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Abstract 

This paper presents the use of an enhanced version of conventional cuckoo search 

algorithm (ECSA) for solving optimal generation coordination of hydrothermal system 

where the objective is to minimize both fuel cost and emission, and the hydro model is 

represented as a quadratic function of water discharge with respect to generation. The 

ECSA method is built for the optimal operation based on several modifications on 

conventional Cuckoo search algorithm (CSA). In the ECSA method, by evaluating the 

fitness of all initial eggs they are divided into two parts including the high quality one 

with lower fitness value and bad quality one with higher fitness value. The ECSA is tested 

on several systems and obtained results from the ECSA are compared those from other 

methods. The comparison reveals that the ECSA is so efficient for the considered 

problem. 

 

Keywords: Enhanced Cuckoo search algorithm, economic dispatch, emission dispatch, 

economic emission dispatch 

 

1. Introduction 

The main task of the optimal generation coordination of hydrothermal system (OGC-

HTS) problem is to determine the optimal power generation of the available thermal and 

hydro power plants so as the total fuel cost of thermal units over a schedule time is 

minimized satisfying both equality and inequality constraints such as the quantity of 

available water, power balance, and upper and lower limits on generations. In addition, a 

large amount electric power in the world supplying to load demand is mainly generated by 

thermal plants using oil, coal or natural gases. Therefore, several contaminants such as 

nitrogen oxides (NOx), sulphur dioxide (SO2), and carbon dioxide (CO2) have been 

released into the atmosphere due to the process of electricity generation from the thermal 

units [1]. In addition to the total fuel cost of thermal units, another objective of the gaseous 

emission should be also added to the OGC-HTS problem and a multi-objective OGC-HTS 

problem is formulated. Therefore, the multi-objective OGC-HTS (MO-OGS-HTS) 

problem is more complex than the conventional one since it needs to find a set of non-

dominated solutions for determining the best compromise solution which is considered as 

the most reasonable one for the acceptable trade-off between fuel cost and emission 

objectives. 

Recent years, many meta-heuristic algorithms have been successfully and widely 

applied to the MO-OGS-HTS problem such as particle swarm optimization (PSO) and 

gamma based method (-PSO) in [2], simulated annealing-based goal-attainment (SA-

BGA) method [3] and Non-dominated sorting genetic algorithm-II (NSGA-II) [3], 

improved genetic algorithm, and multiplier updating and the ε-constraint technique (IGA-

MU) [4] in addition to augmented Lagrange Hopfield network (ALHN) known as  an 
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artificial intelligence algorithm [5]. Among the methods, the ALHN method is not able to 

implement on systems with nonconvex fuel cost function of thermal units. GA is one of the 

earliest artificial intelligence methods which can deal with problem with complex 

constraints; however, it is time consuming to obtain optimal solution. Therefore, an 

improved version of the GA, NSGA-II was developed in [2] to tackle the disadvantage. On 

the contrary, PSO is faster than GA but it also copes with local optimal solution. In 

general, the meta-heuristic algorithm can find near optimum solution for non-convex 

optimization problems with non-differentiable objective and constraints. However, since 

the artificial intelligence based methods are generally based on the random search of a 

population in the problem space, they need to be run several times to obtain the best 

solution. 

Cuckoo search algorithm (CSA) was first developed by Yang and Deb in 2009 [6] 

inspired from the cuckoo bird’s reproduction behavior. The CSA method is superior to 

other methods such as GA and PSO when applied to benchmarked functions [6]. However, 

Walton et al. in [7] have pointed out that the conventional CSA cannot be fast for large size 

systems. In the ECSA, all the initial eggs are divided into two parts consisting of high 

quality eggs part and bad quality eggs part. ECSA has been demonstrated superior to CSA 

as applied to short-term fixed head hydrothermal scheduling problem [8]. 

In this paper, the ECSA method is proposed for solving the MO-OGS-HTS problem 

considering power losses in transmission systems and valve point loading effects in fuel 

cost function of thermal units. For implementation of the ECSA, thermal generations and 

water discharges as elements in each nest are used. The proposed ECSA method have been 

tested on three systems with quadratic fuel cost function and four objectives including 

three emission objectives and one fuel cost objective. The obtained results from the 

proposed ECSA have been compared to those from other methods available in the 

literature. 

 

2. Problem Formulation 

The mathematical formulation the of the MO-GCO-HTS problem consisting of N1 

thermal units and N2 hydro units scheduled in M time subintervals with tm hours for each is 

formulated as follows. 

 

2.1. Fuel Cost Objective 

The fuel cost function of thermal units considering valve point loading effects is 

represented as follows:  

                     
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where asi, bsi, csi, esi, fsi are fuel cost coefficients of thermal plant i; Psi,m is power output 

of thermal unit i at subinterval m; and Psi
min

 is the minimum power output of thermal unit 

i. 

 

2.2. Emission Objective 

Mathematically, each gaseous emission is represented by a quadratic function as 

follows: 
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In addition to the quadratic function representation of emission gas, the amount of 

emission from each thermal unit can be also expressed in form of a quadratic and 

exponential function as follows: 
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where si, si, si, si, and si are emission coefficients of thermal unit i. 

 

2.3. System and Unit Constraints  

 

2.3.1. Load Demand  

The total power generation from thermal and hydro units must satisfy the load demand 

and power losses in transmission lines represented by: 
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where the power losses in transmission lines are calculated using Kron’s formula as 

follows: 

                      
 















21 2121

1 1

000

1

NN

i

NN

i

imi

NN

j

jmijimLm
BPBPBPP ; m = 1,…, M                                     (5) 

where Phj,m is power output of hydro unit j at subinterval m; PD,m and PL,m are total system 

load demand and total transmission loss at subinterval m, respectively; and Bij, B0i, B00 are 

matrix coefficients for transmission power losses. 

 

2.3.2. Water Availability Constraints 

The total water discharge for each hydro unit during the scheduled period is limited by 

the available amount of water for that unit as follows: 
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where qj,m is the rate of water flow via turbine of hydro plant j in interval m.  
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where ahj, bhj, chj are water discharge coefficients of hydro unit j and Wj is the volume of 

water available for generation by hydro plant j during the scheduled period. 

 

2.3.3. Generator Operating Limits 

The power output of thermal and hydro units is limited between their upper and lower 

limits: 
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where Psi,max, Psi,min are maximum and minimum power outputs of thermal unit i, 

respectively and Phj,max, Phj,min are maximum and minimum power outputs of hydro plant j, 

respectively. 

 

3. ECSA for MO-OGC-HTS Problem 
 

3.1. Calculation of Power Output for Slack Thermal and Hydro Units 

The hydro generation is obtained as below [8]: 
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where  
2

, m
4 ( ) 0

h j h j h j j
b c a q    

Suppose that a set of the power outputs of (N1 -1) thermal units are known, the power 

output of the slack thermal unit 1 is calculated as follows [8]: 
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3.2. Implementation of ECSA for MO-GCO-HTS Problem 

The proposed ECSA method is implemented for solving the MO-GCO-HTS problem as 

follows. 

 

3.4.1. Initialization 

Similar to other meta-heuristic algorithms, the proposed ECSA has a population of Np 

host nests representing Xd (d = 1, 2, …, Np) containing Psi,m,d (i = 2,…, N1; m=1,…, M) and 

qj,m,d (j=1,.., N2; m=1,…, M-1), where Psi,m,d is the power output of thermal unit i at 

subinterval m corresponding to nest d and qj,m,d is the water discharge of hydro unit j at 

subinterval m corresponding to nest d. Therefore, vector Xd of nest d is represented in detail 

by
] ..., ,,,,...,,[

.,,,2,,1,,,,3,,2
21

dmNdmdmdmsNdmsdmsd
qqqPPPX 

, which includes the thermal units from 

2 to N1 for M subintervals and water discharges for hydro units from 1 to N2 for the first 

(M-1) subintervals. Consequently, nest d only contains thermal units from 2 to N1 at 

subinterval M. Certainly, the upper and lower limits of each nest are respectively 

Xdmin=[Psimin, qjmin] and Xdmax=[Psimax,qjmax]. 

The power output of the thermal units and water discharge of hydro units in the Np nests 

are randomly initialized satisfying Psi,m,d  Psi,max and qj,min  qj,m,d  qj,max as follows:  

                      m in m ax m in
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where  rand is uniformly distributed random numbers in [0,1]. 

Based on the initialized nests, the fitness function to be minimized corresponding to 

each nest for the considered problem is calculated as: 
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where 0  w  1 is weighting factor for combination of objectives [9]; Ks and Kq are 

penalty factors; Ps1,m,d is obtained by (11) and qj,M,d is the water discharge of hydro plant j 

at the subinterval M calculated by (14); Ps1
lim

 and qj
lim

 are the limits for the slack thermal 

unit and the slack water discharge [8]. 

 

3.4.2. Generation of New Solution via Lévy Flights 

All the eggs are divided into two parts, namely Xbest_discardd in good quality part and 

Xbest_nodiscardd in bad quality part. One nest randomly picked among the 

Xbest_nodiscardd nests is called Xbest_nodiscardr. The nest corresponding to the best 

fitness function in (13) is set to the best nest Gbest among all nests in the population. 

 

a) Generation of new solution for the bad quality part 

The first modification is for generating the new solution in the bad quality part (d = 

Notop+1,…, Nd, where Notop is the number of nests in the good quality part ) using 

Mantegna’s algorithm as follows:  
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Generation of new solution for the good quality part 

The new solution is determined using Mantegna’s algorithm as follows: 
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where  and Xnodiscardd
new

 are updated step size and an increased value [8]. 

For the newly obtained solution, its lower and upper limits should be satisfied according 

to the unit’s limits: 
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The fitness function value of the new egg is calculated using (13) and then compared to 

that from the previous egg. The egg with better fitness function value is considered as the 

new solution. 

 

3.4.1. Alien Egg Discovery and Randomization 

The second new solution  generation is carried out by the following equation 
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where randp1(Xbestd) and randp2(Xbestd) are the random perturbation for positions of the 

nests in Xbestd.  

For the newly obtained solution, its lower and upper limits should be also satisfied. The 

value of the fitness function in (13) is recalculated and the nest corresponding to the best 

fitness function is set to the best nest Gbest of the population. 
 

4. Numerical Results 

The proposed ECSA and conventional CSA methods have been tested on three systems 

where the first system has one hydropower plant and one thermal plant, and the second 

system has two hydropower plants and one thermal plant and the fourth system has two 

hydropower plants and two thermal plants. The three systems are scheduled in twenty four 

subintervals with one hour for each. Both the methods CSA and ECSA are run fifty 

independent trials for each case on a 1.8 GHz PC with 4 GB of RAM. 

The emission data of the systems is from [10] and the rest of data is from [1]. The two 

methods of CSA and ECSA are implemented to for obtaining the optimal solution for the 

cases of economic dispatch (w = 1), emission dispatch (w = 0), and combined economic 

emission dispatch (w = 0.5). The number of nests and the maximum number of iterations 

for the three systems are given in Table 1 whereas the probability of alien eggs to be 

abandoned for both CSA and ECSA is tuned in range from 0.1 to 0.9 with a step of 0.1. It 

is obviously seen from Table 1, the number of nests set to ECSA is smaller than that set to 

CSA. The best results obtained by the CSA and ECSA are compared to those from other 

methods given in Table 2 corresponding to economic dispatch, in Table 3 corresponding to 
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emission dispatch and in Table 4 corresponding to combined economic and emission 

dispatch.  Obviously, the ECSA has approximate solution to CSA for economic dispatch of 

all the three systems; however, at the emission dispatch, the proposed ECSA can search 

better solutions than CSA for the three systems due to less emission. There is a conflict 

between the comparison of fuel cost and emission at the combined economic and emission 

dispatch at Table 4 when evaluate the performance of the CSA and ECSA. Clearly, the 

ECSA obtain less fuel cost and higher emission than CSA for three systems. Consequently, 

it is sated that the ECSA is more effective than CSA. As compared to three other methods 

in [2] such as Lamda-gamma method (LGM), PSO and -PSO, the ECSA is superior to 

three of them at economic dispatch since the ECSA obtain better fuel cost for systems 1 

and 3 and worse cost only at system 2. Furthermore, the ECSA obtains better both 

emission for emission dispatch, and fuel cost and emission for compromise case than the 

three methods. The comparison of execution time among these methods is reported in 

Table 5. Obviously, the ECSA is slower than other methods; however, the LGM and -

PSO in [2] are the family of the deterministic methods which cannot deal with non-

differential function and the PSO is much less efficient than the ECSA. There is no 

computer reported for the methods in [2]. 

Table 1. The Telection of CSA and ECSA Control Parameters 

 
System 

CSA ECSA 

Np Gmax Np Gmax 

1 10 1,000 8 1,000 

2 15 1,800 8 1,800 

3 15 3,000 12 3,000 

Table 2. Result Comparison for the Economic Dispatch (in $) 

Method LGM [2] PSO [2] -PSO [2] CSA ECSA 

  
System 1 

96,024.42 96,024.61 96,024.40 96024.3719 96024.3719 

System 2 
848.241 848.204 847.908 848.3464 848.3463 

System 3 
53,053.79 53,053.79 53,053.79 53051.4765 53051.4764 

Table 3. Result Comparison for the Emission Dispatch 

 
Method 

Emission (kg) 

NOx SO2 CO2 Total 

 
 
 
System 1 

LGM [2] 14,376.318 44,202.359 242,406.083 
300,984.760 

PSO [2] 14,376.405 44,202.506 242,407.419 300,986.330 

PSO[2] 14,376.319 44,202.360 242,406.083 300,984.762 

CSA 14271.7486 
 

44302.066
8 
 

241293.1475 
 

299,866.962 
 ECSA 14271.5872 44302.827

6 
241292.5019 299,866.916 

 
 
 
System 2 

LGM [2] 571.991 4,993.746 2,922.820 8,488.557 

PSO [2] 571.729 4,995.190 2,922.14 8,489.059 

PSO[2] 571.992 4,993.747 2,922.820 8,488.559 

CSA 571.7745 
 

4994.9086 
 

2922.2014 
 

8488.8845 

ECSA 572.0224 4993.5766 2922.9032 8488.5021 
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System 3 

LGM [2] 21,739.271 74,131.817 373,122.569 
468,993.657 

PSO [2] 21,739.270 74,131.817 373,122.568 
468,993.655 

PSO[2] 21,739.185 74,131.681 373,121.273 
468,992.139 

CSA 21,370.479 73,924.733 368,209.983 463,505.20 
 ECSA 21,247.614 73,963.781 366,764.279 461,975.6 

Table 4. Result Comparison for the Compromise Case 

Method  
Total cost ($) NOx+SO2+CO2 (kg) 

System 1 System 2 System 3 System 1 System 2 System 3 

LGM[2] 96421.7250 851.0790 54337.0270 301016.5410 8487.8720 469025.331 

PSO [2] 96421.7250 851.0790 54337.0270 301016.5410 8487.8720 469025.331 

PSO 96421.4600 852.3880 54336.8880 301015.1450 8489.4380 469023.262 

CSA 96420.7711 850.0884 54333.5640 300436.1908 8490.8713 465612.940 

ECSA 96420.1955 850.0896 54305.4741 300437.8326 8490.7346 463428.630 

Table 5. Comparison of Total Computational Time (in seconds) for Total 
Three Dispatch Cases 

Method LGM [2] PSO [2] -PSO [2] CSA ECSA 

System 1 14.83 95.36 43.44 46.5 53.4 

System 2 11.46 83.73 39.27 63.4 61 

System 3 12.26 105 49.01 138.3 146 

 

5. Conclusions 

In this paper, the ECSA method has been successfully implemented for solving the MO-

GCO-HTS problem with nonconvex objective function. In the ECSA method, the local 

search ability is enhanced by performing the first modification on the abandoned group 

since the updated step size is decreased as the current iteration is increased. Moreover, the 

ECSA can search a better solution in the top group by exchanging information between 

each two eggs. In addition, the ratio of the number of nests in the top group to that in the 

abandoned group is also a main factor to decrease the execution time. The effectiveness 

and robustness of the ECSA are verified on three systems with quadratic fuel cost function 

and four objectives including three emission objectives and one fuel cost objective. The 

result comparisons with other methods including the conventional CSA and others in the 

literature have indicated that the proposed method is better than the compared methods in 

terms of the total cost, emission and computational time. Therefore, the proposed ECSA 

method can be a very efficient one for solving the MO-GCO-HTS problems. 
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