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Abstract 

This paper first develops a new Markov regime-switching panel GARCH model (MSPG) 

for multi-futures hedging, which has two merits: First, the panel GARCH model is more 

parsimonious than multivariate GARCH model. Secondly, the MSPG model allowing for 

regime shifts which voids the spurious volatility persistence problem. In this article, 

two-state MSPG model is applied to study the multi-futures hedging, and the comparison 

of hedging performance with pure panel GARCH is made, which indicates that MSPG 

model outperforms pure panel GARCH model by superior hedging effectiveness. 

 

Keywords: Hedging; Panel GARCH; Markov regime switching model; Persistence in 
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1. Introduction 

Hedging is one of the main functions of a futures market, which is widely applied and 

studied for hedging the market risk. Recent years, many researchers have been showing 

great interest in hedging with futures. This is witnessed by the large amount of papers 

emerged in this field. The most common issue involved in hedging is the estimation of the 

optimal hedge ratio (OHR). 

Several distinct methods have been proposed to estimate the OHR. The estimation of 

OHR depends on the specified objective function. Actually various objective functions 

are currently being used. As we all know that the initial purpose of hedging is just for 

avoiding risk (even though nowadays people may use it for profiting), so the most 

widely-used hedging strategies are the ones on the basis of minimization of the variance 

of hedged portfolio, see [1]. We also choose this most common and easy understandable 

objective function for studying in this paper. 

The benchmark approach is estimate the slope coefficient from the spot return on the 

futures return using ordinary least squares (OLS). An improved approach proposed is 

based on the error-correction (EC) model for avoiding spurious regression. While the 

third and also the most widely used approach is based on the generalized autoregressive 

conditional heteroscedasticity (GARCH) model to estimate time-varying OHRs. Among 

the dynamic hedge models such as Bivariate-GARCH model [2], Kalman filter [3] and so 

on. Instead of searching for possible information variables, GARCH models cover its own 

history of spot and futures prices to explain variations in variances and covariance. [4] 

also uses SV model to study the issue of multiperiod hedging. 

[1] Proposed to measure hedging effectiveness by the percentage reduction in the 

(unconditional) variance of the hedged portfolio relative to the unhedged spot position. 

This measure has been widely adopted to compare different hedge strategies in their 

usefulness to reduce risk ever since proposed. 

However, under certain circumstances it is difficult to find the exactly corresponding 

futures for many commodities. Then we can turn to look for some futures relevant to the 

chosen spot to replace the corresponding future and subsequently hedging portfolio can be 
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constructed to hedge. Therefore, the research on multi-futures hedging makes more sense 

than the ideal one to one futures hedging. 

[5] Built a multi-futures hedging stochastic model stochastic process with the 

restriction of wealth of asset portfolios being non-negative. [6] Set up an optimal hedging 

model under the assumption that the price of the futures and actual subject to Ito 

stochastic process. [7] Showed that multiple-future hedging is more efficient than single 

future hedging. 

The multi-future hedging should consider the risk correlation between futures and 

spots, consider both the risk correlation between futures and the risk correlation between 

spots. There are only few literatures on multi-future hedging. [8] Build up a multi-futures 

hedging model on the basis of the Variance - covariance matrix. [9] Built two futures 

hedging model. The model can hedge raw and processed materials, although it can hedge 

the products. [10] Developed a multi-future model with capital constraint. 

All of the mentioned multi-futures hedging researches above unavoidably chose 

multivariate GARCH model to solve for the OHR. Though the sophisticated multivariate 

GARCH models could also characterize the heteroskedasticity and cross-sectional 

dependence, even the unrestricted Vector GARCH (p, q) model involves

4112 q)]/)(pN(N)N(N[   individual parameters [11], which is so-called the 

curse of dimensionality. The applied literatures on the vector GARCH model often 

constrain the dimension N  to be no more than 3, which greatly limits the study of 

constructing hedging portfolio. This means if more than 3 relevant futures are chosen for 

hedging, the VGARCH model may not be able to deal with it. Panel model could solve 

this tough thing. [12] First proposed Pooled Panel-GARCH (PP-GARCH) model and 

study the inflation uncertainty in the G7 countries. [13] Examined the empirical 

relationship between output growth and volatility based on panel data of G7 countries 

over the period 1965–2007. [11] Showed the persistence of European stock markets with 

structural break by panel GARCH model.  

However, there may exist regime shifts in the market for different time periods, which 

would account for the persistence to some extent. [14] And [15] proposed the Markov 

regime-switching model with ARCH volatility, and [16] applied this model recently. And 

[17] first proposed the GRS model. [18] developed Multivariate Regime–Switching 

GARCH and empirically study international Stock Markets. 

Based on these researches, we put forward Markov regime-switching panel GARCH 

model. And MSPG model we developed is different from the model proposed by [18]. 

They allow the panel GARCH to be subject to regime shift modelled simply by adding 

dummy variables. But it is more reasonable that the time point of regime changes is 

unobservable. By comparison, our model takes regime shifts as a latent variable which 

obeys a first-order Markov process.  

The rest of the paper is organized as follows: The next section introduces Markov 

switching panel GARCH model. Section 2 reviews the definition of panel GARCH 

model. Section 3 introduces MSPG model. Section 4 empirically studies multiple-future 

hedging. Section 5 concludes.  

 

2. Panel Garch Model 

Consider the following general pooled regression model.  

,   1, . . . , ;  1, . . . ,
i t i i t

y i N t T                           (1) 

For a cross-section of N  time series and T  time periods, the conditional mean 

equation for time series 
i t

y  can be expressed as a panel with fixed effects. Where 
i

  

represents possible individual effects, and 
i t

  is a disturbance term with a zero mean and 

normal distribution along with the following conditional moments: 
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,    1, ...,
t t

y t T   

1
|

it js t
E [ I ] = 0        fo r  i j a n d  t s 


                   (2) 

      1
|

i t j s t
E [ I ] = 0         f o r  i j  a n d  t s 


                   (3) 

2

1 ,
|

i t js t i j t
E [ I ] =     fo r  i j  a n d  t s  


                   (4) 

2

1
|

i t js t i t
E [ I ] =       fo r  i j  a n d  t s  


                   (5) 

Where 
1t

I


 represents the information set at time 1t  . 

The first condition implies there is no non-contemporaneous cross-sectional correlation, 

and the second condition implies there is no autocorrelation. The third and fourth 

assumptions gives the general conditions of the conditional variance–covariance process. 

The conditional variance and covariance processes of time series follow a GARCH (1, 1): 

 

 

 (6) 

Where 0 ,  1,  1
i

         . 
i

  And i j
  represent the corresponding 

individual specific effects. In this model, the full parameter vector has 
1

( 1) 4
2

N N    

elements which means it’s more parsimonious than unrestricted vector GARCH model is. 

In matrix notation, Equation (1) can simply be expressed as: 

 (7) 

Where the disturbance term has a multivariate normal distribution (0 , )
t

N  . The 

log-likelihood function can be written as: 

1

1 1

1 1 1
ln ( 2 ) ln | | [ ( ) ' ( ) ]

2 2 2
t

T T

t t t

t t

L N T y y  


 

                  (8) 

 

3. Markov Regime Switching Panel GARCH Model 
 

3.1. Definition of Model 

,    1, . . . ,
t t

r t T                               (9) 

Where 
t

r  represents a M-dimensional time series, is usually of asset return series,   

represents the mean of time series 
t

r  and the residual 
t

  subject to  

       
1 / 2

1 |
|

t
t t t s t

H 


                               (10) 

Where 1t 
  represents the information set at time 1t  . 1

~ ( , )
t M M

N O I
 , M

I  

denotes the identity matrix of dimension M . And { }
t

s  is a Markov chain with finite 

state space {1, 2 , . . . , }k  and a primitive k k  transition matrix P . 

 

2 2 2

1 1

, , 1 , 1 , 1

,          1, .. . ,

,    

i t i i t i t

i j t i j i t j t i j t

i N

i j

   

     

 

  

   

   
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1 1 1

1

k

k k k

p p

P

p p

 

 


 

  

                             (11) 

Where 1
( | ) , , 1, ..., .

i j t t
p p s j s i i j k


     If i j , i j

p  gives the probability 

that state i  will be followed by state j , if i j , i i
p  gives the probability that there 

will be no change in the state of the market in the following period etc. These transition 

probabilities are assumed to remain constant between successive periods. { }
t

  And 

{ }
t

s  are assumed to be independent. Denote `
[ , , ] '

t t k t
    and 

1
[ , , ] '

k
  

  
  the distribution at time t  and the stationary distribution of the 

Markov chain respectively. 
,

t
s t

H  represents the conditional covariance matrix could be 

modelled as Markov regime switching panel GARCH model as the following: 

 

2 2 2

, | , , 1 ,
         1, .. .

t t t t
i t s s i s i t s i t

fo r i M     


                 (12) 

   
2 '

, | , , 1 , 1 ,
         

t t t t
i j t s s ij s i t j t s ij t

fo r i j      
 

                  (13) 

This could be expressed as a compact form 

'

| 1 1 1
t t t t

t s s s t t s t
H A B H 

  
                       (14) 

where 

,1 ,1 ,1

, 1 , ,

, 1 , ,

t t t
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B

  

  

  

 

 

 
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 
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. 

Subject to ,
0,  1,  1

t t t t t
s i s s s s

         . ,
t

s i
  and ,

t
s ij

  represents the 

corresponding individual specific effects. Both the unconditional correlation matrix and 

the parameters driving the system dynamics can be regime dependent. The Markov chain 

is governed by transition matrix P  in (11). We name the model defined by (9)-(14) by 

Markov switching panel GARCH model, or briefly, MSPG (1, 1; k). In the single-regime 

case, i.e., MSPG (p, q; 1) is just the most general conditional heteroskedastic specification 

panel ( , )G A R C H p q  process. 
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In this article we estimate two-regime MRS model, i.e., MSPG (p, q; 2). As a matter of 

fact, we found some scholars also estimate three-regime MRS models, say [19] study the 

relationship between spot and futures in stock indices; nonetheless, in their study the third 

regime seems to capture only jumps in the futures prices when switching between 

contracts of different maturities but it does not reflect fundamental changes in market. So 

we choose a two-regime MRS model because this model captures the dynamics of the 

spot and futures returns in a more parsimonious and efficient way and is totally reasonable 

because two regimes imply the periods of less volatile and more volatile. Additionally, for 

the popularity of GARCH (1, 1) model, and its well-characterizing performance, we build 

up MSPG (1, 1, 2) model in this paper. 

 

3.2. Estimating Log-Likelihood Function 

In the following passage we illustrate clearly how the likelihood function for MSPG 

model is constructed. We need to estimate log-likelihood function 

 

 

1

1

2

1 1

1 1

1 1 , 1 2 ,

1

( ( | )

[ P r( | ) ( | , ) ]

[ p (1 ) ]

T

t t t

t

T

t t t t t

t k

T

t t t t

t

L L L o g f r

L o g s k f r s k

L o g f p f





 
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

 

    

  



 



          (15) 

Where 

, 1

' 1

|

|

( | , )

1 1
e x p { } ,   1, 2

2( 2 ) | |
t

t

k t t t t

t t s t
M

t s

f f r s k

H k

H
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





  

              (16) 

Which is the state-contingent conditional probability density function of return in 

which k  denotes the state. 

This requires us to obtain
1 , t

p , 1 , t
f  and 2 , t

f . 

1. Let’s get the expression of 
1 , t

p  first. Similar to the case of univariate Markov 

regime-switching GARCH model proposed by [17, 20], the recursive expression of the 

state probability 
1 , t

p  of being in regime 1 at time t  up to time 1t   is as following: 

 

1, 1

2

1 1 1 1

1

1 1

P r( 1 | )

P r( 1 | , ) P r( | )

P r(s 1 | ) (1 Q )[1 P r(s 1 | )]

t t t

t t t t t

i

t t t t

p s

s s i s i

P



   



 

  

     

        

         (17) 

 

Where P  and Q  are transition probabilities, which are the probabilities that the 

regime 1 and 2 at time 1t   followed by regime 1 and 2 at time t  respectively. 
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1
P r[ 1 | 1]

t t
P s s


                             (18) 

1
P r[ 2 | 2 ]

t t
Q s s


                        (19) 

Next by Bayes’ Rule, we have 

1 1 1 2

1 1 2 1 1 2

1 1 2 1 1 2 1 1 2 1 1 2

P r(s | ) P r(s 1 | , )

(r | s 1, ) P r(s 1 | , )

(r | s 1, ) P r(s 1 | , ) (r | s 2 , ) P r(s 2 | , )

t t t t t

t t t t t t

t t t t t t t t t t t t

r

f r

f r f r

   

     

           

   

   


        

    (20) 

Where 1, 2 , ,
[       ]

t t t M t
r r r r  is a vector of returns at time t , and 

1 1 2
( | 1, )

t t t
f r s

  
   and 

1 1 2
( | 2 , )

t t t
f r s

  
   are defined by (16) denoted by 

1 , 1t
f


 and 

2 , 1t
f


. Substituting (20) into (17) yields the recursive expression of the regime probability

1 , t
p . 

1, 1

1 , 1 1 , 1 2 , 1 1 , 1

1 , 1 1 , 1 2 , 1 1 , 1 1 , 1 1 , 1 2 , 1 1 , 1

P r(s 1 | )

(1 )
[ ] (1 Q )[ ]

(1 ) (1 )

t t t

t t t t

t t t t t t t t

p

f p f p
P

f p f p f p f p



   

       

  


  

   

    (21) 

And the steady-state probabilities of t
s  is taken as the initial value for recursive 

expression of the regime probability 
1 , t

p  is 

                       1 0

1
P r( 1 | )

2

Q
s

P Q


  

 
                 (22) 

Where P  and Q  are transition probabilities defined in (18) and (19). 

2. Then we turn to get ,
 ( 1, 2 )

k t
f k   defined in (16). We can see the conditional 

covariance matrix depends on the whole history information up to time 1t  . This is a 

well-known problem known as “path-dependency problem” [14, 15] just de the general 

regime-switching model faces. Referring to the method Gray (1996) introduces for the 

univariate case, we recombine the conditional variance: 

    

2 2 2

, , 1 , 1

2 2 2 2 2

1 , , t | s 1 1 , , t | s 2

2 2

1 , , t |s 1 1 , , t |s 2

[r | ] [ r | ]

( ) (1 )( ) ,   1, . . . ,

(1 )

t t

t t

i t i t t i t t

t i i t i i i

t i t i

E E

p p i M

p p



    

 

 

 

 

   

      

  

       (23) 

It shows clearly that the conditional variance depends only on the current regime, not 

on all the history information, so the path-dependency problem is solved. Similarly, the 

recombining method for the residual is given by  

, , , 1

,

[ | ]

( 1, . . . , )

i t i t i t t

i t i

r E r

r i M






  

  
                     (24) 

Where 1, 1
P r( 1 | )

t t t
p s


    is the regime probability of being in state 1 given all 
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information up to time 1t  . In order to make the likelihood function easily estimated. 

The calculation of regime probabilities was illustrated by [17, 20] with a nonlinear 

recursive expression of the regime probability as a function of transition probabilities and 

conditional distributions. 

Furthermore, MSPG is a multivariate model, which includes not only variances and 

residuals, but also the covariance of spot and futures returns to be recombined.  

                  

, , , 1

, , 1 , 1 , 1

1 , , | 1 1 , , | 2

1 , , | 1 1 , , | 2

c o v ( r , r | )

E [ r r | ] E [ r | ] E [ r | ]

p ( ) ( 1 p ) ( )

p ( 1 p )

t t

t t

i j t i t j t t

i t j t t i t t j t t

t i j i j t s t i j i j t s i j

t i j t s t i j t s



       

 



  

 

 

 

    

     

  

  (25) 

Figure 1 illustrates the evolution of conditional covariance matrix in our 

path-independent MSPG model. Each conditional covariance matrix depends only on the 

current regime, not on the entire history of regimes. After recombining at time 1, 
2

,1i
  

represents the conditional variance at time 2, given the process is in regime 1 and ,1i
  

represents the residual in the mean equation (9). ,1i j
  is the covariance of time series i  

and j  after recombining at time 1. 'H s  and ' s  are covariance matrix and residual 

matrix defined in (14). ' s , 'A s  and 'B s  are corresponding coefficient matrix 

defined in (14). Since MSPG model is multivariate model, we also similarly collapse the 

conditional covariance in possible regime into a single conditional variance and residual 

at each point in time.  

 

 

Figure 1. Evolution of Conditional Covariance Matrix 

Now we can see from above equations that the conditional covariance depends only on 

current regime, not on the whole past history of information up to time t . 

Having specified the conditional variance 2

,i t
  and conditional covariance 

,i j t
  and the 

dynamics of the switching between regimes, then the conditional covariance matrix |
t

t s
H  

depends only on current regime instead of all the past information. Then the 

log-likelihood function (15) can be estimated without “path-dependency problem”. And 

then we can finally estimate the parameters  
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 , ,
{ , ; ( 1, , ) ; ( 1, , ) ( , , 1, , ) , , , }; ,

t t t t t t
i ii s s s s sj s

P Q i M i M i j i j M          

 

4. Multiple-Futures Hedging Based On Minimizing Variance Method 

 

4.1. Minimum Variance Hedge 

Denote ,
( 1, , )

i t
i n   the ratio of the i th  future to spot at time t  and then 

stack them into a 1 n  row vector 

 1, 2 , ,
( , , , )

t t t n t
                            (26) 

The return of hedging portfolio at time t  is as following: 

 
'

, , ,p t s t t f t
r r r                             (27) 

Where ,p t
r  represents the return of hedging portfolio at time t , ,s t

r  represents return 

of spot, ,f t
r  represents the vector of all the future returns. And t

  represents the 

hedging ratio vector ,f t
r . Then we can set up our objective function: 

  m i n ( ( ) ) ( ) ( , ) ' 2 ( , )
p t s t f i f j t s f t

V a r r V a r r B C o v r r B B C o v r r          (28) 

2

,p t
  represents the variance of the portfolios’ return at time t . 

2

,s t
  represents the 

variance of the spot’s return. ( , )
f i f j t

r r  represents the covariance matrix of future 

returns at time t . ( , )
s f t

r r  represents the 1n   covariance vector of futures return and 

spot at time t . Hedge ratios are calculated with variances and covariance estimated from 

(26) and (28) by time-varying minimum variance: 

' 1ˆ ( , ) ( , )
f i f j t s f t

B r r r r 


                       (29) 

Where ( , )
f i f j

C o v r r  and ( , )
s f

C o v r r  could be obtained from estimating MSPG 

model we developed above. 

 

4.2. Hedging Performance Comparison 

The variance of the estimated optimal hedged portfolio can be expressed as  

'ˆ( )
h e d g e d s f

V a r V a r r r                         (30) 

Where B̂  is the optimal hedge ratio vector estimated by (29). 

Following [1], the hedging effectiveness refers to the gain or loss in the variance of 

terminal revenue due to the price changes in an unhedged position relative to those in a 

hedged position defined as 

u n h e d g e d h e d g e d

e

u n h e d g e d

V a r V a r
H

V a r


                      (31) 
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5. Data and Empirical Analysis 
 

5.1. Data and Empirical Results 

For performance comparisons, optimal hedging portfolios are generated with MSPG (1, 

1, 2) and MSPG (1, 1, 1), i.e., pure panel GARCH (1, 1) model. We choose three futures 

contracts, CSI300 and CSI300 future, Aluminum future, Rubber future. 

The data are therefore sampled daily. The sample period ranges from December 25, 

2012 to September 18, 2013 and the data include 171 observations all together. The data 

for the period December 25, 2012 to August 15, 2013 for estimation and in-sample 

forecasts, and the data for the period August 16, 2013 to September 18, 2013 are used for 

out-of-sample forecasts. 

Figure 2 shows the returns of spot: CSI300 and the returns of futures: Aluminum, 

Rubber, CSI300 futures. And the in-sample and out-of-sample descriptive statistics are 

shown in Table 1 and Table 2 respectively. The parameters of MSPG (1, 1, and 1) and 

MSPG (1, 1, 2) are obtained by maximizing the log-likelihood functions shown in (15) 

with software WINRATS 7, and they are presented in Table 3 and Table 4. 

 

 

 

Figure 2. Returns of Spot and Futures 
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Table 1. In Sample Descriptive Statistics of Spots and Future Returns 

 SPOT FUTURES 

 CSI300 ALUMINIUM RUBBER CSI300 FUTURES 

Mean -0.000413 -0.000474 -0.001461 -0.000490 

Median 0.000317 -0.000393 -0.000229 -0.000585 

Std. Dev. 0.015639 0.013658 0.015522 0.016326 

Skewness -0.402220 -0.040391 -0.325934 -0.291728 

Kurtosis 5.236373 4.780068 3.165583 6.240856 

Jarque-Bera 34.59698 19.44789 2.770645 66.41685 

Observations 147 147 147 147 

Table 2. Out of Sample Descriptive Statistics of Spots and Future Returns 

 SPOT FUTURES 

 CSI300 ALUMINUIM RUBBER CSI300 FUTURES 

Mean 0.002357 -0.001146 0.001383 0.002778 

Median -0.001615 -0.002340 0.001213 -0.000598 

Std. Dev. 0.011540 0.007391 0.014023 0.012016 

Skewness 0.832385 0.263429 0.314198 0.887688 

Kurtosis 4.219960 1.933486 2.666543 3.389412 

Jarque-Bera 4.082270 1.356072 0.484988 3.165955 

Observations 23 23 23 23 
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Table 3. Parameter Estimates for MSPG (1, 1; 1) Model 

,   [ ]

                                      (0 .0 0 3 1

0 .0 0 0 4 1 0 .0 0 0 4 7 4 0 .0 0 1 4 6 1 0 .0 0 0

)        (0 .0 0 4 5 )         (0 .0 0 6 3)         (0 .0 0 0 8 )

4 9 0
t t

r w h ere       

2 2 2

, , 1 , 1
     1, 2 , 3, 4

i t i i t i t
fo r i   

 
         

, , 1 , 1 , 1
,       , 1, 2 , 3, 4 ;  

i j t i j i j t i t j t
fo r i j i j     

  
                     

Where 

1 2 3 4

1 2

0 .0 2 1,        0 .0 3 4 ,       0 .0 0 5 ,         0 .0 4 6 ,         0 .4 3 4 ,        .5 5 2
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0 .0 5
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
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
1 3 1 4

2 3 2 4
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   

 

   

 

3 4

1

                          (0 .0 0 5 3 )           (0 .0 0 3 9 )  

                                                0 .0 4 9

                                                  (0 .0 0 3 3 )  

 

 

Log-likelihood  -4075.087 

Table 4. Parameter Estimates for MSPG (1, 1; 2) Model 

,   [ ]

                                      (0 .0

0 .0 0 0 4 1 0 .0 0 0 4 7 4 0 .0 0 1 4 6 1 0 .
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For 2
t

s   

2 ,1 2 , 2 2 ,3 2 , 4 2 2
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 


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

                      (0 .0 0 7 3 )  

Log-likelihood  -3893.067 

 

Table 5 shows us the in- and out-of-sample hedging performance of both MSPG (1, 1; 

1) model and MSPG (1, 1; 2) model. MSPG (1, 1; 1) has 62.9574% and 69.5235% 

in-sample variance reduction respectively. And MSPG (1, 1; 2) has 70.5355% and 

76.2231% in-sample variance reduction respectively. Then we can conclude that during 

the period covered in the study, the existence of regime shifts has effect on hedging 

performance to some extent. 

Table 5. In Sample and Out Of Sample Hedging Performance Comparison 

 Variance Percentage of variance 

reduction 

 In sample Out-of-sample In sample Out-of-sample 

Unhedged 0.00024457832 0.0001331716   

Panel 

GARCH(1,1) 

0.00009059817 0.0000405860 62.9574% 69.5235% 

MSPG(1,1,2) 0.00007206378 0.0000316641 70.5355% 76.2231% 

Note:  

1°.The in-sample data period starts from December 25, 2012 to August 15, 2013 and 

the out-of-sample data period starts from August 15, 2013 to September 18, 2013.  

2°. Variance is calculated according to equation (26). 

3°. Percentage of variance reductions are calculated according to (31). 

Figure 3 and Figure 4 show the hedge ratios of futures to spot for MSPG (1, 1; 1) 

MSPG (1,1;2) respectively. And Figure 5 shows us the estimates of the probability of 

being in state 1 for  

MSPG (1, 1; 2) model. 
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Figure 3. Hedge Ratios of Futures to Spot for MSPG (1, 1; 1) Model 

 

Figure 4. Hedge Ratio of Futures to Spot for MSPG (1, 1; 2) Model 
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Figure 5. Smoothed Probabilities of Being in State 1 for MSPG Model 

6. Conclusion 

Base on the method that [17] proposed for solving the path-dependency problem for 

GRS model, we extend this method in the panel-GARCH framework to solve the 

path-dependency problem, and subsequently propose our MRSG model. After an 

application in multi-futures hedging based on minimum variance method, we find MSPG 

model have two merits: First, the panel GARCH model we introduce avoids the curse of 

dimensionality caused by estimating Multivariate GARCH model (more than 3 

dimensions). Second, our MSPG model allows for regime shifts which improves the 

predictive ability of the model and hence improves the performance of hedging. 

Finally, the comparison of hedging performance made between panel GARCH model 

and Markov regime-switching panel GARCH model (MSPG) shows that the latter 

exceeds the former both in-sample performance and out-of-sample, which predicts a 

promising application to multi-futures hedging. 
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