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Abstract 

Due to the changes in viewpoint, holes may appear in the novel view synthesized by 

depth-image-based rendering (DIBR). A hole-filling method combining disparity-map-

based hole-filling and inpainting is proposed. The method first eliminates matching 

errors in destination image according to the disparity map. Then, holes are classified 

into different types according to their sizes. Finally, a disparity-map-based approach 

and an improved exemplar-based inpainting algorithm are used to fill different types of 

holes according to the type of hole. Experimental results show that the artifacts at the 

edge of foreground objects can be reduced in synthesized view since the matching errors 

are eliminated before hole-filling. In addition, the proposed method can achieve more 

natural and satisfactory results in filled areas in comparison with the disparity-map-

based approach and Gautier’s inpainting algorithm, though it may result in higher time 

complexity. 

 

Keyword: Depth-image-based Rendering, Hole-filling, Holes, Disparity Map, 

Inpainting 

 

1. Introduction 

In free viewpoint television (FTV) or auto-stereoscopic display system, holes may 

appear in novel views (called destination images or virtual views) synthesized by depth-

image-based rendering (DIBR) engine, which may result in heavy image quality 

degradation [1-5]. The main cause of holes is the changes in viewpoint [6, 7], and larger 

baseline usually involves larger holes [8]. How to fill these holes, especially the big 

holes in synthesized views, is a key problem to DIBR engine. 

Many methods for hole-filling are proposed [9, 10]. Generally, these methods can be 

classified into two types according to their processing features [9]: 

(1) Preprocessing of depth map 

In this method, depth map is smoothed by smoothing filter before the destination 

image generated. As the depth information is smoothed, sharp depth transitions 

(discontinuities) in depth map are reduced [9, 11]. As a result, the size of holes may be 

decreased in novel views. 

A common problem with this method is that it may introduce geometric distortions to 

the destination image [9, 11-13]. People have tried many different smoothing methods to 
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deal with geometric distortion, for example: asymmetric smoothing [13], edge dependent 

depth filtering [14], directional Gaussian filtering (DGF) [15], adaptive smoothing [16], 

and optimized adaptive filtering [17]. Although these smoothing methods do reduce the 

geometric distortions, it is quite difficult for them to eliminate the geometric distortions 

completely. 

(2) Post-processing of destination image 

In this method, holes are filled with pixels (non-hole point) sampled from the 

reference image or destination image [12]. Image inpainting is the typical algorithm 

used by post-processing method. Many inpainting algorithms for hole-filling are 

proposed in recent years. Started from Criminisi’s work, Daribo et al. proposed an 

inpainting algorithm in which depth information is applied to reduce the artifacts [18, 

19]. However, artifacts can still be found at the edge of foreground objects. In order to 

further reduce these artifacts, Gautier et al. improved the method of priority computation 

in Daribo’ algorithm by using 3D tensor and directional background propagation [8]. 

However, this method cannot provide an ideal result for the holes at the border of the 

destination image. Different from Gautier’s method, Wu et al. [20] and Wang et al. [21] 

put forward an idea of hole-filling which processes foreground and background 

respectively. Wu et al. adopted the watershed algorithm to distinguish foreground from 

background. However, it may lead to over-segmentation and require much time to merge 

generated images. Wang et al. used a background estimation method to estimate the 

static background, which contributes to higher filling speed in comparison with classical 

inpainting method. However, this method needs multi frames to estimate background, 

and this limits its applications. 

Different from these post-processing methods based on image inpainting, our 

previous work proposed a hole-filling approach based on disparity map [9]. One 

important aspect of the approach is that holes are filled by copying corresponding pixels 

from the reference image instead of destination image according to the disparity map 

converted from a depth map. No depth-smoothing or inpainting methods are needed. 

Hence, geometric distortions almost disappear in synthesized view, and it is quite 

simpler than inpainting method. However, when the baseline is too large or the virtual 

view is located beyond the field of view of real cameras [22], the image quality of the 

virtual view degrades. 

To overcome this issue, we have made a careful analysis of the characteristics of the 

holes generated by DIBR. There are two major characteristics of the holes in the novel 

view: 

(1) Most of the holes are small even when the baseline is quite large. A simple hole-

filling method is enough for image quality here. 

(2) The size of holes between foreground and background is large, and most of 

these holes should be filled with background pixels [4]. 

Using the characteristics mentioned above, this paper extends our previous work in a 

number of ways. First, matching errors in the destination image are eliminated according 

to the disparity map. Then, holes are classified into different types according to their 

sizes. Finally, a disparity-map-based approach [9] and an improved exemplar-based 

inpainting algorithm are used to fill different types of holes. Note that the proposed 

method is based on shift-sensor camera setup [9], for which only the case that the virtual 

viewpoint shifts horizontally is considered when synthesizing novel views at the receiver 

side [23]. In addition, the input 3D video for our method consists of only regular 2D 

color video (i.e. reference images) and an accompanying depth map sequence with the 

same spatial-temporal resolution excluding camera parameters [5], which is used 

widely in current 3D display system. What’s more, only current frame is used for hole-

filling in our method. 



International Journal of Hybrid Information Technology 

Vol. 9, No. 5 (2016) 

 

 

 

Copyright © 2016 SERSC 147 

The remaining portions of this paper are organized as follows. In Sec. 2, the proposed 

method is discussed in detail. Sec. 1 is devoted to evaluating the performance of the 

proposed method. Conclusions are shown in Sec. 2. 

 

2. Proposed Method 

This paper puts forward a novel method that can classify the holes generated by 

DIBR into different types automatically and fill different types of holes with 

different algorithms: As for small or medium holes, they can be filled by the 

disparity-map-based approach with good image quality rather than the time-

consuming inpainting algorithm; for the rest big holes, if both sides of a hole are 

foreground pixels, then it is also filled by the disparity-map-based approach, 

otherwise it is filled by an improved exemplar-based inpainting algorithm. 

Furthermore, we add a module for matching error elimination before hole 

classification, since there are often matching errors in destination image due to the 

inaccuracy of the depth map [15, 24]. These matching errors have a negative 

impact on the image quality of the holes repaired by inpainting, and thus they must 

be removed. 

An overview of the proposed method is illustrated in Figure 1. The inputs are 

the reference image and an accompanying depth map, and the output is the 

destination image without holes. As shown in Figure 1, there are four main 

modules in this method: matching error elimination, hole classification, disparity -

map-based hole-filling, and inpainting. The details of each module are addressed in 

the following sections. 

 

 

Figure 1. Flowchart of the Proposed Hole-filling Method for DIBR 

 

2.1. Matching Error Elimination 

Object contours in depth map are often inconsistent with that in the reference 

image. Usually, foreground object contours in the reference image are larger than 

that in the associated depth map. It is inevitable that the shifts of some foreground 

pixels are the same as that of their neighboring background pixels after 3D image 

warping. As a result, the boundary of the big hole adjoining the background mixes 

with some foreground pixels, as shown in Figure 2. Hence the so-called matching 

errors appear [9]. 

In this module, we use the algorithm described in Ref. [24] to remove the 

matching errors. In addition, a median filter is used to eliminate the singularities 

after 3D image warping [25]. 
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 (a) (b) 

Figure 2. Illustration of Matching Errors: (a) Synthesized Destination 
Image after 3D Image Warping; (b) Enlargement of Image 

 

2.2. Hole Classification 

This module classifies the holes into different types and thereafter different hole-

filling processes can be performed depending on these types. 

As is shown in Figure 3, holes are classified into three main types according to their 

sizes: big hole, medium hole, and small hole. In addition, big hole can be further 

classified into five subtypes: Type A, B, C, D and E. The algorithms used to fill different 

types/subtypes of holes are also presented in the figure. The details of hole classification 

are addressed below. 

 

Hole

Big hole Small hole Medium hole

A B C E D

Exemplar-based inpainting Disparity-map-based approach

 

Figure 3. Types/Subtypes of Holes 

There are two key steps in hole classification. 

In the first step, holes are classified into the above mentioned three types according to 

the length of the hole num. This procedure is similar to the procedure of hole detection 

proposed in Ref. [9]. In fact, the “medium hole” here is the “big hole” in Ref. [9]. 

Suppose len_hole1 and len_hole2 are two thresholds, holes are classified by the rules 

below in the first step: 

(1) If num < len_hole1, then it is labeled “small hole”; 

(2) If len_hole1 ≤  num < len_hole2, then it is labeled “medium hole”; 

(3) If num ≥  len_hole2, then it is labeled “big hole”. 

Note that the threshold values of len_hole1 and len_hole2 have important influences 

on the hole-filling results. If an improper value of len_hole1 is selected, some of small 
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holes may be incorrectly filled with foreground pixels. What’s more, an oversize 

len_hole2 may result in a negative effect because the disparity-map-based approach is 

not suitable for big holes, and an undersize one may lead to some of medium holes not 

being filled. len_hole1 = 3 and len_hole2 = 20 are empirically recommended for various 

videos to obtain average image quality according to our tests. 

As for the “big hole”, most of them can be effectively filled by inpainting algorithm, 

but there is an exception: When both sides of a big hole are foreground, seldom or no 

background pixels can be used for hole-filling. As a result, the disparity-map-based 

approach outperforms the inpainting algorithm according to our tests. So it is necessary 

to further classify “big hole” into subtypes for different hole-filling processes. 

In the second step, “big holes” are further classified into five subtypes: 

(1) If both sides of a hole are background, then it is labeled “Type A”; 

(2) If the of a hole is background and the right side is foreground, then it is labeled 

“Type B”; 

(3) If the left side of a hole is foreground and the right side is background, then it is 

labeled “Type C”; 

(4) If both sides of a hole are foreground, then it is labeled “Type D”; 

(5) Otherwise, the hole must be a marginal hole, we labeled it “Type E”. 

An example of subtypes of holes can be found in Figure 4. 

 

 

Figure 4. Illustration of Subtypes of Big Holes. Each Subtype of Big 
Hole is Labeled with Subtype Name and Marked by Yellow Circles 

As can be seen from Figure 4, how to distinguish foreground from background is a 

key problem in the second step. We use the method proposed in Ref. [9] for foreground-

background discrimination. This method distinguishes foreground pixels from 

background ones according to the sharp parallex transition. As an example, the 

discrimination of hole Type D is presented below: 

(1) Foreground pixel discrimination 

The purpose of this step is to distinguish foreground pixels from background ones at 

the edges of a hole based on disparity map. 

Take the synthesized left view as an example. Suppose: 

dm: Parallax difference between the first pixel on the right border and the first pixel 

on the left border of a hole in disparity map M; 

dm1: Parallax difference between the other pixel on the right border and the first pixel 

on the right border of the hole; 

dm2: Parallax difference between the other pixel on the right border and the first pixel 

on the left border of the hole; 

sharp_th: Threshold for the detection of sharp parallax transition.  
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Then, three situations may occur for a specific hole: 

(a) If dm ≥  sharp_th, then the first pixel on the right border of the hole is a 

foreground pixel. Record this pixel. 

(b) If dm ≤  -sharp_th, then the foreground pixels are on the left border of the hole. 

In this case, there must also be foreground pixels near the right border of the hole. Scan 

the pixels on the right side of the hole from left to right. If dm1 ≥  sharp_th, then it 

means we find a sharp parallex transition, the pixel with larger parallax-value is a 

foreground pixel. Record this pixel. 

(c) If -sharp_th < dm < sharp_th, then we need to scan the pixels on the right side of 

the hole from left to right to find sharp parallax transition. If dm2 ≥  sharp_th, then the 

pixel with larger parallax-value is a foreground pixel, record this pixel. If dm2 ≤  -

sharp_th, then the first pixel on the right border of the hole is a foreground pixel. Record 

this pixel. If -sharp_th < dm2 < sharp_th, then it indicates there are no sharp parallax 

transitions and all pixels are foreground pixels on the right border of the hole. Also, the 

first pixel on the right border is recorded. 

The threshold sharp_th has important influences on the discrimination results. Too 

large or too small a sharp_th may result in incorrect foreground pixel discrimination. As 

the length of a hole num is less than or equal to its parallax difference dm [9], and dm has 

a close relation with sharp_th, we can choose a proper value of sharp_th according to 

num. Eq. (1) is empirically recommended for various videos to obtain the average 

accuracy of the discrimination results according to our test. 

_ 2

_ 2 2 6

_ / 2 6

sharp th num num

sharp th num num

sharp th num num

 


   
  

. 
(1) 

The processing of right view is similar to that of left view. The only difference 

between them is the scan order. The scan order for right view is opposite to that for left 

view. 

(2) Foreground pixel marking 

The purpose of this step is to mark the foreground pixels at the edges of a hole. First, 

a 0-1 matrix L is created based on disparity map M. Each point in M has a 

corresponding value in 0-1 matrix at the same position (point). If a point in M is a hole 

point (parallax equals -128), then its corresponding value in L is set to 0; otherwise, it is 

set to 1. 

Second, the values of the foreground pixels in L are changed from 1 to 2 by the 

following algorithm (take the left view as an example): Take the recorded pixel in step 

(1) as a start point, scan the pixels on the right side of this pixel in M from left to right. 

If the parallax difference dm3 between the start point and the current pixel satisfies -

sharp_th ≤ dm3 ≤  sharp_th, then change the corresponding value of the current pixel in 

L to 2. If dm3 < -sharp_th or dm3 > sharp_th, then the current pixel is a background pixel, 

the algorithm will stop marking and start to look for the next big hole. Repeat the 

algorithm until all the pixels are scanned. Consequently, all foreground pixels on both 

sides of big holes will be marked by 2, and the 0-1 matrix L will be changed to a 

marking map L'. An example of foreground pixel marking can be found in Figure 5. 

 



International Journal of Hybrid Information Technology 

Vol. 9, No. 5 (2016) 

 

 

 

Copyright © 2016 SERSC 151 

  
(a) (b) 

Figure 5. Disparity Map and Its Marking Map: (a) Disparity Map; (b) 
Marking Map Obtained from (a) 

As shown in Figure 5 (b), only foreground pixels nearest to holes (in horizontal 

direction) are marked by the foreground-pixel-marking algorithm above. Note that part 

of the dancer’s arm is not marked because her head is nearer to the hole than the 

unmarked part of her arm. 

In addition, there are some big holes between the wall and the floor due to the 

inaccuracy of depth map (see Figure 5 (a)). They might result in incorrect foreground 

pixel marking. Fortunately, most sizes of these holes are not large in vertical direction; 

hence, they can be filled with the parallaxes of their neighboring pixels in disparity map 

before foreground pixel marking. Figure 5 (b) shows the final marking map obtained 

from (a). 

(3) Hole Type D discrimination 

Scan the marking map from left to right, line by line. If both sides of a hole (marked 

with value 0) are foreground (marked with value 2), then label the hole “Type D”. 

 

2.3. Disparity-Map-Based Hole-Filling 

This module is used to fill “small hole”, “medium hole”, and hole “Type D” using the 

disparity-map-based approach. 

The basic idea of the disparity-map-based approach is that holes are filled by copying 

the related pixels from the reference image according to the disparity map, which is 

associated with the destination image. There are three main steps in this approach: 

(1) Hole detection based on disparity map; 

(2) Big hole dilation. In this step, intrusive matching errors are eliminated; 

(3) Hole filling. Holes are filled with background pixels from the reference image 

according to the disparity map.  

The detailed descriptions of this approach can be seen in Ref. [9]. 

As for our proposed method, matching errors have been removed in module 

“Matching error elimination”. Therefore, the step “big hole dilation” can be ignored 

here. 

 

2.4. Inpainting 

As shown in Figure 3, this module is used to fill the holes Type A, B, C, and E using 

an improved exemplar-based inpainting algorithm. Different from Criminisi’s method 

[26], this module only uses background pixels to fill the holes so as to reduce the 

artifacts along foreground objects. 

As can be seen from Figure 6, three submodules are contained in this module: Patch 

selection, patch matching [27], and patch filling. 
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Patch fillingPatch matchingPatch selection

Big hole 

(Type A, B, C, E) Destination image

 

Figure 6. Flowchart of the Improved Exemplar-based Inpainting 
Algorithm 

For the convenience of the algorithm description, we adopt the notations shown in 

Figure 7 [26]. The description of these notations can be found in Table 1. 

 

 

Figure 7. Notations Used for Inpainting Algorithm Description 

Table 1. Notation Description 

Ω Hole region [10] 

Φ Non-hole region [10] 

∂Ω Hole contour/edge 

np A unit vector orthogonal to ∂Ω 

φp Patch of central point p 

▽Ip
⊥

 Isophote direction in location p 

 

We will discuss each of these submodules in detail in the following sections. 

 

2.4.1. Patch Selection 

The purpose of patch selection is to select the optimal patch [22] to be filled from 

candidate patches along the fill front [28]. There are three steps in the selection process. 

Step 1: Hole contour marking 

As shown in Figure 8, in this step, the disparity map M is scanned from left to right, 

line by line. If there are hole points in the 8-neighborhood-pixels set of a non-hole point, 

then the hole point is labeled “edge pixel” (and it will be marked with “1”, otherwise it 

will be marked with “0”). Hence we get a hole contour map corresponding to M. 
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non-hole point hole point

destination image marked hole contour 

edge pixel

 

Figure 8. Illustration of Hole Contour Marking 

Step 2: Priority computation 

The priority P (p) of an edge pixel p can be calculated by 

( ) ( ) ( ( ) ( ))P p C p r s D p t E p       (2) 

Where C (p) is the confidence term which indicates the number of the background 

pixels in the patch φp; D (p) is the data term which gives special priority to the isophote 

direction; E (p) is the depth term; and r, s, t are coefficients (s >= r >= t). 

a). Confidence term C(p) 

The confidence term C (p) can be calculated by Eq. (3). Note that the foreground 

pixels are marked with 0, which ensures the propagation direction (from background 

pixels to foreground pixels) of texture and reflects the idea of background pixels being 

preferentially used for filling. 

( )

( ) , ( ) ( )
( )

q

p p

p

p

C q

C p D p
area

     


φ

n I
φ

，


 
(3) 

b). Data term D (p) 

Expression of data term is shown in Eq. (3). In order to decrease the false boundary, 

an improved Sobel operator is proposed, whose horizontal mask Sx and vertical mask Sy 

are defined as follows: 

0

0 0 0 0

0

x y

e e e f g

f f

g g e f g

      
   

  
   
      

S S
 

(4) 

where e, f, g are coefficients set to 1, 2, and 1, respectively if there are non-hole 

points under the mask. If there are hole points, the coefficients at the corresponding 

position are set to 0. 

c). Depth term 

The depth term is computed by 

max

max

( )
( ) ,

( )pq p

d D q
DE p

d area
 





φ

φ


 
(5) 

where dmax is the maximal depth value in the depth map. 

To ensure the texture propagates from background to foreground, the hole contour 

map (Figure 8) is scanned in accordance with the priorities shown in Figure 9. 
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(a)                                              (b) 

Figure 9. Illustration of Priority Level of the 8-Neighborhood-pixels 
Set. (a) Left View; (b) Right View 

In Figure 9, “0” indicates current edge pixel, “1” indicates the highest priority level, 

and “8” indicates the lowest priority level. As we know from step 1, the edge pixel in 

hole contour map is marked with “1”. The scanning is started from an edge pixel. It is 

considered to be the current edge pixel which is labeled with “0” priority level. The 

order of seeking the next edge pixel depends on the priority level. Take the left view as 

an example. First, we need to check the pixel with “1” priority level. If it is an edge 

pixel, then it is the pixel we are looking for; else, check other pixels based on their 

priority level until an edge pixel is found. Then, we calculate the priority of the found 

edge pixel using Eq. (2) and continue to search for the next edge pixel. 

Step 3: Patch to be filled selection 

After priority computation, the patch φp with the highest priority is selected to be 

filled. But there is a special case. If the priorities of all pixels equal 0, then the patch 

contains the pixel with maximum confidence is selected. 

 

2.4.2. Patch Matching 

The matching patch φq of patch φp can be found using Eq. (6). Depth information is 

introduced in this equation in order to find the best matching patch. 

arg(min( ( , )))
,

( , ) 3 ( , )

q p q

RGB p q D p q

d

d SSD SSD



  

φ φ φ

φ φ φ φ
 (6) 

Our method is similar to the patch matching method presented in Ref. [29] except that 

SSD (sum of absolute difference) is used instead of SAD. This is because there will be 

fewer patches with the same minimum value if SSD is applied. If there are multiple 

patches with the same minimum value, the nearest patch is chosen. Note that the search 

range is determined by the K-nearest neighbor method (K = 5).  

Note that the SSD of a candidate/matching patch φq is set to infinity when there 

are holes in patch φq or no background pixels in patch φq can be used to fill patch 

φp. Moreover, there may be artifacts at the edge of foreground objects due to the 

influence of foreground pixels, which can be seen in Figure 10. To reduce these 

artifacts, only background pixels of the patch φp are considered when calculating 

SSD. 
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Figure 10. Illustration of Artifacts at the Edge of Foreground Object 

2.4.3. Patch Filling 

 If a hole point in patch φp correspond to a background pixel at the same position in 

patch φq, then the background Pixel is used to fill the hole point; else the hole point is 

not filled. The confidence term of the filled point is updated by that of the central point 

of patch φp. In addition, the hole contour map is also updated. 

Repeat operations described in Sec. 2.4.1, Sec. 2.4.2, and Sec. 2.4.3 until all holes are 

filled, and finally we’ll get a destination image without holes. 

 

3. Evaluations and Discussions 

In this paper, “Ballet”, “Breakdancers” [19] and other six sequences are used for 

evaluations (subjective evaluation and objective evaluation). Subjective evaluation 

is mainly conducted by comparing the visual quality of the image filled by 

different algorithms. Meanwhile, objective evaluation focuses on contrasting the 

time complexity of these methods. In order to generate novel views, the 3D image 

warping equation in Ref. [12, 23] is applied in the experiment. In addition, large 

baseline is applied to produce large holes. The parameters n and r in 3D image 

warping equation are set to be different according to the resolution of the test 

sequence (Dzps = 0). The parameters for warping, the size of patches used in 

inpainting algorithm, and the widths of the biggest hole in the left view and right 

view (expressed in pixels) are described in detail in Table 2. 

Table 2. Parameter Settings for Experiment 

Test 

sequences 
Resolution 

Frame 

Number 
n r 

Size of 

patch 
Widths 

Ballet 768×1024 0-9 ±4 819.2 31×31 128, 128 

Breakdancers 768×1024 0-9 ±4 819.2 19×19 131, 128 

Flower 540×960 30-39 ±3 819.2 25×25 114, 92 

Road 540×960 0-9 ±3 819.2 39×39 124, 127 

Lawn 540×960 0-9 ±3 819.2 33×33 127, 126 

Angkorwat 352×576 0-9 ±3 819.2 29×29 64, 59 

Stair 352×576 0-9 ±3 409.6 35×35 73, 72 

Temple 352×576 0-9 ±3 409.6 35×35 52, 59 
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3.1. Subjective Evaluation 

 

3.1.1. Evaluation of Matching Error Correction Algorithm 

As we know, the accumulation of matching errors is a shortcoming in the 

performance of the classical inpainting algorithm. Figure 11 illustrates the results with 

and without matching error correction when the proposed method is carried out. 

 

 
                                                           (a) (b) 

 

 
                                                          (c)   (d) 

Figure 11. Comparison of Generated Views with and without Matching 
Error Correction. (a) Generated View Without Matching Error 

Correction; (b) Enlargement of Image (a); (c) Generated View with 
Matching Error Correction; (d) Enlargement of Image (c) 

From Figure 11 (b) and (d), we can see that after removing the matching errors, a 

more natural hole-filled image can be generated by the proposed method. Using the 

matching patch to fill holes depending on the information of the damaged areas is the 

main idea of inpainting. If there are matching errors at the edge of big holes, matching 

errors are more likely to be used to fill the big holes for many times, which leads to the 

accumulation of matching errors. So it is necessary to remove the matching errors before 

the implementation of the inpainting algorithm, and by this way we may get a perfect 

repaired image. 

Figure 12 shows more novel views generated from different sequences with matching 

error correction. 
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(a) (b) 

 

  
(c) (d) 

 

  
(e) (f) 

 

  
(g) (h) 

Figure 12. Destination Images after Matching Error Correction 

The test sequences from top to down in Figure 12 are “Ballet”, “Breakdancers”, 

“Lawn”, and “Angkorwat”. Images from left to right are left views and right views, 

respectively. 
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3.1.2. Comparison of Different Algorithms 

Figure 13 shows the performance comparison of disparity-map-based approach [9], 

Gautier’s inpainting algorithm, and the proposed method. The main differences of 

images generated by these three algorithms are marked with red rectangles in 

Figure 13. Background textures of the test sequences are complex. 

 

 
(a) (d) 

 

 
(b) (e) 

 

 
(c) (f) 

Figure 13. Performance Comparison of the Three Algorithms for 
Complex Background Textures. (a) Disparity-map-based Approach 

(Left View); (b) Gautier’s Inpainting Algorithm (Left View); (c) 
Proposed Method (Left View); (d) Disparity-map-based Approach 
(Right View); (e) Gautier’s Inpainting Algorithm (Right View); (f) 

Proposed Method (Right View) 

There is an obvious “fracture” in Figure 13 (a) and (d). These views are generated by 

disparity-map-based approach, which fills the holes with pixels simply copied from the 

reference image. Fractures might appear when the hole is big due to the algorithms 

regardless of texture.  

As for Gautier’s Inpainting Algorithm, the directions of texture propagation specified 

in the algorithm may not propagate along with the texture direction, hence artifacts 

produced, as shown in A2 and D2 in Figure 13. Furthermore, there are artifacts at the 

edge of foreground objects, which can be found in B2 and C2 in Figure 13 (b) and (c), 

respectively. 

Novel views generated by the proposed method are shown in Figure 13 (c) and (f). 

We can see that better image quality of views can be achieved from these images.  
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      (a) (b) (c) 

 
      (d) (e) (f) 

 
      (g) (h) (i) 

 
      (j) (k) (l) 

 
      (m) (n) (o) 

 
      (p) (q) (r) 

Figure 14. Performance Comparison In The Case Of Simple or Flat 
Textures 
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Figure 14 shows performance comparison of these three algorithms in the case of 

simple or flat textures. Novel views generated by disparity-map-based approach, 

Gautier’s inpainting algorithm, and the proposed method are listed from left to right. (a), 

(b), and (c) are novel left views generated from “Breakdancers” sequence; (d), (e), and 

(f) are novel right views generated from “Breakdancers” sequence; (g), (h), and (i) are 

novel left views generated from “Lawn” sequence; (j), (k), and (l) are novel right views 

generated from “Lawn” sequence; (m), (n), and (o) are novel left views generated from 

“Angkorwat” sequence; (p), (q), and (r) are novel right views generated from 

“Angkorwat” sequence. 

As can be seen from Figure 14, Obvious artifacts appear in the views generated with 

disparity-map-based approach. Gautier’s inpainting algorithm cannot remove all the 

matching errors, which can be seen in Figure 14 (b), and its performance degrades when 

filling the holes at the border of the destination image. Moreover, there are some 

artifacts at the edge of foreground objects. In comparison with these two algorithms, the 

proposed method can synthesize more natural images, though there may still be some 

undesired artifacts left in some cases. 

 

3.2. Objective Evaluation 

In a DIBR system with shift-senor camera setup, there are only horizontal parallaxes 

contained in the generated stereo pair. Therefore, it is not appropriate to evaluate the 

performance of these three methods by objective criteria such as PSNR and SSIM. 

Hence, objective evaluations are performed by comparing the time complexity. The 

evaluation results of time complexity of disparity-map-based approach, Gautier’s 

inpainting algorithm and the proposed method are shown in Figure 15. 
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Gautier's inpainting 947.1 905.41 614.54 917.45 609.59 341.3 840.05 764.67

The proposed method 1746.97 1368.14 1138.2 1391.32 571.46 328.46 668.74 1271.47
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(a) Average Running Time when Generating Left Views 
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Disparity-map-based method 19.13 20.73 10.49 9 9.98 3.64 2.15 3.52

Gautier's inpainting 1229.54 1104.05 637.82 1068.83 457.44 251.67 645.49 1239

The proposed method 1756.72 1375.24 934.37 2064.94 543.26 235.84 674.47 1156.81

Average running time (s)

Disparity-map-based method Gautier's inpainting The proposed method  
(b) Average Running Time when Generating Right Views 

Figure 15. Comparison of Time Complexity 

Note that the “average running time” in Figure 15 indicates the average time of 

synthesizing one destination image, and the first 10 frames of each sequence are used for 

evaluation. As can be seen from Figure 15, the disparity-map-based approach has the 

lowest time complexity and Gautier’s inpainting algorithm performs better than the 

proposed method. This is because the proposed method needs to distinguish foreground 

from background and its priority computation is more complex than that of Gautier’s.  

However, it is exceptional when novel views are generated from “Angkorwat” 

sequence, as shown in Figure 15. In this case, most holes in the destination image are 

small and they are filled by the disparity-map-based approach rather than the time-

consuming inpainting algorithm in our proposed method. As a result, the average 

running time of our proposed method is less than Gautier’s inpainting algorithm. We can 

conclude that the time complexity of our method will be reduced in the case of filling 

the small holes. 

 

4. Conclusions 

The disparity-map-based approach proposed by Ref. [9] can be used to fill small 

holes, and the big holes with no background pixels on both sides of them (hole Type D) 

with quite good image quality. But for other types of big hole (hole Type A, B, C, E), its 

performance degrades. In contrast to the disparity-map-based approach, the inpainting 

algorithm can fill all kinds of holes. However, it is time-consuming and easy to produce 

artifacts. In this paper, a novel hole-filling method combining the disparity-map-based 

approach and inpainting algorithm is presented. The proposed method can effectively 

avoid “fracture” phenomena and other artifacts at the edge of foreground objects in 

comparison with the disparity-map-based approach and Gautier’s inpainting algorithm. 

Besides, it can also ensure the “authenticity” of non-hole area of destination image 

without depth map smoothing. Experimental results show that the proposed method can 

synthesize more natural images in the case of long baseline in comparison with the 

disparity-map-based approach and Gautier’s inpainting algorithm regardless of the 

average running time. 
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