
International Journal of Hybrid Information Technology 

Vol. 9, No.6 (2016), pp. 197-220 

http://dx.doi.org/10.14257/ijhit.2016.9.6.18 

 

 

ISSN: 1738-9968 IJHIT 

Copyright © 2016 SERSC 

Using the Eigenvalue Partition to Compute the Automorphism 

Group 
 

 

HAO Jian-Qiang
1, 2, a

, GONG Yun-Zhan
1, b

 and LIU Hong-Zhi
2, c

 

1
State Key Laboratory of Networking and Switching Technology, Beijing University of 

Posts and Telecommunications, Beijing, 100876, China 
2
School of Computer Science and Information Engineering, Beijing Technology and 

Business University, 100048, China 

 
a
bshjq@vip.163.com, 

b
gongyz@bupt.edu.cn, and  

c
liuhz@btbu.edu.cn 

Abstract 

To solve the automorphism group of a graph is a fundamental problem in graph theory. 

Moreover, it usually is an essential process for graph isomorphism testing. At present, 

because existing algorithms ordinarily cannot efficiently compute the automorphism group of 

a graph, ones cannot entirely resolve the graph isomorphism problem. To calculate the 

automorphism group of a weighted graph, first, briefly review the history of automorphism. 

Second, introduce the concept of eigenvalue partition. Third, using algebraic methods, 

examine not only the relationships between the diagonal form of an adjacency matrix and its 

eigenvalues and eigenvectors, but also the relationships between its eigenvalues and 

eigenvectors and the automorphism group. Furthermore, prove Theorem 2 to 8. In addition, 

propose Conjecture 1 and three open problems. By these theorems, present a novel method to 

resolve the automorphism group of a weighted graph. If a graph has no duplicate eigenvalues 

and Conjecture 1 is true, it can determine the automorphism group of a weighted graph in 

polynomial time by the method. Although this method has certain limitations and needs 

improvements, it is theoretically a necessary complement to solve the automorphism group. 

Finally, it shows the close relationships that exist between an orthogonal matrix and a 

permutation matrix, also an orthogonal matrix and an automorphism. 

 

Keywords: Automorphism group, Eigenvalue partition, Adjacency matrix, Eigenvalue, 

Eigenvector 

 

1. Introduction 
 

1.1. The Automorphism Group of a Graph 

To determine whether or not two directed or undirected weighted graphs are isomorphic is 

a fundamental problem in graph theory. Currently, the main problem encountered in the 

isomorphism study is: When testing isomorphism of graphs, ones sometimes come across 

some graphs whose structure is so terribly complicated that it contains a large number of 

automorphisms [1–6]. However, to compute all automorphisms is a difficult task that has 

exponential time complexity. Through long-term research, ones already know that computing 

all automorphisms also belongs to the NP class. Similar to graph isomorphism testing, until 

now, ones do not know whether there is a polynomial algorithm and whether it is a 

NP−complete problem [7] such that the efficiency of the algorithms is low. [8] provided the 

upper bound of the rank of the automorphism group for a simple graph. Nagoya and Toda[9] 

realized that the time complexities, finding the orbit of even if a node in an automorphism 

group and finding a non-trivial automorphism group, are exactly the same. Furthermore, 

Nagoya and Toda [10] examined the time complexity to compute an automorphism group. In 
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many situations, there may exist many complex automorphisms such that to determine 

whether two graphs are isomorphic would become difficult. 

Although the existences of automorphisms bring about an impediment to research 

isomorphism problem, it also highlights the importance to research automorphism. Thus, it 

follows that in order fully to resolve the isomorphism problem, must first carefully examine 

the automorphism problem.  

Automorphism essentially reflects the symmetry properties of a graph. In the early stage of 

the study, because people were not aware of the symmetrical structure that the graph may 

contain, or even if realized, also failed to attract enough attention, coupled with the 

automorphism and the isomorphism problem are the equally difficult problems, leading to the 

algorithms cannot efficiently solve the automorphism group[11, 12] and running time was 

long. Finally, the algorithms cannot deal with the graphs with no more than thousands of 

nodes, or even no more than one hundred. 

Finding the automorphism and the symmetric structure of a graph have many practical 

applications. Turcat and Verdillon[13] used the automorphism to reduce the test cases that 

people use testing integrated circuit design. [14] used an automorphism algorithm to calculate 

the maximum symmetric set that a circuit implies. In order to calculate the fastest mixing 

Markov chain of a graph, [15] also exploited the potential symmetry of agraph. In addition to, 

ones can use spring algorithms to display symmetric properties of graphs. Eades and Lin[16] 

provided comprehensive theoretical evidence that many spring algorithms can show graph 

symmetry. [17] proposed a new algorithm to determine the symmetric structure that a large, 

sparse graph may contain. Recently, [18] developed a novel approach to canonical labeling 

where symmetries can be found first and then used to speed up the canonical labeling 

algorithms. Much open-source software, such as Nauty[1, 2, 4], Bliss[19, 20] and Saucy3[17, 

18, 21, 22], this aspect of performance is particularly remarkable. As well, Nauty, bliss, and 

Saucy3 all explored more deeply the nature of the automorphism. 

Perhaps Nauty is the most popular and practical tools for looking an automorphism group 

and canonical forms of a graph. It has almost become the industry standard used to calculate 

the canonical label, as well as the automorphism group. Much general-purpose mathematics 

software has adopted it. Nauty iteratively refines partitioning nodes until place the nodes that 

have the same properties into an automorphism orbit. Accompanied partition refinement 

becomes more and smaller. Finally, it will automatically create the canonical label. As a 

result, only to ascertain whether the canonical label of two graphs are the same, it can decide 

whether they are isomorphic. Nauty is more effective than Ullmann[11] algorithm. At the 

same time, Nauty also is one of the earliest software tools that can calculate the canonical 

label of a graph. 

If encountering a sparse graph, the performances of Bliss and Saucy3 are better than 

Nauty. They also all can compute the canonical form of a graph. For graph automorphism, the 

current Saucy3 is optimal. In a few seconds, Saucy3 can find the symmetric structure as a 

graph with millions of nodes. 

T.Miyazaki[23] analyzed the algorithm of Nauty how to calculate the canonical forms of a 

graph and estimates the time complexity of Nauty to calculate the automorphism group. 

T.Miyazaki found that when faced with a series Miyazaki graph, Nauty also requires the 

exponential time calculating. Tener and Deo[24] made improvements for solving the 

problem. To fix the glitch of Nauty, Traces[25] used the strategy of breadth-first search to 

find the automorphism group and the Canonical Labeling. When detecting an automorphism, 

Traces adopted the algorithm of Schreier-Sims[26], which integrated the software program 

developed by Leon[27]. 

Given a finite group ，X  many articles theoretically have discussed whether there is a graph 

G  whose automorphism group )Aut(G  is isomorphic to the .X Frucht theorem[28] is a 

famous theorem in algebraic graph theory, which indicates that given a finite groupX , there 

must exist an undirected graph G  whose automorphism group )Aut(G  is isomorphic to the 
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X . Babai[29] extended Frucht theorem to the digraph and showed that given a finite group ，X  

there must exist a digraph G  whose automorphism group )Aut(G  is isomorphous to the .X  

Finally, Babai[30] offered a supplementation of Frucht theorem. Aszl o Babai[31] carefully 

considered not only isomorphism, yet automorphism group, but also reconstruction of a 

graph. 

Often there are many symmetric structures in a regular graph. Spielman[32] presented a 

way to test two strongly regular graph whether isomorphic each other. In order to find out the 

automorphism group of a graph, [33] discussed the relationship between the automorphism 

partitioning of all nodes of a graph and the automorphism group. Moreover, based on the 

automorphism partitioning of the nodes, they constructed an algorithm for computing the 

automorphism group. Recently, Presa[34] introduced the concept of orbit partition to 

calculate the automorphism group. 

Many literatures, including Godsil[35], Siemons [36], and Bohanec and Perdih [37] also 

examined the automorphism group. A.Torgasevep[38] researched the automorphism group of 

an infinite graph. [39] provided a method for computing the rank of the automorphism group 

of a graph. 

To calculate the automorphism group of a graph, experts in this field used a variety of 

methods. The problem of detecting the automorphism group of a graph G  can be converted 

into the problem of computing the maximum clique (MC) of the association graph of the 

graph G . Jain and Wysotzki[40] used the neural network approach to solve automorphism 

partitioning. At the same time, they introduced the concept of the association group. Thus, 

they changed the problem, seeking the automorphism group, into finding the maximum clique 

(MC) of the association graph. Buch and Jijnger[41] started from the concept of the branches 

and the cut to study symmetry of a graph and provided a detailed description of an 

automorphism algorithm. Gilani and Faghani[42] considered the automorphism group of a 

weighted graph. Manjunath and Sharma[43] transformed one graph into a simplex, and by 

means of the simplex studied the isomorphism problem. As a result, they drew the conclusion 

that two graphs are isomorphic if and only if the two simplex congruent under isometric map. 

Finally, they represented an exponential time algorithm to compute the automorphisms of a 

graph. 

Babai[44] also examined the close connection between an automorphism and the spectra of 

a graph. Teranishi[45] studied the algebraic relationship between the automorphism group 

and the adjacency matrix and derives the lower bound of the order of the automorphism 

group. Subsequently, Teranishi[46] also demonstrated the relationship between an 

automorphism and the eigenvalues. Ruecker G and Ruecker C[47] used the method of matrix-

power to explore symmetry of a graph. 

[48] proposed the concept of cellular algebra to study the isomorphism problem, and came 

to the conclusion that the time interval needed between determining two graphs whether 

isomorphism and finding the orbits of the automorphism group of a graph is polynomial. 

[49] provided a function that can calculate the upper bound for the automorphism group of 

a graph of rankn  and diameterd . Further they represented the corresponding graph that can 

capture the upper bound. [50] discussed the relationship between the automorphism group of 

a graph and the automorphism group of the vertex−deleted subgraphs, yet the edge−deleted 

subgraphs. The computation of the automorphism group exponential grows as the rank of a 

graph increases. 

 

1.2. The Problems in the Automorphism Research 

To solve an automorphism group of a graph that contains certain symmetric structure, 

many algorithms assign all nodes with certain common attributes into a same orbit. Finally, so 

divides all nodes of a graph into a number of different orbits of the automorphism group. 

When partitioning the nodes into their respective orbits, a critical step usually is to 

examine the attributes of all nodes in the k  neighborhood of a node. The k  neighborhood of 
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a node comprises all nodes, each of which to the distance of the node is ≤ k . Another critical 

step usually is to compare the attributes of all nodes in the k neighborhood of two nodes. If 

all relevant attributes of the k neighborhoods of two nodes are identical, then ones put the 

two nodes into a same orbit. In view of this, when placing a node into an orbit, ones often 

have to take advantage of the local properties of the node. 

[51] showed that if the multiplicities of eigenvalues of a given graph are bounded by a 

constant, then the generators of the automorphism group of the graph can be computed in 

polynomial time. Although they provided the corresponding proof for their claims, they did 

not detail how to implement their method. Their ideas are less consistent with the result 

showed by the examples 1 and 2. Based on current knowledge, it also is unknown whether 

there exists an algorithm that can use the eigenvalue partition to compute the automorphism 

group of a weighted graph. 

In special circumstances, because the structure of a graph can be extraordinarily 

complicated, it cannot be completed that one only relies on the understanding of all local 

properties of a node to want to divide the node into which class. As a result, when ones 

partition nodes, it may not be enough only to compare relevant attributes of the k  

neighborhoods of two nodes. Ones had to expand the scope of the search from the k  

neighborhood to the 1k neighborhood. Occasionally, ones need to compare relevant 

attributes of all nodes of the graph. Accordingly, ones need to understand global properties of 

the graph. Therefore, better understand global properties of a graph is crucial. In this regard, 

ones must make further efforts. In the future, how well we use both local and global 

properties. Furthermore, how effectively we achieve balance between both is the way that 

makes the automorphism research breakthrough. Taken together, currently the automorphism 

studies exist following problems: 

1. The orbit partition of the automorphism group often fails. 

2. Partition usually stays at the theoretical level. At present, such methods have not reached 

a satisfactory level. Accordingly, ones still lack an effective method. 

3. Until now, how to take full advantage of the eigenvalues and eigenvectors of a graph 

studying the automorphism group has not yet attracted the attention of many experts. 

4. The complexity of solving the automorphism group of a graph is equal to the complexity 

of solving the isomorphic of the graphs. 

5. On special occasions, to partition all nodes of a graph into their respective orbits of the 

automorphism group, ones need to understand and grasp both the local and the global 

property of the graph. Furthermore, when partitioning, ones need to take advantage of the 

both flexibly. Ones are not doing enough in this regard. 

 

1.3. The Contribution of the Article 

The contributions of this paper are that 

1. Survey the brief history of the automorphism and point out the current problems. 

2. Introduce the concept of the eigenvalue partition of a graph and employ it to calculate 

the automorphism group. 

3. For the first time, we derive Equations 4 and 8. Furthermore, taking advantage of 

Equations 4, we propose a novel way in which we make use of eigenvalues and eigenvectors 

to calculate the automorphism group. 

4. Prove Theorem 2 to 8. 

5. Provide two examples 1 and 2 to show how to apply our method in practice. 

6. Present Conjecture 1. 

7. Propose three open problems. 

The rest of this article is organized as follows: 

In the next section 2, we establish some basic terminology and notation. In the section 3, 

we describe the basic principles. In the section 4, we offer twos examples for using 

eigenvalue partition to determine the automorphism Group. In the section 5, we analyze the 



International Journal of Hybrid Information Technology 

Vol. 9, No.6 (2016) 

 

 

Copyright © 2016 SERSC  201 

time complexity of the method. In the section 6, we propose three open problems. Finally, in 

the section 7, we show the summary and conclusion. 

 

2. Terminology and Notation 

This paper focus on developing a technique that can solve the automorphism of undirected 

weighted graphs with neither loops nor multiple edges. An undirected weighted graph 

consists of a set of vertices, a set of edges, and a set of weight values. For a weighted graph 

))(),( ),(( = GWGEGVG , let ，)(GV )(GE , and )(GW  denote the set of vertices of ，G  the 

set of edges of ，G and the set of weight values of edges, respectively. An edge 

)(v)(u, GE connects two vertices Gu   and .Gv  Each )(),( GWvuw  is the 

weight values of the edge (u, v). In the following text, when simultaneously involving two 

graphs, we always assume that their degree sequences are the same except specified. 

Definition 1. Let ))(),( ),(( = GWGEGVG  and ))(),( ),(( = HWHEHVH  be two 

undirected weighted graphs with n nodes. If there exists a bijection function 

)(→ )( : f HVGV such that )(v)(u, GE  and )(v)(u, GWw   if and only if 

)((u),f(v))( HEf  and )((u),f(v))( HWfw  . Thus, we say f is an isomorphic map 

of HG  →  . Furthermore, we say the graph G  and H  to be isomorphic, denoted 

by HG     . An isomorphic map f of G  onto itself is said to be an automorphism of G . 

Definition 2. A nn  permutation matrix is a square matrix whose every row and column 

contains precisely a single 1 with 0s everywhere else.  

A permutation Sym(V)   is a )( → )( HVGV map, which is clearly a bijection. 

)( GVu  , we describe the image of u under the  with )(u . We describe the u’s image 

of the composite under the Sym(V), 21   with ))(()( 1221 uu   . 

The set of all automorphisms of G is denoted by )(Aut G . It is verified that )(Aut G  forms a 

group under functional composition, which is called the automorphism group[52] of G . 

Obviously, )(Aut G  is a subgroup within the symmetry group ),Sym(V  =)Aut(G  

} = )(∧ )Sym({ GGV   .  

Theorem 1. Let ))(),( ),(( = GWGEGVG and ))(),( ),(( = HWHEHVH  be two 

undirected weighted graphs withn  nodes. Moreover, have )E(= )E( HG . )(GM and )(HM  

are their adjacency matrices, respectively. Thus, G  and H  are isomorphic if and only if there 

exists a permutation matrix P such that )( = )( T HMPPM G  [53].  

Corollary 1. Let ))(),( ),(( = GWGEGVG  be an undirected weighted graph with n  

nodes whose adjacency matrix is )(GM . Thus, G  exists an automorphism map if and only if 

there exists a permutation matrix P such that )( = )( T GG MPPM . 

If a graph G  has an automorphism map , by Corollary 1 there exists a permutation matrix 

P  to satisfy Equation )( = )( T GG MPPM . Conversely, if a graph G  has a permutation matrix 

P to satisfy the equation ，)( = )( T GG MPPM one can construct an automorphism map 

 corresponding to the permutation matrix .P Clearly, there exists a one-to-one 

correspondence between an automorphism map  and a permutation matrix P of a graph. 

Therefore, we do not strictly distinguish both in this article. 

Definition 3. Let ))(),( ),(( = GWGEGVG  be an undirected weighted graph with n  

nodes whose adjacency matrix is )(GM . Suppose that )(GM  has k distinct 

eigenvalues k21 ,,   . All the n eigenvalues of )(GM  are n21 ,,,    
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with },,,{ k21  i  for ,2,1i  n, . The algebraic multiplicities[54] of the 

eigenvalues are ),( 1A ),( 2A ,  )( kA , respectively. We classify all the distinct 

eigenvalues into three categories as follows: 

1. If 0i  , we partition it into the class 0 and call each of the class eigenvalues an 

eigenvalue of 0 type. 

2. If i j for njiji ,,2,1,,  , we let j  and i belong to the class 1 

simultaneously. Accordingly, we call each of the class eigenvalues an eigenvalue of 1 type. 

3. We let the remaining eigenvalues belong to the class 2 and call each of the class 

eigenvalues an eigenvalue of 2 type. 

Assuming that } ,, ,{ n21 ππππ  is a partition of all eigenvalues of the graph G  that 

satisfies the above conditions, then we call the π an eigenvalues partition of theG , denoted by 

)( eGπ . 

 

3. Basic Principle 

Let ))(),( ),(( = GWGEGVG  be an undirected weighted graph with n  nodes whose 

adjacency matrix is )(GM . Because the matrix )(GM  is symmetric, it has n  real eigenvalues. 

We work out the n  real eigenvalues and use n21 ,,,    to represent them respectively. 

Furthermore, we compute the eigenvector iX corresponding to the eigenvalue i and use 

n21  ,, , XXX  to represent them respectively. 

Theorem 2. Let ))(),( ),(( = GWGEGVG  be an undirected weighted graph withn nodes 

whose adjacency matrix is )(GM . All the n eigenvalues of )(GM  are n21 ,,,    

respectively. n21  ,, , XXX  are eigenvectors corresponding to n21 ,,,    respectively. 

If the graph G has an automorphism mapping  and P is the permutation matrix 

corresponding to the  , then there must exist an orthogonal matrix PXXQ T  to satisfy 

Equations 0-  QQ , where ) ,···, ,( n21 XXXX  , and 

 

 

 

 

 

PROOF. From linear algebra, we know that n21  ,, , XXX   are mutually orthogonal 

vectors satisfying the equations 0T
jiXX for njiji ,,2,1,,   and 1T

jiXX  

for ni ,,2,1  . Furthermore, we can decompose the )(GM  as follows: 

         

          (1) 

where the matrix ) ,, ,( n21 XXXX   is the orthogonal matrix satisfying the equation 

IXXXX  TT
(unit matrix). By Corollary 1, it follows that G exists an automorphism 

mapping if and only if G  exists a permutation matrix P to satisfy )()( T GG MPPM  .  By 

substituting (1) into )()( T GG MPPM   we obtain 

 

 

 

 





















n

2

1

00
0

0

000












).()(
.
.
.)(

TT

TT

TTT

TT

PXXΛΛPXX
PXΛXPXΛX

XΛXPPXΛX
XΛXPPM




G

， = )( TXΛXM G



International Journal of Hybrid Information Technology 

Vol. 9, No.6 (2016) 

 

 

Copyright © 2016 SERSC  203 

Let PXXQ T . Because IXPPXXXPXXPXXQQ  TTTTTTT )( , the matrix Q  also is 

an orthogonal matrix. Therefore, .0.  QQQQ □  

Theorem 3. Let ))(),( ),(( = GWGEGVG  be an undirected weighted graph withn  

nodes whose adjacency matrix is ).(GM All then eigenvalues of )(GM are n21 ,,,    

respectively. n21  ,, , XXX  are eigenvectors corresponding to n21 ,,,    respectively. 

If the graph G  has an automorphism mapping  and P  is the permutation matrix 

corresponding to the , then there must exist an orthogonal matrix PXXQ T  such that 

0-  QQ tt
 where ) ,, ,( n21 XXXX   for all Nt  (set of natural numbers), and 

 

 

 

 

 

PROOF. This proof is quite similar to the proof of Theorem 2. We can decompose the 

)(GM  as follows: 

 

  (2) 

where the matrix ) ,, ,( n21 XXXX   is the orthogonal matrix satisfying the equation 

IXXXX  TT
(unit matrix). By Corollary 1, we know that G exists an automorphism 

mapping if and only if G exists a permutation matrix P to satisfy )( )( T GG MPPM  . By 

substituting (2) into )( )( T GG MPPM  , we obtain 
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Expanding (3), we obtain 

 

 

 

 

 

(4) 

 

 

Where 0)( ,  iiii x  for .,,2,1 ni   Change the appearance of (4) and 

express it in the following form:  

(5) 

where 

 

 

 

 

 

 

 

 

 

 

 

 

By analyzing (5), we can conclude that 

1. When njiji ,,2,1,,  , 

(a) if ,0）（  ij   to make the ,0AY   then .0, jix  

(b) Otherwise, if ,0）（  ij   to make the ,0AY   then jix , can take any value. 

Hence we let .1, jix  

2. When njiji ,,2,1,,  , if ,0）（  ij   to make the AY = 0, then 

jix , can take any value. Hence we let .1, jix  

Theorem 4. Let ))(),( ),(( = GWGEGVG  be an undirected weighted graph with n  

nodes whose adjacency matrix is )(GM . Suppose that )(GM  has k distinct 

eigenvalues k21 ,,,   . All the n eigenvalues of )(GM  

are n21 ,,,   with },,,{ k21  i  for .,,2,1 ni   The algebraic 

multiplicities of the eigenvalues are ),(),( 21  AA ,  )( kA , respectively. Thus, we 

have 

1. If 0 ij   for },,2,1{, nji  , in Formula 3, then the elements of Q  

must satisfy .0, jix  
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2. In Formula 3, Q  has at least 



k

s
sAn

1

22 )( zero entries and at most 




k

s
sA

1

2)( non-zero entries. 

PROOF. 1. For all },,2,1{, nji  , if 0 ij  , from (4) it follows that 

0）（ ,  jiij x if and only if 0, jix . 

2. From (5), it can be seen that in the matrix A, when nji ,,2,1,  , 

then 0 ij   if and only if i  and j  belong to the same an eigenvalue s whose 

algebraic multiplicity is )( sA   with ks ,,2,1  . Therefore, in the diagonal of the 

matrix A, the total number of entries which satisfy condition 0 ij   

equals


k

s
sA

1

2)( . 

In the diagonal of the matrix A, because there is a total of 
2n  entries, there is a total of 




k

s
sA

1

2)( zero entries and a total of 



k

s
sAn

1

22 )( non-zero entries. Therefore, 

solving (5) exactly, we can conclude that Q  has at least 



k

s
sAn

1

22 )(  zero entries and 

at most 


k

s
sA

1

2)(  non-zero entries.    □    Furthermore, by Theorem 3, the equation 

0tt  QΛQΛ holds. 

 

 

 

 

 

 

Expanding (6), we obtain 

 

 

 

 

 

By simplifying and merging (7), we have 
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Where 0)( ,  ii
t
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t
i x  for .,,2,1 ni   Change the appearance of (8) and 
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where 

 

 

 

 

 

 

 

 

 

 

 

By analyzing (9), we can conclude that 

1. When njiji ,,2,1,,  , 

(a) if ,0）（  t
i

t
j   to make the ,0AY  then .0, jix . 

(b) Otherwise, if ,0）（  t
i

t
j   to make the ,0AY   then jix ,  can take any value. 

Hence we let .1, jix  

2. When njiji ,,2,1,,  , if ,0）（  t
i

t
j   to make the ,0AY  then 

jix , can take any value. Hence we let .1, jix  

Theorem 5. Let ))(),( ),(( = GWGEGVG  be an undirected weighted graph with n  

nodes whose adjacency matrix is )(GM . Suppose that )(GM has k distinct 

eigenvalues k21 ,,,   . All the n eigenvalues of )(GM  

are n21 ,,   with },,,{ k21  i  for .,,2,1 ni  The algebraic 

multiplicities of the eigenvalues are ),(),( 21  AA ,  )( kA , respectively. Thus, we 

have 

1. If 0 t
i

t
j  for },,2,1{, nji  , in Formula 3, then the elements of Q  must 

satisfy .0, jix  

2. In Formula 3, Q  has at least 



k

s
sAn

1

22 )( zero entries and at most 




k

s
sA

1

2)( non-zero entries. 

PROOF. 1. If 0 t
i

t
j  for },,2,1{, nji  , from (8) it follows that 

0）（ ,  ji
t
i

t
j x if and only if 0, jix  with },,2,1{, nji  . 

2. From (9), it can be seen that in the matrix A , when nji ,,2,1,  , 

then 0 t
i

t
j   if and only if i  and j  belong to the same an eigenvalue s whose 

algebraic multiplicity is )( sA   with ks ,,2,1  . Therefore, in the diagonal of the 

matrix A, the total number of entries which satisfy condition 0 t
i

t
j   equal 

to


k

s
sA

1

2)( . 
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In the diagonal of the matrix A, because there is a total of 
2n  entries, there is a total of 




k

s
sA

1

2)( zero entries and a total of 



k

s
sAn

1

22 )( non-zero entries. 

Therefore, solving (9) exactly, we can conclude that Q  has at least 



k

s
sAn

1

22 )(  

zero entries and at most 


k

s
sA

1

2)(  non-zero entries.                                                □    

In the following, we will examine that when  + t , how (8) change accordingly. 

Meanwhile, we also will examine how the entries of the matrix Q  change accordingly in the 

limit process. To achieve this purpose, from (8), we take the limit  + t . It follows that 

 

 

 

 

 

 

From (10), it can be seen that when ji   and nji ,,2,1,  , 

0)-(lim 1,1 


xt
i

t
j

t
 . By carefully analyzing them, we can conclude that 

1. If 1 ij  , then 0)-(lim 


t
i

t
j

t
 . Thus jix , can take any value. 

2. If jiij   11 , then 


)-(lim t
i

t
j

t
 . Thus 0, jix . 

3. If ji  1 , then  

.  

 

Thus 0, jix . 

4. If ij  1 , then 

 

Thus 0, jix . 

From the above discussion, we have the following Theorem 6. 

Theorem 6. Let ))(),( ),(( = GWGEGVG  be an undirected weighted graph with n  

nodes whose adjacency matrix is )(GM . Suppose that )(GM  has k distinct 

eigenvalues k21 ,,,   . All the n eigenvalues of )(GM  are n21 ,,,    with 

},,,{ k21  i for ,1i ,2 , n . The algebraic multiplicities of the eigenvalues 

are ),( 1A ),( 2A  , )( kA , respectively. If ji   and nji ,,2,1,  , for the 

entries of the matrix Q  that satisfy Equations 8, it follows that 

1. If 1 ij  , then jix , can take any value. 

2. If jiij   11 , then 0, jix . 

3. If ji  1 , then 0, jix . 

4. If ij  1 , then 0, jix . 
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By Theorem 2 and 3, it follows that PXXQ T  and
TXQXP  . If one has acquired the 

matrices Q  andX , which all eigenvectors of the G form, by means them, one can compute a 

permutation matrix P  and an automorphism accordingly. 

Below we will discuss what graph, as well as the algebraic multiplicities of which graph 

satisfy what conditions, can make 



k

s
sAn

1

22 )( reach the minimum or the maximum 

values. Let )( sAsy  for ks ,,2,1   and let 

(11) 

 

 

 

 

 

For a known graph, the k most be a constant. The function ),,,( 21 kyyyf  is a 

multivariate function with variables kyyy ,,, 21  . As we all know that a graph must satisfy 

the requirement 

 

 

Furthermore, we can construct the function: 

 

 

 

 

We use Lagrange multiplier method to calculate the extremum of the 

function ),,,( 21 kyyyf  . We know that to let f achieve its extremum, the function 

),,,( 21 kyyyf   must meet the following conditions: 
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From (16), it is easy to see that for a graphG , accompanying with the increase in the 

number of distinct eigenvalues, the maximum of 



k

s
syn

1

22
equals ),/11(2 kn  which 

is a monotonically decreasing function with respect to the k . By a series of the above 

derivation steps, we obtain the following Theorem 7: 

Theorem 7. Let ))(),( ),(( = GWGEGVG  be an undirected weighted graph with n  

nodes whose adjacency matrix is )(GM . Suppose that )(GM  has k distinct 

eigenvalues ,,, 21   .k All the n eigenvalues of )(GM  are n21 ,,,    with 

},,,{ k21  i  for ni ,,2,1  . The algebraic multiplicities of the eigenvalues 

are ),( 1A   ),( 2A  , )( kA , respectively. Thus, we have 

1. For a known graphG , thek is a constant. For ks ,,2,1  , if kny s / , then 

the function 



k

s
syn

1

22
gets the maximum value )/11(2 kn  . Thus, the orthogonal 

matrix Q  has at least )/11(2 kn   zero entries and at most kn /2
non-zero entries. 

2. For different graphG , if 1k (G  only has a n  multiple eigenvalue), the orthogonal 

matrix Q  satisfying condition PXXQ T  has at most n
2
 non-zero entries. If nk   (G  has 

n  distinct eigenvalues), the orthogonal matrix Q  satisfying condition PXXQ T  has at least  

nn -2
 zero entries and at most n  non-zero entries. 

From previous studies, it can be seen that the key issue finding the automorphisms of a 

graph G  is how to solve the permutation matrixP . Because
TXQXP  , computing P in turn 

depends on how to solve the orthogonal matrix Q . Suppose that )(GM  has k distinct 

eigenvalues k21 ,,,   . All the n eigenvalues of )(GM  are n21 ,,,    with 

},,,{ k21  i  for ni ,,2,1  . The algebraic multiplicities of the eigenvalues 

are )(,),(),( k21  AAA  , respectively. 

Now we show that when establishing (4), how we skillfully arrange the n  

eigenvalues n21 ,,,    of the graph G  in the diagonal of the matrix such that the 

orthogonal matrix Q  produced has a simpler structure and is more suitable for the subsequent 

processing. 

When constructing (4), without loss of generality, we can assume that the algebraic 

multiplicities of the k distinct eigenvalues satisfy )()()( k21  AAA   . 

Accordingly, let the k  distinct eigenvalues be arranged in ascending order k21 ,,,    

according to the size of the algebraic multiplicities. If the sizes of two algebraic multiplicities 

are the same, except the eigenvalues whose algebraic multiplicity is 1, let the eigenvalues be 

arranged in descending order. For all eigenvalues whose algebraic multiplicity is 1, let them 

specially be arranged as follows: First of all, if there is a 0-type single eigenvalue, let it be 

arranged in the front. Second, if there are 1-type eigenvalues, let them be arranged in 

descending order according to the size of the absolute value of the eigenvalues. Next, if there 

are 2-type eigenvalues, let them be arranged in descending order according to the size of the 

eigenvalues. In the following sections, when encountering any a graph, we assume that the 

sequence arranged in accordance with the above requirements is n21 ,,,   . 

A key advantage of such an arrangement is that it makes (4) closer near the bottom of the 

main diagonal have more zero entries and ultimately makes the orthogonal matrix Q  a 

following block diagonal matrix: 
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           (17) 

 

where the sB  is a square matrix of rank sr  with ls ,,2,1   and nr
l

s
s 

1

. 

We know that if an orthogonal matrix Q  is a block diagonal matrix as (17), then each 

square block matrix sB  of rank sr  ( ls ,,2,1  ; nr
l

s
s 

1

) is an orthogonal matrix. 

We call the block diagonal orthogonal matrix Q  constructed by (17) the standard block 

orthogonal matrix. By the preceding discussion, we establish the following Theorem 8. 

Theorem 8. Let ))(),( ),(( = GWGEGVG  be an undirected weighted graph with n  

nodes whose adjacency matrix is )(GM . Suppose that )(GM  has k distinct 

eigenvalues k21 ,,,   . All the n  eigenvalues of )(GM  are n21 ,,,    with 

},,,{ k21  i for ,2,1i  n, . The algebraic multiplicities of the eigenvalues 

are )(,),(),( k21  AAA  , respectively. If the graph G  exists an automorphism 

map  , then there must exist a standard block orthogonal matrix Q  expressed by (17) 

corresponding to the . Moreover, have 0 QΛQΛ tt
 for Nt  . 

By solving (8), if we have calculated all elements of the matrix Q  including all zero 

entries, by Theorem 8 we can obtain the standard block orthogonal matrixQ . Furthermore, we 

can express the Q  as the following form: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where sB  with ls ,,2,1   are sr -order orthogonal matrices. When building the 

matrixQ , if there exist the 0 or 1-type eigenvalues whose algebraic multiplicity is 1, by (17) 

there must exist a block diagonal orthogonal matrix in the upper left corner of the matrixQ . 
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We denote it by the orthogonal matrix 1B whose diagonal entries correspond to the 0 or 1-type 

eigenvalues. Because the algebraic multiplicities of the 0 or 1-type eigenvalue all is 1, we 

have 

 

(18) 

 

 

 

Similar to the 1B , when building the matrix Q , if there are the 2-type eigenvalues whose 

algebraic multiplicity is 1, then there must exist a block diagonal orthogonal matrix below the 

1B  in the upper left corner of the matrix Q . We denote it by the orthogonal matrix 2B  whose 

diagonal entries correspond to the 2-type eigenvalues. Because the algebraic multiplicities of 

the eigenvalue all is 1, we have 

 

 

(19) 

 

 

 

Conjecture 1. Let ))(),( ),(( = GWGEGVG  be an undirected weighted graph with n  

nodes whose adjacency matrix is )(GM . Suppose that )(GM  has k distinct eigenvalues 

k21 ,,,   . All the n  eigenvalues of )(GM  are n21 ,,,    with ,,{ 21  i  

}, k  for ni ,,2,1  . The algebraic multiplicities of the eigenvalues are ),( 1A  

),( 2A  )(, kA , respectively. 

By Formulas PXXQ T  and
TXQXP  , to compute the permutation matrixP , we have 

1. In the 1B from (18), have 1,1 iy  when 1,,2,1 ri  . 

2. In the 2B from (19), have 1iz  when 2,,2,1 ri  . 

 

4. For Example Using Eigenvalue Partition 

In this section, we will offer two examples that use the eigenvalue partition way to solve 

all automorphisms of a graph. However, by means of them, we represent the entire process 

for computing the automorphisms group. First of all, we give an example that use Theorem 2 

and Theorem 3 to seek automorphisms. 
Example 1. Use the algebraic method to solve the automorphism group of the graph G  in 

Figure. 1(a). 

Solution 1. The adjacency matrix of the graph in Figure.1(a) is: 

 

 

 

The characteristic polynomial of )(GM  is as follows: 
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0-type eigenvalues. Let 1.7321 2   and 1.7321- 3  be the 1-type eigenvalues. 

Let 3.1774 4  , 0.6784 5  , and 1.8558- 6   be 2-type eigenvalues. Next, in 

the eigenvalues whose algebraic multiplicity is 2, let 1- 7   and 1- 8   be the 2-type 

eigenvalues. Finally, we arrange all eigenvalues and eigenvectors of the graph as follows: 

 

 

 

 

 

It is obviously that only the algebraic multiplicities of eigenvalue −1 is 2, and the 

remaining eigenvalue all are 1. By (4), we have 

 

(21) 

 

 

 

 

 

 

 

 

 

 

 

 

Equations 22 represented by the matrix is equal to the following Equations 23. In fact, we 

do not need accurately to calculate the each of elements of the matrix Equations 22. However, 

based on the eigenvalues and their algebraic multiplicity, we can quickly get the following 

matrix Equations 23. The reason we describe in detail these intermediate steps of computation 

is to help people understand the principles of the paper. 
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Obviously, to make the two sides of (23) be equal, all the diagonal entries, 8,7x , 

and 7,8x can take any value. Moreover, the remaining entries must all be 0. 
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Because the elements jix ,  with 8,,2,1 i  compose the orthogonal matrix Q , the 

orthogonal matrix Q  must be the following form: 

 

 

(24) 

 

 

Because 1,1 ,
2
,  iiii xx  for 6,5,4,3,2,1i . Thus, the form of the Q  must 

be as follows: 
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By the matrix iB with 8,,2,1 i , we can correspondingly obtain the orthogonal 

matrix iQ  with 16,,2,1 i  as follows: 
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By the previously computed eigenvectors, we express the corresponding matrix as follows: 

   87654321 XXXXXXXXX  

 

 

 

 

 

Replacing the matrix Q  of 
TXQXP  by iQ with 16,,2,1 i , respectively, we 

obtain IXXQP  T
11 . The corresponding automorphism map is: )1(1  . 
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The automorphism maps corresponding to ，2P  ，3P  and 4P are ),8，7)(2，1(6   

)2，1(2  , and )8，7(4  , respectively. 
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The automorphism maps corresponding to ，5P  ，6P  and 7P are )5，4(3  , )2，1(8   

)5，4( )8，7( ,  and )5，4)(2，1(5  , respectively. 

 

 

 

 

.  

 

The automorphism maps corresponding to ，8P  ，9P  and 10P are )8，7)(5，4(7  , 

)5，4)(8，2)(7，1)(6，3(12  ,  and )5，4)(7，2)(8，1)(8，7)(6，3(13  , 

respectively. 

 

 

 

 

.  

The automorphism maps corresponding to ，11P  ，12P  and 13P are )2，1)(6，3(14   

)5，4)(7，2)(8，1( , )5，4)(7，2)(8，1)(6，3(11  ,  and )7，1)(6，3(10   )8，2( ,  

respectively. 

 

 

 

 

.  

The automorphism maps corresponding to ，14P  ，15P  and 16P  are )2，1)(6，3(15    

)7，2)(8，1( , )7，2)(8，1)(8，7)(6，3(16  ,  and )7，2)(8，1)(6，3(9  ,  

respectively. 

Finally, we list all automorphisms of the graph G  in Figure.1(a) into Figure.1(b).                        

□  

Example 2. Use the algebraic method to solve the automorphism group of the weighted 

graph G  in Figure. 2(a). 

Solution 2. The adjacency matrix of the graph in Figure. 2(a) is: 
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The characteristic polynomial of )(GM  is as follows: 

(26) 

 

First of all, we compute the characteristic polynomial 26. Next, compute the eigenvalues 

and the eigenvectors. Based on the aforementioned method, we let 21.96411  , 

12.16672  , 3.3194 3  , 1.8699 4  , 1.9455- 5  , 9.0727 - 6  , 

13.6836- 7  , and 14.6182- 8  be 2-type eigenvalues. Finally, we arrange all 

eigenvalues and eigenvectors of the graph G  as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be seen that all the algebraic multiplicities of eigenvalue is 1. By (4), we have 
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By substituting all eigenvalues into (27) and simplifying, we have 
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Figure 2. A Graph G and Its Automorphism Group 
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Because the elements jix ,  with 8,,2,1 i  compose the orthogonal matrix Q , the 

orthogonal matrix Q  must be the following form: 

 

 

 

 

(29) 

 

 

 

Because the Q  is orthogonal, have 12
, iix . As a result, 1, iix  for ,2,1i  ,3  

,4  8,7,6,5 . Thus, the form of the Q  must be as follows: 

 

 

(30) 

 

 

By the previously computed eigenvectors, we express the corresponding matrix as follows: 

 

 

 

 

 

 

Finally, by Formula
TXQXP  , we obtain the permutation matrix P  corresponding to the 

Q  as follows: IXXQP  T
11 . 

This shows that the graph G  only has a trivial automorphism )1( . We list the 

automorphism group into Figure. 2(b).                                                                                     □  

 

5. Complexity Analysis 

In this section, we analyze the time complexity of the method. 

The time complexity of computing eigenvalues and eigenvectors is )( 3nO  [55]. 

Furthermore, Shroff’s algorithm[56] can be implemented using /42n  processors, taking 

)log( 2 nnO  time for random matrices. The time complexity of two nn   matrix 

multiplication usually is )( 3nO . If use the method of the paper, in the best case, a graph of 

order n  has n  distinct eigenvalues. After we have sorted all eigenvalues into three 
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categories, by Formula 
TXQXP   and Conjecture 1, we know that the operations for 

computing the automorphism group need only 0 or 1-type eigenvalues, which lead to the 

corresponding elements of the matrix Q  only be 1 or −1. Meanwhile, the elements of the 

matrix Q  corresponding to 2-type eigenvalues only are 1. When a graph has no duplicate 

eigenvalues, the matrix Q  has a few elements involved in computing. As a result, the number 

of the matrix Q  involved in 
TXQX  is less. Thus, there rarely are the elements in the the 

automorphism group of the graph. Therefore, the total time complexity is )( 4nO . In the best 

case, the method can calculate the automorphism group in polynomial time. However, in the 

worst case, its time complexity is high. Reducing the time complexity is the future work. 

 

6. Three Open Problems 

In previous studying, we assume that a graph has no duplicate eigenvalues. Meanwhile, we 

already discuss how to calculate the automorphism group of a graph. However, this is not 

enough. In general occasions, a graph has many duplicate eigenvalues. In light of this, we ask 

the following questions: 

1. How do ones use (4) to solve the corresponding elements of the orthogonal matrix Q  

and form an orthogonal matrix Q  to solve the permutation matrix P   by 

Formula
TXQXP  ? 

2. How do ones compute each square block matrix sB  of order sr  in (17) where 

ls ,,2,1   and nr
l

s
s 

1

? 

3. How do ones use (8) to compute the corresponding element in the orthogonal matrixQ ? 

 

7. Conclusions 

In summary, we have obtained the following conclusions: Both from the theoretical and a 

practical point of view, the way is a novel method for solving the automorphisms of a 

weighted graph. When faced with a graph that has no duplicate eigenvalues, if Conjecture 1 is 

true, it can look for all automorphisms of a graph in polynomial time. Otherwise, this method 

has certain limitations and needs be improved. However, it has both theoretical and practical 

usefulness. In future studies, we will explore how to improve it. 
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