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Abstract 

Particle Swarm Optimization (PSO) is one of the most powerful algorithms for 

optimization. Traditional PSO algorithm tends to suffer from slow convergence and 

trapping into local optimum. In this paper, an improved PSO algorithm is proposed by 

combining dynamic fractional order technology and the wavelet mutation strategy. In the 

proposed method, a dynamic fractional order velocity update equation is designed to 

control the convergence rate. Furthermore, the wavelet mutation mechanism is employed 

to improve the swarm diversity and escape from the local optimums. The experimental 

results show that the proposed algorithm can provide fast convergence speed and high 

convergence precision based on the ten classic test functions. 

 

Keywords: Dynamic fractional order; Wavelet mutation; Particle swarm optimization; 
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1. Introduction 

Particle Swarm Optimization (PSO) which was developed by Eberhart and Kennedy is a 

population-based stochastic optimization algorithm [1]. It mimics the group behavior as 

fish schooling and birds flocking. The algorithm is initialized with a population of 

particles, where each particle betokens a plausible solution in a D-dimensional space. Then 

each particle updates its new flying velocity according to its own best experience and 

entire swarm’s best experience. Subsequently, the particle is updated with its new position. 

Assume a D-dimensional optimization problem f and a swarm consisting of n particles. 

The current position of the ith particle is a vector xi, and the velocity of this particle is also 

a vector vi. The best position encountered by the ith particle is denoted as Pi and Pg is the 

best position found by the entire population group. The swarm is manipulated in some 

form resembling the following equations: 
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where i = 1, 2, … , n is the particle’s index and t indicates the iteration number. c1 and c2 

are positive constants, which are referred to as cognitive and social parameters, 

respectively. And r1 and r2 is random numbers that is uniformly distributed within the 

interval [0, 1]. 

PSO has become one of the most popular optimization techniques and has been 

successfully applied to the many areas such as the social model, digital image processing, 

and pattern recognition and so on. However, like other population-based optimization 

techniques, the original PSO has the shortcomings as slow convergence and getting into a 
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local optimum easily. Therefore, how to accelerate the convergence speed and how to 

avoid the local optimal solution are two important issues in the PSO research [2]. 

In order to overcome the problems of PSO, a number of PSO variants have been 

developed. Some schemes suggested adjusting parameters such as the constriction factor, 

acceleration coefficient and inertia weight [3-5]. The inertia weight which is the most 

widely employed in the PSO variants is introduced to influence convergence speed. And as 

explored in [5], the inertia weight and the constriction factor are mathematically equivalent 

in some cases. The work indicates that a relatively large inertia weight is better for global 

exploration, while a small inertia weight enhances the ability of local exploitation. 

Subsequently, in order to better maintain the balance between local search and global 

search, linearly decreasing methods [6] and fuzzy methods [7] have also been developed to 

adjust the inertia weight over the course of search process. Generally, adjusting parameters 

can improve the performance of PSO, but the particles are still easily to trap into local 

optima, the problem of premature convergence remains. 

Topological structures have also been studied widely such as ring, pyramid, ortho-cyclic 

[8], and so on. Kennedy [9] indicated that a small neighborhood might perform better on 

complex or multimodal problems, while a large neighborhood is more conducive to simple 

or unimodal optimization problems. Further, in order to improve the robustness of the PSO, 

dynamically changing neighborhood structures have been proposed [10]. In addition, 

Mendes et al. [11] introduced a fully informed particle swarm which used five topologies, 

where the particles make use of the information from all the neighbors around it. This 

method is proven to be very effective in solving single objective global optimization 

problems. However, it is not suitable for multimodal optimization problems because of the 

topology-based neighborhood selection method. B. Y. Qu et al. [12] proposed a distance-

based locally informed PSO for multimodal optimization, which makes use of the 

neighborhood information to realize niching behavior. In this method, the neighborhoods 

are estimated in terms of Euclidean distance so as to form different stable niches that can 

converge to different global peaks. Usually, the PSO variants with different neighborhood 

structures have an enhanced ability to prevent premature convergence. However, but the 

disadvantage is that it is difficult to select the suitable topological structures and the 

neighborhood size in practice. How to choose the neighbors determines how diverse the 

influence will be and how efficient the algorithm will be.  

Another area of focus is to explore the learning strategies for particles. In CLPSO [13], 

the proposed comprehensive learning strategy encourages each particle to learn from 

different particles on different dimensions. This learning strategy can keep the diversity of 

the swarm and eliminate premature convergence. In OLPSO [14], an orthogonal learning 

strategy is constructed via orthogonal experimental design to avoid the oscillation 

phenomenon in PSO and guides the particles to fly in better directions. Wang et al. [15] 

investigated integrating a generalized opposition-based learning (GOBL) strategy, where 

GOBL is employed to escape from local optimum. Inspired by the scheme, multiple good 

examples can guide a crowd towards making progress. ELPSO uses an example set of 

multiple global best particles to update the positions of the particles in order to maintain 

better diversity. These learning strategies improve the search performance, but it may 

increase the number of the object function evaluation. 

Integration of other evolutionary algorithms and optimization techniques with PSO is 

also a hot topic. Angeline [16] has first introduced into PSO a selection operator that used 

in a genetic algorithm. Apart from selection, crossover, and mutation operations that have 

been adopted from genetic algorithm, more other operations have also been employed to 

overcome the drawback of trapping in the local optima. Ahmed et al. [17] proposed a 

hybrid PSO (HPSOM), in which a constant mutating space is used in mutations. However, 

the mutating space is kept unchanged all the time throughout the search. In search of a 

better model of mutation operations using the PSO algorithm, the HPSOWM which was 

formulated by [18], adopts a mutation with a dynamic mutating space by incorporating a 
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wavelet function. The PSO’s mutating space is dynamically varying along the search based 

on the properties of the wavelet function. The HPSOWM perform more efficiently than the 

PSO with constriction and inertia weight factors and other hybrid PSOs due to the wavelet 

mutation strategy [18]. 

Recently, Pires et al. [19] presented a novel method (FPSO) for controlling the 

convergence rate of PSO by using fractional calculus concepts. This approach was tested 

for several well-known functions and the results showed that it contributes to improve the 

convergence rate of PSO.  The schemes [20-22] successfully applied the method to image 

segmentation, and compared it with other modified PSO algorithm, the experiment results 

showed that the method converged very well. However, the algorithm converged fast at the 

beginning but converged slow in the late, and the accuracy of the search solution is not 

high. 

Aiming to maintain the fast converge rate of the fractional order PSO while obtain 

higher search quality, this paper proposes a dynamic fractional-order PSO combining with 

the wavelet mutation based on the work of the paper [19, 23]. The remainder of this paper 

is organized as follows. Section II after briefly introduces the PSO with the fractional order 

velocity, the proposed improved PSO algorithm with dynamic fractional order velocity 

(IFWPSO) is discussed. Section III presents in detail the results of numerical experiments 

on some well-known test functions. Finally, Section IV concludes with some discussions. 
 

2. Proposed Algorithm 
 

2.1. PSO with Fractional Order Velocity 

The fractional calculus is a generalization of the conventional integration and 

differentiation to include non-integer values in the powers of the derivatives or integrals. 

Many natural phenomena can be more accurately modeled by fractional differ-integrals. It 

has attracted the attention of many researchers, being applied in various scientific fields 

such as engineering, computational mathematics, fluid mechanics. The discrete time 

implementation of the Grűnwald-Letnikov definition of fractional derivative with 

fractional coefficient of is defined as [24]: 
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where [ 0 ,1]  , Г (·) is the gamma function. T is the sampling period and r is the 

truncation order. 

An important property revealed by the equation (3) is that an integer-order derivative 

just implies a finite series while the fractional-order derivative needs an infinite number of 

terms. Therefore, integer derivatives are local operators, while fractional derivatives have a 

memory of all the past events. However, the influence of past events decreases over time. 

These characteristics make fractional calculus well suited to describe the dynamic 

phenomena of particle’s trajectory fully. 

E.J. Solteiro Pires [19] first applied the Grűnwald-Letnikov definition of fractional 

derivative to the PSO, considering only the first r=4 terms of differential derivative given 

by (3), and the velocity update equation with fractional derivative was given by the 

equation: 
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2.2. Dynamic Fractional Order 

In this section, the dynamic fractional order strategy is introduced to obtain better 

convergence rate. In PSO with fractional order velocity update rule (4), the value of   has 

a vital role in controlling the convergence rate of the PSO algorithm. The results of [23] 

showed that, when the value of   fixed, the algorithm converged fast at the beginning but 

converged slow in the late or even fell into stagnation. When   varied linearly, the 

performance of the algorithm was similar to the algorithm using inertia weight. 

To examine the impact of the parameter   on the anytime behavior of PSO with 

fractional velocity, several tests were done. Those with smaller values of   are initially 

better, but easily lead to search stagnation. The smaller values more probability result in 

worse final solution quality. However, a larger value of   are initially worse, but produces 

much better results towards the end of the run. So, if we set the value of a smaller value in 

the early running period and then varied the value of   to a larger value, the performance 

of the algorithm would be improved. To consider this possibility, a function is developed 

to compute the value of based on the sigmoid function, which is defined by: 
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This function is an S-type function that can be seen in Figure 1 (a). It will be improved 

to meet the needs. The value of    is assigned as follows: 
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where iter represents the current iteration number, max_iter is the maximum number of 

iterations. λ, β and θ are parameters. λ is the vertical scaling factor. The original sigmoid 

function can be vertical scaling transformation, when 0 < λ <1, it represents the original 

sigmoid function compressed in the vertical direction. β is the horizontal scaling factor. 

The original sigmoid function can be horizontal scaling transformation. The greater the 

value of β takes, the smaller the original sigmoid function can be horizontally stretched. θ 

is the translation factor. The value of these parameters can be set according to specific 

cases. We ensure the value of    in the range (0, 0.9]. For example, when λ=0.9, β=35, 

θ=5, max_iter=300, the value of    varies between 0.0062 and 0.9. The graphics of    

can be seen in Figure 1 (b). 

 

2.3. Wavelet Mutation  

The PSO algorithm with fractional order velocity can converge faster compared with the 

PSO, but it still easily falls into local optimal value. To address this problem, the mutation 

operation can be imposed to increasing the probability of escape from local optima. The 

wavelet mutation strategy that employed by the PSO was first proposed in [18]. With 

respect to the Gaussian and Cauchy mutation which were often used by PSO, the wavelet 

mutation is easier to carry out effective search space search and can effectively balance the 

global search and local search, since the Morlet wavelet generate positive and negative 

numbers are the same,  and most of the 
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Figure 1. The Sigmoid Function (A) and the Function (B) 

energy is concentrated in a smaller range [18]. It is defined by 
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where ø∈ [-2.5s, 2.5s], it can be concluded that σ∈ [-1, 1]. s is a parameter and can be 

defined by 
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where ξ is the shape parameter of the monotonic increasing function, and g is the upper 

limit of the parameter s. iter represents the current iteration number, max_iter is the 

maximum number of iterations. According to equation (8), it can be concluded that s∈ [1, 

g]. Assume that the mutation probability of particles is p∈ [0, 1], xmaxi is the upper limit of 

the search space and xmini is the lower limit of the search space, the equation can be define 

as 
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As can be seen from (9), after performing mutation, when σ closes to 1, the d-

dimensional velocity of the ith particle will be close to the maximum value of d-

dimensional velocity. When σ closes to -1, the d-dimensional velocity of the ith particle 

will be close to the minimum d-dimensional velocity. The mutation probability p is a 
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random number between [0, 1]. When the dimension of the problem is relatively low, the 

value of p is usually taken between the values [0.8 0.5]. When the dimension of the 

problem is relatively high, the value of p is usually taken [0.2 0.1]. If the value of p is too 

large, the number of mutation would increase, which would destroy the current swarm 

search information and result in poor results and also consume a large amount of running 

time [18]. 

 

2.4. Algorithm Procedure and Analysis 

Figure 2 shows the flowchart of the proposed algorithm IFWPSO and the steps involved 

are given as follows.  

Step 1 Initialization: The initial positions of all particles are generated randomly within 

the D-dimensional search space with velocities initialized to 0. 

Step 2 Terminal Condition Check: If the terminal condition is needed, the algorithm 

terminates. Otherwise, go to Step 3 for a new round of iteration. The terminal condition 

can be the predefined maximum evaluation number of iterations or reaches the specified 

precision. 

Step 3 velocity Updating: If the current iteration number is less than 5, every particle 

follows the velocity update rule (1) and save the history velocity. If the current iteration 

number is greater than or equal to 5, every particle follows the velocity update rule (4) and 

updates the history velocity. 

Step 4 Position Updating: Every particle follows the position update rule (2) to adjust its 

position. The position needs to be clamped by the search space. 

Step 5 Wavelet Mutation Operation: The mutation operation is used to mutate the 

elements of particles. The details of the operation are as follows. Generates a random 

number z ∈  [0, 1]. If z is less than a predefined parameter p ∈  [0, 1], then the wavelet 

mutation operation will be performed according to the rule (7)-(9). For each particle, a 

random number k will be generated between [0, D], the kth-dimension of the particle is 

selected for the mutation. 

Step 6 Evaluating: Evaluate the new population. Update the personal best position and 

the group best position. Go to Step 2. 

The proposed IFWPSO is actually using the dynamic fractional order velocity equation 

to update the particle velocity and combined with wavelet mutation in the basic framework 

of original PSO algorithm. IFWPSO contains three main parts, including initialization, 

particle velocity and position update and wavelet mutation operation. The time complexity 

of the former two is the same as the PSO, that is O (n•D), and the last one is O (D). The 

dynamic fractional order strategy and the wavelet mutation strategy will not increase the 

time complexity of the PSO algorithm. So, the time complexity of the IFWPSO is O (n•D), 

which is a similar computational complexity with the PSO. However, the memory 

complexity of the IFWPSO is larger than the PSO since the dynamic fractional order 

strategy needs to track the last four steps of each particle’s velocity. 
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Figure 2. Flowchart of IFWPSO 

3. Experimental Results 

To test the performance of the IFWPSO, computational experiments are designed and 

implemented. The computational procedures described above have been implemented in 

MATLAB environment on the hardware environment is an Intel Core 3.20 GHz CPU, 

4GB RAM computer. This section presents and duly discusses the experimental results of 

our comparative study. The proposed algorithm are tested on ten test functions, including 

the five functions that directly taken from literature [19] and another five widely used test 

functions. They are listed in Table 1. 
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Table 1. Test Functions 

 
Function 

name 
Test function Dimension 

Domain 

range 
Minimum 

f1 Bohachevsky 2 2

1 2 1 2
2 0 .3 co s(3 ) 0 .4 co s(4 ) 0 .7x x x x      2 [-50, 50] 0.0 

f2 Colville 

2 2 2 2 2

2 1 1 4 3

2 2 2

3 2 4 2 4

1 0 0 ( ) (1 ) 9 0 ( )

(1 ) 1 0 .1(( 1) ( 1) ) 1 9 .8 ( 1)( 1)

x x x x x

x x x x x

    

        

 4 [-10, 10] 0.0 

f3 Drop wave 
2 2

1 2

2 2

1 2

1 co s(1 2 )

0 .5 ( ) 2

x x

x x

 


 
 2 [-10, 10] -1.0 

f4 Easom 2 2

1 2 1 2
co s( ) co s( ) ex p ( ( ) ( ) )x x x x       2 [-100, 100] -1.0 

f5 Rastrigin 
3 0

2

1

[ 1 0 c o s ( 2 ) 1 0 ]
i i

i

x x



   30 [-5.12, 5.12] 0.0 

f6 Sphere 
3 0

2

1

i

i

x



  30 [-100, 100] 0.0 

f7 Rosenbrock 
3 0

2 2 2

1

1

[1 0 0 ( ) ( 1) ]
i i i

i

x x x




    30 [-2, 2] 0.0 

f8 Ackley 
3 0 3 0

2

1 1

1 1
2 0 ex p ( 0 .2 ) ex p ( co s ( 2 ) ) 2 0

3 0 3 0
i i

i i

x x e

 

        30 [-32, 32] 0.0 

f9 Griewank 
3 03 0

2

1 1

1
c o s 1

4 0 0 0

i

i

i i

x
x

i 

 
  

 
   30 [-600, 600] 0.0 

f10 Schwefel 
1 0

1

( s in ( ))
i i

i

x x



  10 [-500, 500] -4189.8 

Table 2. Success Rates For Test Functions F1- F10 

 PSO FPSO IFPSO IFWPSO 

 Iteration Success rate Iteration Success rate Iteration Success rate Iteration Success rate 

f1 10000 0 106 100 123 100 16 100 

f2 10000 0 306 100 1536 100 793 100 

f3 7724 35 73 100 95 100 63 100 

f4 4284 75 662 100 676 100 1320 100 

f5 10000 0 7168 30 360 100 48 100 

f6 10000 0 3848 65 2234 100 669 100 

f7 10000 0 3708 65 251 100 168 100 

f8 10000 0 8146 20 801 100 647 100 

f9 10000 0 1978 85 2665 100 1224 95 

f10 10000 0 10000 0 9524 5 1906 85 
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3.1. Impact of Dynamic Fractional Order Velocity on the Convergence of the PSO 

With the purpose of studying the impact of dynamic fractional order velocity on the 

convergence of the PSO, some experiments have been conducted. Here using two 

benchmark functions: Bohachevsky function and Drop wave function. These two functions 

are shown in Table as f1 and f3, respectively. For each comparison algorithm, the number of 

the population sets to 30 and the maximum velocity of the particle sets to be half of the 

search space. In PSO, parameters c1 and c2 both can be set to 1.193, inertia weight ω can be 

set to ω=0.721. In FPSO, the value of parameter α is the same with the literature [12]. In 

the PSO with the dynamic fractional order velocity (IFPSO), λ=0.9, β=35, θ=5. The 

maximum number of iterations can be set to 100 for all the algorithms. The results 

concerning the search behavior of the algorithms on these two functions are illustrated 

Figure 3. The Figure is plotted based on the mean values of 20 independent runs of each 

algorithm that can represent the search behavior of the algorithms in most cases. It can be 

seen that the FPSO converges faster than the PSO and the IFPSO converges fastest. 
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Figure 3. Convergence Curve of Three PSO Algorithms 

3.2. Comparison and Analysis 

To test the performance of the proposed algorithm (IFWPSO), it is compared with PSO, 

FPSO [19] and IFPSO on 10 benchmark functions. The parameter settings in this section 

are as follows. The number of the population sets to 30 and the maximum velocity of the 
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particle sets to be half of the search space. In our simulations, the values of the main 

parameters are c1=c2=1.193, ω=0.721, λ=0.9, β=35, θ=5, ξ=5.0, and g=10000 
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Figure 4. Convergence Traces of the Algorithms for Three Representative 
Test Functions. (A) F3. (B) F5. (C) F6

The test functions can be divided into two categories. The first one is the category of the 

low dimensional function, f1- f4 belong to this type. The second one is the category of high 

dimensional functions, f5 - f10 belong to this type.  Parameter p has been set to 0.5 on the 

first category test functions and p=0.1 on the second category test functions. Furthermore, 

all the algorithms use the same maximum number of function evaluations 10000 in each 

run for each test function and each algorithm is tested 20 times independently for every 

function and the mean results are used in the comparison. 

The number of iterations needed to successfully reach the stopping criterion and the 

success rates for all the algorithms on test functions f1- f10 are recorded and presented in 

Table 2. The best results are marked in boldface. 



International Journal of Hybrid Information Technology 

Vol. 9, No. 5 (2016) 

 

 

Copyright © 2016 SERSC  141 

Table 3. Solutions Accuracy Comparisons 

 FPSO HPSOWM IFWPSO 

 Mean Best Deviation Mean Best Deviation Mean Best Deviation 

f1 1.67e-10 3.33e-16 4.04e-10 6.27e-13 0 2.43e-12 0 0 0 

f2 2.18e-01 6.99e-04 2.92e-01 2.93e-01 2.79e-04 7.50e-01 4.58e-02 1.50e-03 4.46e-02 

f3 1.05e-09 7.70e-14 3.07e-09 6.96e-14 0 1.97e-13 5.00e-05 0 1.90e-04 

f4 7.50e-01 5.45e-13 4.44e-01 1.63e-13 0 5.19e-13 5.50e-01 0 5.10e-01 

f5 1.30e+02 5.67e+01 3.64e+01 3.63e+01 2.09e+01 9.82e+00 1.65e+01 7.97e+00 5.64e+00 

f6 4.00e+03 2.06e-07 5.03e+03 1.75e-07 2.79e-08 1.80e-07 9.89e-08 1.04e-09 1.76e-07 

f7 2.33e+02 3.63e+00 2.96e+02 3.02e+01 2.06e+01 1.67e+01 2.82e+01 6.67e+00 2.16e+01 

f8 1.08e+01 9.34e-01 8.60e+00 8.77e-05 4.69e-05 3.47e-05 1.96e+00 2.77e-05 6.03e+00 

f9 4.06e+01 2.90e-07 4.60e+01 2.32e-02 1.59e-07 2.75e-02 2.65e-02 6.15e-09 2.46e-02 

f10 7.75e+01 4.59e+01 1.78e+01 7.12e+01 5.74e+01 1.37e+01 5.11e+01 1.15e+01 2.09e+01 

 

The results show that IFWPSO converges very fast on most of the functions and it 

achieves a much higher success rate than other PSO algorithms on most of these 10 test 

functions. The better performance is due to the better fine search generated by the dynamic 

fractional order particle velocity and wavelet mutation. Especially for high dimensional 

function, the number of iterations that IFWPSO needed is much less than that of FPSO. It 

indicates that FPSO easily falls into local optimal solution in solving complex high 

dimensional optimization functions. However, IFWPSO can effectively avoid getting into 

local optimums because of applying wavelet mutation. The addition of wavelet mutation 

strategy in dynamic fractional order particle swarm algorithm can effectively escape from 

local optima. Figure 4 gives the convergence traces of the three algorithms over the 

iterations, from top to bottom are the curves for three representative functions f2, f5 and f6. 

In order to compare the solution quality, the solutions obtained by IFWPSO are 

compared with the ones obtained by FPSO [19] and HPSOWM [18]. According to the 

complexity of the test functions, the maximum number of iterations is set to 300 for the 

first category test functions and the maximum number of iterations is set to 1000 for the 

second one. Table 3 compares the mean values, the best values and the standard deviations 

of the solutions found. The best results are marked in boldface. 

It can be observed that IFWPSO achieve the best solutions on most of the test functions. 

Experimental results and comparisons verify that the dynamic fractional order velocity 

combined with wavelet mutation indeed helps the IFWPSO perform better than the 

traditional PSO and some recent PSO variants on most of the test functions in terms of 

solution accuracy and convergence speed. 

 

4. Conclusions 

In this paper, a dynamic fractional PSO algorithm combining wavelet mutation 

(IFWPSO) is presented. It uses a dynamic fractional particle velocity update equations to 

update the particle velocity which can enhance the convergence rate of the algorithm. And 

it employs the wavelet mutation strategy which can effectively prevent the algorithm from 

falling into a local optimum. It can be seen from the experimental results that the proposed 

algorithm can perform better in convergence speed and solution quality, especially for high 

dimensional optimization functions. 
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