986 until 2000. She was a part-time lecturer at Universiti Utara

Malaysia for 7 years before joining as a full-time academician in

Universiti Pendidikan Sultan Idris (UPSI). She was the Deputy

Director of the IT Center at UPSI from 2002 till end of 2003 when

she joined Universiti Teknikal Malaysia Melaka as an associate

professor. Her research interests include application development,

database systems, data quality, systems integration, mobile

applications, knowledge management, algorithms, data warehousing

and data mining.

