
International Journal of Hybrid Information Technology

Vol. 9, No. 5 (2016), pp. 131-144

http://dx.doi.org/10.14257/ijhit.2016.9.5.11

ISSN: 1738-9968 IJHIT

Copyright © 2016 SERSC

Improved Particle Swarm Optimization with Dynamic Fractional

Order Velocity and Wavelet Mutation

Lingyun Zhou
1, 2

 and Lixin Ding
1, *

1
State Key Laboratory of Software Engineering, Wuhan University, Wuhan, China

2
College of Computer Science, South-Central University for Nationalities, Wuhan,

Hubei 430074, China

zhouly@mail.scuec.edu.cn
1
, lxding@whu.edu.cn

*

Abstract

Particle Swarm Optimization (PSO) is one of the most powerful algorithms for

optimization. Traditional PSO algorithm tends to suffer from slow convergence and

trapping into local optimum. In this paper, an improved PSO algorithm is proposed by

combining dynamic fractional order technology and the wavelet mutation strategy. In the

proposed method, a dynamic fractional order velocity update equation is designed to

control the convergence rate. Furthermore, the wavelet mutation mechanism is employed

to improve the swarm diversity and escape from the local optimums. The experimental

results show that the proposed algorithm can provide fast convergence speed and high

convergence precision based on the ten classic test functions.

Keywords: Dynamic fractional order; Wavelet mutation; Particle swarm optimization;

Convergence rate

1. Introduction

Particle Swarm Optimization (PSO) which was developed by Eberhart and Kennedy is a

population-based stochastic optimization algorithm [1]. It mimics the group behavior as

fish schooling and birds flocking. The algorithm is initialized with a population of

particles, where each particle betokens a plausible solution in a D-dimensional space. Then

each particle updates its new flying velocity according to its own best experience and

entire swarm’s best experience. Subsequently, the particle is updated with its new position.

Assume a D-dimensional optimization problem f and a swarm consisting of n particles.

The current position of the ith particle is a vector xi, and the velocity of this particle is also

a vector vi. The best position encountered by the ith particle is denoted as Pi and Pg is the

best position found by the entire population group. The swarm is manipulated in some

form resembling the following equations:

1 1

2 2

 = r (t 1) (t 1))

r (P

(t) (t 1) (P

(t 1))(t 1)

i i i

g

i

i

x

c x

c

 

  

   

 





(2)(t) (t 1) (t)
i i i

x x v    

where i = 1, 2, … , n is the particle’s index and t indicates the iteration number. c1 and c2

are positive constants, which are referred to as cognitive and social parameters,

respectively. And r1 and r2 is random numbers that is uniformly distributed within the

interval [0, 1].

PSO has become one of the most popular optimization techniques and has been

successfully applied to the many areas such as the social model, digital image processing,

and pattern recognition and so on. However, like other population-based optimization

techniques, the original PSO has the shortcomings as slow convergence and getting into a

International Journal of Hybrid Information Technology

Vol. 9, No. 5 (2016)

132 Copyright © 2016 SERSC

local optimum easily. Therefore, how to accelerate the convergence speed and how to

avoid the local optimal solution are two important issues in the PSO research [2].

In order to overcome the problems of PSO, a number of PSO variants have been

developed. Some schemes suggested adjusting parameters such as the constriction factor,

acceleration coefficient and inertia weight [3-5]. The inertia weight which is the most

widely employed in the PSO variants is introduced to influence convergence speed. And as

explored in [5], the inertia weight and the constriction factor are mathematically equivalent

in some cases. The work indicates that a relatively large inertia weight is better for global

exploration, while a small inertia weight enhances the ability of local exploitation.

Subsequently, in order to better maintain the balance between local search and global

search, linearly decreasing methods [6] and fuzzy methods [7] have also been developed to

adjust the inertia weight over the course of search process. Generally, adjusting parameters

can improve the performance of PSO, but the particles are still easily to trap into local

optima, the problem of premature convergence remains.

Topological structures have also been studied widely such as ring, pyramid, ortho-cyclic

[8], and so on. Kennedy [9] indicated that a small neighborhood might perform better on

complex or multimodal problems, while a large neighborhood is more conducive to simple

or unimodal optimization problems. Further, in order to improve the robustness of the PSO,

dynamically changing neighborhood structures have been proposed [10]. In addition,

Mendes et al. [11] introduced a fully informed particle swarm which used five topologies,

where the particles make use of the information from all the neighbors around it. This

method is proven to be very effective in solving single objective global optimization

problems. However, it is not suitable for multimodal optimization problems because of the

topology-based neighborhood selection method. B. Y. Qu et al. [12] proposed a distance-

based locally informed PSO for multimodal optimization, which makes use of the

neighborhood information to realize niching behavior. In this method, the neighborhoods

are estimated in terms of Euclidean distance so as to form different stable niches that can

converge to different global peaks. Usually, the PSO variants with different neighborhood

structures have an enhanced ability to prevent premature convergence. However, but the

disadvantage is that it is difficult to select the suitable topological structures and the

neighborhood size in practice. How to choose the neighbors determines how diverse the

influence will be and how efficient the algorithm will be.

Another area of focus is to explore the learning strategies for particles. In CLPSO [13],

the proposed comprehensive learning strategy encourages each particle to learn from

different particles on different dimensions. This learning strategy can keep the diversity of

the swarm and eliminate premature convergence. In OLPSO [14], an orthogonal learning

strategy is constructed via orthogonal experimental design to avoid the oscillation

phenomenon in PSO and guides the particles to fly in better directions. Wang et al. [15]

investigated integrating a generalized opposition-based learning (GOBL) strategy, where

GOBL is employed to escape from local optimum. Inspired by the scheme, multiple good

examples can guide a crowd towards making progress. ELPSO uses an example set of

multiple global best particles to update the positions of the particles in order to maintain

better diversity. These learning strategies improve the search performance, but it may

increase the number of the object function evaluation.

Integration of other evolutionary algorithms and optimization techniques with PSO is

also a hot topic. Angeline [16] has first introduced into PSO a selection operator that used

in a genetic algorithm. Apart from selection, crossover, and mutation operations that have

been adopted from genetic algorithm, more other operations have also been employed to

overcome the drawback of trapping in the local optima. Ahmed et al. [17] proposed a

hybrid PSO (HPSOM), in which a constant mutating space is used in mutations. However,

the mutating space is kept unchanged all the time throughout the search. In search of a

better model of mutation operations using the PSO algorithm, the HPSOWM which was

formulated by [18], adopts a mutation with a dynamic mutating space by incorporating a

International Journal of Hybrid Information Technology

Vol. 9, No. 5 (2016)

Copyright © 2016 SERSC 133

wavelet function. The PSO’s mutating space is dynamically varying along the search based

on the properties of the wavelet function. The HPSOWM perform more efficiently than the

PSO with constriction and inertia weight factors and other hybrid PSOs due to the wavelet

mutation strategy [18].

Recently, Pires et al. [19] presented a novel method (FPSO) for controlling the

convergence rate of PSO by using fractional calculus concepts. This approach was tested

for several well-known functions and the results showed that it contributes to improve the

convergence rate of PSO. The schemes [20-22] successfully applied the method to image

segmentation, and compared it with other modified PSO algorithm, the experiment results

showed that the method converged very well. However, the algorithm converged fast at the

beginning but converged slow in the late, and the accuracy of the search solution is not

high.

Aiming to maintain the fast converge rate of the fractional order PSO while obtain

higher search quality, this paper proposes a dynamic fractional-order PSO combining with

the wavelet mutation based on the work of the paper [19, 23]. The remainder of this paper

is organized as follows. Section II after briefly introduces the PSO with the fractional order

velocity, the proposed improved PSO algorithm with dynamic fractional order velocity

(IFWPSO) is discussed. Section III presents in detail the results of numerical experiments

on some well-known test functions. Finally, Section IV concludes with some discussions.

2. Proposed Algorithm

2.1. PSO with Fractional Order Velocity

The fractional calculus is a generalization of the conventional integration and

differentiation to include non-integer values in the powers of the derivatives or integrals.

Many natural phenomena can be more accurately modeled by fractional differ-integrals. It

has attracted the attention of many researchers, being applied in various scientific fields

such as engineering, computational mathematics, fluid mechanics. The discrete time

implementation of the Grűnwald-Letnikov definition of fractional derivative with

fractional coefficient of is defined as [24]:

k

0

1 (1) (1) x (t k T)
[x (t)]

(k 1) (k 1)

r

k

D
T









 
   


    



where [0 ,1]  , Г (·) is the gamma function. T is the sampling period and r is the

truncation order.

An important property revealed by the equation (3) is that an integer-order derivative

just implies a finite series while the fractional-order derivative needs an infinite number of

terms. Therefore, integer derivatives are local operators, while fractional derivatives have a

memory of all the past events. However, the influence of past events decreases over time.

These characteristics make fractional calculus well suited to describe the dynamic

phenomena of particle’s trajectory fully.

E.J. Solteiro Pires [19] first applied the Grűnwald-Letnikov definition of fractional

derivative to the PSO, considering only the first r=4 terms of differential derivative given

by (3), and the velocity update equation with fractional derivative was given by the

equation:

International Journal of Hybrid Information Technology

Vol. 9, No. 5 (2016)

134 Copyright © 2016 SERSC

1 1 2 2

1 1

(t) (t 1) (1) (t 2) (1)(2) (t 3)

2 6

1

(1)(2)(3) (t 4)

2 4

r (t 1) (t 1)) r (P (t 1(P (t 1)))
gi i i

v v v v

v

c x c x

     

   

        

       

      

2.2. Dynamic Fractional Order

In this section, the dynamic fractional order strategy is introduced to obtain better

convergence rate. In PSO with fractional order velocity update rule (4), the value of  has

a vital role in controlling the convergence rate of the PSO algorithm. The results of [23]

showed that, when the value of  fixed, the algorithm converged fast at the beginning but

converged slow in the late or even fell into stagnation. When  varied linearly, the

performance of the algorithm was similar to the algorithm using inertia weight.

To examine the impact of the parameter  on the anytime behavior of PSO with

fractional velocity, several tests were done. Those with smaller values of  are initially

better, but easily lead to search stagnation. The smaller values more probability result in

worse final solution quality. However, a larger value of  are initially worse, but produces

much better results towards the end of the run. So, if we set the value of a smaller value in

the early running period and then varied the value of  to a larger value, the performance

of the algorithm would be improved. To consider this possibility, a function is developed

to compute the value of based on the sigmoid function, which is defined by:

(x) 1 / (1) (5)
x

f e


  

This function is an S-type function that can be seen in Figure 1 (a). It will be improved

to meet the needs. The value of  is assigned as follows:

/ m ax _

/ (1) (6)
iter iter

e
 

 
  

  

where iter represents the current iteration number, max_iter is the maximum number of

iterations. λ, β and θ are parameters. λ is the vertical scaling factor. The original sigmoid

function can be vertical scaling transformation, when 0 < λ <1, it represents the original

sigmoid function compressed in the vertical direction. β is the horizontal scaling factor.

The original sigmoid function can be horizontal scaling transformation. The greater the

value of β takes, the smaller the original sigmoid function can be horizontally stretched. θ

is the translation factor. The value of these parameters can be set according to specific

cases. We ensure the value of  in the range (0, 0.9]. For example, when λ=0.9, β=35,

θ=5, max_iter=300, the value of  varies between 0.0062 and 0.9. The graphics of 

can be seen in Figure 1 (b).

2.3. Wavelet Mutation

The PSO algorithm with fractional order velocity can converge faster compared with the

PSO, but it still easily falls into local optimal value. To address this problem, the mutation

operation can be imposed to increasing the probability of escape from local optima. The

wavelet mutation strategy that employed by the PSO was first proposed in [18]. With

respect to the Gaussian and Cauchy mutation which were often used by PSO, the wavelet

mutation is easier to carry out effective search space search and can effectively balance the

global search and local search, since the Morlet wavelet generate positive and negative

numbers are the same, and most of the

International Journal of Hybrid Information Technology

Vol. 9, No. 5 (2016)

Copyright © 2016 SERSC 135

Figure 1. The Sigmoid Function (A) and the Function (B)

energy is concentrated in a smaller range [18]. It is defined by

 
2

2

1
c o s 5 (7)

s

e

sa








                 
   

                 
   

where ø∈ [-2.5s, 2.5s], it can be concluded that σ∈ [-1, 1]. s is a parameter and can be

defined by

e x p (ln (g) (1) ln (g)) , (8)
m a x _

i te r
s

i te r


     

where ξ is the shape parameter of the monotonic increasing function, and g is the upper

limit of the parameter s. iter represents the current iteration number, max_iter is the

maximum number of iterations. According to equation (8), it can be concluded that s∈ [1,

g]. Assume that the mutation probability of particles is p∈ [0, 1], xmaxi is the upper limit of

the search space and xmini is the lower limit of the search space, the equation can be define

as

m a x i

m in i

(t) ((t)) if 0

(x (t)) (9)

(t) (P (t)) if 0

d d

g gd

i d d

i g

P x P

m

x x

 

 

   

  

   

           




As can be seen from (9), after performing mutation, when σ closes to 1, the d-

dimensional velocity of the ith particle will be close to the maximum value of d-

dimensional velocity. When σ closes to -1, the d-dimensional velocity of the ith particle

will be close to the minimum d-dimensional velocity. The mutation probability p is a

(b)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

iter

a
lp

h
a

(a)

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

International Journal of Hybrid Information Technology

Vol. 9, No. 5 (2016)

136 Copyright © 2016 SERSC

random number between [0, 1]. When the dimension of the problem is relatively low, the

value of p is usually taken between the values [0.8 0.5]. When the dimension of the

problem is relatively high, the value of p is usually taken [0.2 0.1]. If the value of p is too

large, the number of mutation would increase, which would destroy the current swarm

search information and result in poor results and also consume a large amount of running

time [18].

2.4. Algorithm Procedure and Analysis

Figure 2 shows the flowchart of the proposed algorithm IFWPSO and the steps involved

are given as follows.

Step 1 Initialization: The initial positions of all particles are generated randomly within

the D-dimensional search space with velocities initialized to 0.

Step 2 Terminal Condition Check: If the terminal condition is needed, the algorithm

terminates. Otherwise, go to Step 3 for a new round of iteration. The terminal condition

can be the predefined maximum evaluation number of iterations or reaches the specified

precision.

Step 3 velocity Updating: If the current iteration number is less than 5, every particle

follows the velocity update rule (1) and save the history velocity. If the current iteration

number is greater than or equal to 5, every particle follows the velocity update rule (4) and

updates the history velocity.

Step 4 Position Updating: Every particle follows the position update rule (2) to adjust its

position. The position needs to be clamped by the search space.

Step 5 Wavelet Mutation Operation: The mutation operation is used to mutate the

elements of particles. The details of the operation are as follows. Generates a random

number z ∈ [0, 1]. If z is less than a predefined parameter p ∈ [0, 1], then the wavelet

mutation operation will be performed according to the rule (7)-(9). For each particle, a

random number k will be generated between [0, D], the kth-dimension of the particle is

selected for the mutation.

Step 6 Evaluating: Evaluate the new population. Update the personal best position and

the group best position. Go to Step 2.

The proposed IFWPSO is actually using the dynamic fractional order velocity equation

to update the particle velocity and combined with wavelet mutation in the basic framework

of original PSO algorithm. IFWPSO contains three main parts, including initialization,

particle velocity and position update and wavelet mutation operation. The time complexity

of the former two is the same as the PSO, that is O (n•D), and the last one is O (D). The

dynamic fractional order strategy and the wavelet mutation strategy will not increase the

time complexity of the PSO algorithm. So, the time complexity of the IFWPSO is O (n•D),

which is a similar computational complexity with the PSO. However, the memory

complexity of the IFWPSO is larger than the PSO since the dynamic fractional order

strategy needs to track the last four steps of each particle’s velocity.

International Journal of Hybrid Information Technology

Vol. 9, No. 5 (2016)

Copyright © 2016 SERSC 137

Calculate the particle

velocity according to (1),

save the history velocity

Calculate the particle
velocity according to (4)

and (6),update the
history velocity

Y N

Initialize

Iter<5?

End
Terminate?

Y

Generates a random number

z

z < p ?

Update the position of all the
particles andcheck the bound

Generates a random number k,
perform themutation based on (7-9)

Y N

Evaluate the population, update the
personal best position and the group

best position

Figure 2. Flowchart of IFWPSO

3. Experimental Results

To test the performance of the IFWPSO, computational experiments are designed and

implemented. The computational procedures described above have been implemented in

MATLAB environment on the hardware environment is an Intel Core 3.20 GHz CPU,

4GB RAM computer. This section presents and duly discusses the experimental results of

our comparative study. The proposed algorithm are tested on ten test functions, including

the five functions that directly taken from literature [19] and another five widely used test

functions. They are listed in Table 1.

International Journal of Hybrid Information Technology

Vol. 9, No. 5 (2016)

138 Copyright © 2016 SERSC

Table 1. Test Functions

Function

name
Test function Dimension

Domain

range
Minimum

f1 Bohachevsky 2 2

1 2 1 2
2 0 .3 co s(3) 0 .4 co s(4) 0 .7x x x x     2 [-50, 50] 0.0

f2 Colville

2 2 2 2 2

2 1 1 4 3

2 2 2

3 2 4 2 4

1 0 0 () (1) 9 0 ()

(1) 1 0 .1((1) (1)) 1 9 .8 (1)(1)

x x x x x

x x x x x

    

        

 4 [-10, 10] 0.0

f3 Drop wave
2 2

1 2

2 2

1 2

1 co s(1 2)

0 .5 () 2

x x

x x

 


 
 2 [-10, 10] -1.0

f4 Easom 2 2

1 2 1 2
co s() co s() ex p (() ())x x x x      2 [-100, 100] -1.0

f5 Rastrigin
3 0

2

1

[1 0 c o s (2) 1 0]
i i

i

x x



  30 [-5.12, 5.12] 0.0

f6 Sphere
3 0

2

1

i

i

x



 30 [-100, 100] 0.0

f7 Rosenbrock
3 0

2 2 2

1

1

[1 0 0 () (1)]
i i i

i

x x x




   30 [-2, 2] 0.0

f8 Ackley
3 0 3 0

2

1 1

1 1
2 0 ex p (0 .2) ex p (co s (2)) 2 0

3 0 3 0
i i

i i

x x e

 

       30 [-32, 32] 0.0

f9 Griewank
3 03 0

2

1 1

1
c o s 1

4 0 0 0

i

i

i i

x
x

i 

 
  

 
  30 [-600, 600] 0.0

f10 Schwefel
1 0

1

(s in ())
i i

i

x x



 10 [-500, 500] -4189.8

Table 2. Success Rates For Test Functions F1- F10

 PSO FPSO IFPSO IFWPSO

 Iteration Success rate Iteration Success rate Iteration Success rate Iteration Success rate

f1 10000 0 106 100 123 100 16 100

f2 10000 0 306 100 1536 100 793 100

f3 7724 35 73 100 95 100 63 100

f4 4284 75 662 100 676 100 1320 100

f5 10000 0 7168 30 360 100 48 100

f6 10000 0 3848 65 2234 100 669 100

f7 10000 0 3708 65 251 100 168 100

f8 10000 0 8146 20 801 100 647 100

f9 10000 0 1978 85 2665 100 1224 95

f10 10000 0 10000 0 9524 5 1906 85

International Journal of Hybrid Information Technology

Vol. 9, No. 5 (2016)

Copyright © 2016 SERSC 139

3.1. Impact of Dynamic Fractional Order Velocity on the Convergence of the PSO

With the purpose of studying the impact of dynamic fractional order velocity on the

convergence of the PSO, some experiments have been conducted. Here using two

benchmark functions: Bohachevsky function and Drop wave function. These two functions

are shown in Table as f1 and f3, respectively. For each comparison algorithm, the number of

the population sets to 30 and the maximum velocity of the particle sets to be half of the

search space. In PSO, parameters c1 and c2 both can be set to 1.193, inertia weight ω can be

set to ω=0.721. In FPSO, the value of parameter α is the same with the literature [12]. In

the PSO with the dynamic fractional order velocity (IFPSO), λ=0.9, β=35, θ=5. The

maximum number of iterations can be set to 100 for all the algorithms. The results

concerning the search behavior of the algorithms on these two functions are illustrated

Figure 3. The Figure is plotted based on the mean values of 20 independent runs of each

algorithm that can represent the search behavior of the algorithms in most cases. It can be

seen that the FPSO converges faster than the PSO and the IFPSO converges fastest.

0 10 20 30 40 50 60 70 80 90 100
10

-1

10
0

10
1

10
2

10
3

10
4

迭代次数

适
应
度

PSO

FPSO

IFPSO

0 10 20 30 40 50 60 70 80 90 100
10

-3

10
-2

10
-1

10
0

迭代次数

适
应
度

PSO

FPSO

IFPSO

Iteration

(b)

F
it

n
es

s
F

it
n

es
s

Iteration

(a)

0 10 20 30 40 50 60 70 80 90 100
10

-1

10
0

10
1

10
2

10
3

10
4

迭代次数

适
应
度

PSO

FPSO

IFPSO

F
it

n
es

s
F

it
n

es
s

Iteration

(b)

F
it

n
es

s

0 10 20 30 40 50 60 70 80 90 100
10

-3

10
-2

10
-1

10
0

迭代次数

适
应
度

PSO

FPSO

IFPSO

Iteration

(b)

F
it

n
es

s

0 10 20 30 40 50 60 70 80 90 100
10

-1

10
0

10
1

10
2

10
3

10
4

迭代次数

适
应
度

PSO

FPSO

IFPSO

0 10 20 30 40 50 60 70 80 90 100
10

-3

10
-2

10
-1

10
0

迭代次数

适
应
度

PSO

FPSO

IFPSO

Iteration

(b)

F
it

n
es

s
F

it
n

es
s

Iteration

(a)

0 10 20 30 40 50 60 70 80 90 100
10

-1

10
0

10
1

10
2

10
3

10
4

迭代次数

适
应
度

PSO

FPSO

IFPSO

F
it

n
es

s

Iteration

(a)

0 10 20 30 40 50 60 70 80 90 100
10

-1

10
0

10
1

10
2

10
3

10
4

迭代次数

适
应
度

PSO

FPSO

IFPSO

F
it

n
es

s
F

it
n

es
s

Iteration

(b)

F
it

n
es

s

0 10 20 30 40 50 60 70 80 90 100
10

-3

10
-2

10
-1

10
0

迭代次数

适
应
度

PSO

FPSO

IFPSO

Iteration

(b)

F
it

n
es

s

Figure 3. Convergence Curve of Three PSO Algorithms

3.2. Comparison and Analysis

To test the performance of the proposed algorithm (IFWPSO), it is compared with PSO,

FPSO [19] and IFPSO on 10 benchmark functions. The parameter settings in this section

are as follows. The number of the population sets to 30 and the maximum velocity of the

International Journal of Hybrid Information Technology

Vol. 9, No. 5 (2016)

140 Copyright © 2016 SERSC

particle sets to be half of the search space. In our simulations, the values of the main

parameters are c1=c2=1.193, ω=0.721, λ=0.9, β=35, θ=5, ξ=5.0, and g=10000

Iteration

(c)

0 50 100 150 200 250 300
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

迭代次数

适
应
度

FPSO

HPSOWM

IFWPSO

0 100 200 300 400 500 600 700 800 900 1000
10

1

10
2

10
3

迭代次数

适
应
度

FPSO

HPSOWM

IFWPSO

0 100 200 300 400 500 600 700 800 900 1000
10

-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

迭代次数

适
应
度

FPSO

HPSOWM

IFWPSO

Fi
tn

es
s

Fi
tn

es
s

Fi
tn

es
s

Iteration

(a)

Iteration

(b)

Iteration

(c)

0 50 100 150 200 250 300
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

迭代次数

适
应
度

FPSO

HPSOWM

IFWPSO

0 100 200 300 400 500 600 700 800 900 1000
10

1

10
2

10
3

迭代次数

适
应
度

FPSO

HPSOWM

IFWPSO

0 100 200 300 400 500 600 700 800 900 1000
10

-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

迭代次数

适
应
度

FPSO

HPSOWM

IFWPSO

Fi
tn

es
s

Fi
tn

es
s

Fi
tn

es
s

Iteration

(a)

Iteration

(b)

Figure 4. Convergence Traces of the Algorithms for Three Representative
Test Functions. (A) F3. (B) F5. (C) F6

The test functions can be divided into two categories. The first one is the category of the

low dimensional function, f1- f4 belong to this type. The second one is the category of high

dimensional functions, f5 - f10 belong to this type. Parameter p has been set to 0.5 on the

first category test functions and p=0.1 on the second category test functions. Furthermore,

all the algorithms use the same maximum number of function evaluations 10000 in each

run for each test function and each algorithm is tested 20 times independently for every

function and the mean results are used in the comparison.

The number of iterations needed to successfully reach the stopping criterion and the

success rates for all the algorithms on test functions f1- f10 are recorded and presented in

Table 2. The best results are marked in boldface.

International Journal of Hybrid Information Technology

Vol. 9, No. 5 (2016)

Copyright © 2016 SERSC 141

Table 3. Solutions Accuracy Comparisons

 FPSO HPSOWM IFWPSO

 Mean Best Deviation Mean Best Deviation Mean Best Deviation

f1 1.67e-10 3.33e-16 4.04e-10 6.27e-13 0 2.43e-12 0 0 0

f2 2.18e-01 6.99e-04 2.92e-01 2.93e-01 2.79e-04 7.50e-01 4.58e-02 1.50e-03 4.46e-02

f3 1.05e-09 7.70e-14 3.07e-09 6.96e-14 0 1.97e-13 5.00e-05 0 1.90e-04

f4 7.50e-01 5.45e-13 4.44e-01 1.63e-13 0 5.19e-13 5.50e-01 0 5.10e-01

f5 1.30e+02 5.67e+01 3.64e+01 3.63e+01 2.09e+01 9.82e+00 1.65e+01 7.97e+00 5.64e+00

f6 4.00e+03 2.06e-07 5.03e+03 1.75e-07 2.79e-08 1.80e-07 9.89e-08 1.04e-09 1.76e-07

f7 2.33e+02 3.63e+00 2.96e+02 3.02e+01 2.06e+01 1.67e+01 2.82e+01 6.67e+00 2.16e+01

f8 1.08e+01 9.34e-01 8.60e+00 8.77e-05 4.69e-05 3.47e-05 1.96e+00 2.77e-05 6.03e+00

f9 4.06e+01 2.90e-07 4.60e+01 2.32e-02 1.59e-07 2.75e-02 2.65e-02 6.15e-09 2.46e-02

f10 7.75e+01 4.59e+01 1.78e+01 7.12e+01 5.74e+01 1.37e+01 5.11e+01 1.15e+01 2.09e+01

The results show that IFWPSO converges very fast on most of the functions and it

achieves a much higher success rate than other PSO algorithms on most of these 10 test

functions. The better performance is due to the better fine search generated by the dynamic

fractional order particle velocity and wavelet mutation. Especially for high dimensional

function, the number of iterations that IFWPSO needed is much less than that of FPSO. It

indicates that FPSO easily falls into local optimal solution in solving complex high

dimensional optimization functions. However, IFWPSO can effectively avoid getting into

local optimums because of applying wavelet mutation. The addition of wavelet mutation

strategy in dynamic fractional order particle swarm algorithm can effectively escape from

local optima. Figure 4 gives the convergence traces of the three algorithms over the

iterations, from top to bottom are the curves for three representative functions f2, f5 and f6.

In order to compare the solution quality, the solutions obtained by IFWPSO are

compared with the ones obtained by FPSO [19] and HPSOWM [18]. According to the

complexity of the test functions, the maximum number of iterations is set to 300 for the

first category test functions and the maximum number of iterations is set to 1000 for the

second one. Table 3 compares the mean values, the best values and the standard deviations

of the solutions found. The best results are marked in boldface.

It can be observed that IFWPSO achieve the best solutions on most of the test functions.

Experimental results and comparisons verify that the dynamic fractional order velocity

combined with wavelet mutation indeed helps the IFWPSO perform better than the

traditional PSO and some recent PSO variants on most of the test functions in terms of

solution accuracy and convergence speed.

4. Conclusions

In this paper, a dynamic fractional PSO algorithm combining wavelet mutation

(IFWPSO) is presented. It uses a dynamic fractional particle velocity update equations to

update the particle velocity which can enhance the convergence rate of the algorithm. And

it employs the wavelet mutation strategy which can effectively prevent the algorithm from

falling into a local optimum. It can be seen from the experimental results that the proposed

algorithm can perform better in convergence speed and solution quality, especially for high

dimensional optimization functions.

International Journal of Hybrid Information Technology

Vol. 9, No. 5 (2016)

142 Copyright © 2016 SERSC

Acknowledgment

The authors thank the financial support for the work from Chinese National Natural

Science Foundation (61103248, 61379059), the Fundamental Research Funds for the

Central Universities (CZY14011).

References

[1] J. Kennedy and R. Eberhart, “Particle Swarm Optimization”, Proceedings of IEEE International

Conference on Neural Networks, (1995).

[2] A. Banks, J. Vincent and C. Anyakoha, Natural Computing, vol. 7, (2008).

[3] M. Clerc and J. Kennedy, “The Particle Swarm-Explosion, Stability, and Convergence in a

Multidimensional Complex Space”, Evolutionary Computation, IEEE Transactions, vol. 6, (2002), pp.

58-73.

[4] Y. Shi and R. C. Eberhart, “A Modified Particle Swarm Optimizer”, Proceedings of IEEE International

Conference on Evolutionay Computation, (1998), pp. 69-73.

[5] R. C. Eberhart and Y. Shi, “Comparing Inertia Weights and Constriction Factors in Particle Swarm

Optimization”, Proceedings of the 2000 Congress, IEEE, (2000).

[6] Y. Shi and R. C. Eberhart, “Empirical Study of Particle Swarm Optimization”, Proceedings of the 1999

Congress on, IEEE, (1999).

[7] Y. Shi and R. C. Eberhart, “Fuzzy Adaptive Particle Swarm Optimization”, Proceedings of the 2001

Congress, IEEE, (2001).

[8] K. Ganapathy, V. Vaidehi, B. Kannan and H. Murugan, “Expert Systems with Applications”, vol. 41,

(2014).

[9] J. Kennedy, “Small Worlds and Mega-Minds: Effects of Neighborhood Topology on Particle Swarm

Performance”, Proceedings of the 1999 Congress, IEEE, (1999).

[10] P. N. Suganthan, “Particle swarm optimiser with neighbourhood operator”, Proceedings of the 1999

Congress on. IEEE, (1999).

[11] R. Mendes, J. Kennedy and J. Neves, “Evolutionary Computation”, IEEE Transactions, vol. 8, (2004).

[12] B. Y. Qu, P. N. Suganthan and S. Das, “Evolutionary Computation”, IEEE Transactions, vol. 17, (2013).

[13] J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, “Evolutionary Computation”, IEEE Transactions,

vol. 10, (2006).

[14] Z. H. Zhan, J. Zhang, Y. Li and Y. H. Shi, “Evolutionary Computation”, IEEE Transactions, vol. 15,

(2011).

[15] H. Wang, Z. Wu, S. Rahnamayan, Y. Liu and M. Ventresca, “Information Sciences”, vol. 181, (2011).

[16] P. J. Angeline, “Using Selection to Improve Particle Swarm Optimization”, Proceedings of IEEE

International Conference on Evolutionary Computation, (1998).

[17] A. A. A. Esmin, G. Lambert-Torres G and A. C. Z. de Souza, “Power Systems”, IEEE Transactions, vol.

20, (2005).

[18] S. H. Ling, H. H. C. Iu, K. Y. Chan, H. K. Lam, B. C. Yeung and F. H. Leung, “Systems, Man, and

Cybernetics”, Part B: Cybernetics, IEEE Transactions, vol. 38, (2008).

[19] E. J. S. Pires, J. A. T. Machado, P. B. de Moura Oliveira, J. B. Cunha and L. Mendes, “Nonlinear

Dynamics, vol. 61, (2010).

[20] M. S. Couceiro, R. P. Rocha, N. M. F. Ferreira and J. T. Machado, “Signal, Image and Video

Processing”, vol. 6, (2012).

[21] P. Ghamisi, M. S. Couceiro and F. M. L. Martins, “Atli Benediktsson”, Journal, vol. 52, (2014).

[22] P. Ghamisi, M. S. Couceiro, J. A. Benediktsson and N. M. Ferreira, “Expert Systems with Applications”,

vol. 39, (2012).

[23] L. Y. Zhou, S. B. Zhou and A. S. Muhammad, “Nonlinear Dynamic”, vol. 77, (2014).

[24] Y. S. Mishura, “Stochastic Calculus for Fractional Brownian Motion and Related Processes”, Berlin:

Springer, (2008).

Authors

Lingyun Zhou received the B.S. and M.S. degrees in College of Computer Science

from South-Central University for Nationalities, China, in 2001 and 2004, respectively.

She is a PhD candidate in State Key Laboratory of Software Engineering, Computer

School at Wuhan University in China. And she is currently a lecturer in College of

Computer Science of South-Central University for Nationalities.

Lixin Ding received his B. Sc. and M. Sc. degrees from the Department of Applied

Mathematics, Hunan University, Changsha, China, in 1989 and 1992, respectively, and

International Journal of Hybrid Information Technology

Vol. 9, No. 5 (2016)

Copyright © 2016 SERSC 143

Ph. D. degree from the State Key Laboratory of Software Engineering (SKLSE), Wuhan

University, Wuhan, China, in 1998. From 1998 to 2000, he was a Postdoctoral researcher

at the Department of Armament Science and Technology, Naval University of

Engineering, Wuhan, China. He is currently a Professor at the SKLSE, Wuhan University.

He is also the Director of Zhuhai R&D Center of SKLSE. He has published more than 80

research articles in domestic and foreign academic journals, such as IEEE Transactions on

Communications, IEEE Transactions on Engineering Management, Evolutionary

Computation, Computers & Mathematics with Applications, Neurocomputing,

Transactions of the Institute of Measurement and Control, Dynamics of Continuous,

Discrete and Impulsive Systems, Journal of Network and Computer Applications, Applied

Mathematics & Information Sciences, Information, Sensor Letters, KSII Transactions on

Internet and Information Systems, Neural, Parallel & Scientific Computation, ICIC

Express Letters, Journal of Computational Information Systems, Science China:

Information Sciences, Science Bulletin, Mathematica Numerica Sinica etc. His research

interests include intelligence computation, intelligent information processing, machine

learning and cloud computing.

International Journal of Hybrid Information Technology

Vol. 9, No. 5 (2016)

144 Copyright © 2016 SERSC

