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Abstract 

In order to ensure the safe operation of offshore platform, we need response to the 

platform motion and forecast mooring force. The prediction method based on numerical 

calculation and model experiment, has certain limitation. A new principle and method of 

ship’s mooring load measurements based on indirect measurement is presented in order 

to achieve the short-term and high-precision mooring load prediction, and an algorithm 

is proposed through which predictions are made by comb the wavelet multi-scale 

decomposition and reconstruction method with BP neural networks. This paper, by 

putting a prototype data as learning samples, using the neural network algorithm for 

forecasting of mooring force, overcomes the traditional B P neural network faults, gets a 

higher precision. Through comparing the measured data, it demonstrates the feasibility of 

this method in engineering application. 

 

1. Introduction 

As mooring loads are affected not only by environmental factors like winds, streams 

and waves but also by factors like the hull form of ships, wind age areas and draft sizes. 

Therefore, being quite random and complex, they are non-stationary time series. In this 

paper, the theoretical model for the calculation on bollard surface stress under mooring 

load is built [1, 2]. The bollard surface stress is measured by means of strain electrical 

measuring method. The simultaneous equations of measurement value and theoretical 

calculation model are built [3]. And the axial component and a radial component of 

mooring load are obtained, and the mooring load is composed [4]. Then, in connection 

with the feature that the short-term mooring load series is quite random and complex, the 

wavelet multi-scale decomposition method is used to decompose mooring load series into 

low-frequency approximation decomposition coefficients and layer high-frequency detail 

decomposition coefficients [5], to rebuild decomposition coefficients of each layer 

respectively into approximation components and multilayer detail components, and to 

synthesize prediction results of each layer into desired prediction values. This provides an 

effective combined prediction method for the short-term mooring load prediction [6]. 

 

2. The Combined Prediction Model of Wavelet Decomposition and 

Neural Networks 

According to the wavelet decomposition and reconstruction calculations above, the 

port transportation port transportation mooring load series can be decomposed layer by 

layer into different frequency channels. As reconstructed components of each layer are 

more single in frequency components than the original series and wavelet decomposition 

has made the series smooth, the reconstructed port transportation port transportation 

mooring load series is more stationary than the original series. Thus, wavelet 

decomposition and reconstructed components of each layer can serve as a smooth series 

to use BP neural networks to make predictions. 

A calculation step of the combined prediction model is as follows: 
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2.1 The Multi-scale Decomposition of the Port Transportation Port Transportation 

Mooring Load Series 

The right wavelet basis function is chosen and the level N  of wavelet decomposition is 

determined before the original port transportation port transportation mooring load  series 

 tv  (representing the original series collected by the port transportation port 

transportation mooring load  monitoring system) is decomposed into the multi-scale 

wavelet by layer N . There are  kaN  and  kd j  which shows essential change trend in 

port transportation mooring load s in decomposition coefficients which have undergone 

multi-scale decompositions. 

 

2.2 The Multi-scale Reconstruction of the Components of Each Layer 

The multi-scale reconstruction is carried out of the low-frequency coefficients of layer 

N  of the port transportation port transportation mooring load series and the 

high-frequency from layer 1 to layer N   respectively based on the wavelet basis function 

chosen by decomposition. The coefficients of each layer are reconstructed to the original 

scale through the wavelet algorithm, i. e. the port transportation port transportation 

mooring load components  tV N
 and  1tW j

 are obtained. 

 

2.3 The Prediction of BP Neural Network Series 

 tV N
 and  1tW j

 are predicted respectively through the use of the BP neural 

network prediction model. The BP neural network prediction model is a multi-layer feed 

forward neural network, of which the main features are series forward transfer and error 

back propagation. The BP neural network used in port transportation port transportation 

mooring load predictions is a three-layer multiple-input and single- output network 

structure. The network consists of the input layer, the hidden layer and the output layer. Its 

topology diagram is shown in Figure4. The network input kx , which is  tV N
 or  tW j

 

after wavelet decomposition and reconstruction, is processed layer by layer from the input 

layer through the hidden layer until the output layer outputs the component prediction value 

of each layer  1ˆ tV N
 or  1ˆ tW j  Nj L,2,1 . The state of neurons of each layer 

only affect that of neurons of the next layer. If the output layer cannot get the desired output, 

transfers to back propagation will occur, adjustments will be made of network weights ij ,

jk  and thresholds according to  prediction errors so that the prediction output of the BP 

neural network is getting closer and closer to the desired output. 

ij

jk

1X

1X

kX



1Y

 Input layer Hidden layer Output Layer  

Figure 1. The Topology Diagram of BP Neural Networks 
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2.4 The Synthesis of Final Prediction Series 

The prediction result of  tv   are  tv̂ , which is obtained by synthesizing the above 

mentioned series prediction results  1ˆ tV N
 and  1ˆ tW j

 through formula (9), i.e., 

obtain prediction results which correspond to original cable loads. 

         1ˆ1ˆ1ˆ1ˆ1ˆ 21  tVtWtWtWtv NNL                 (1)             

The combined prediction model combines wavelet decomposition and neural networks. 

It is constructed in accordance with the above thoughts and calculation steps. Its structural 

framework is shown in Figure 2. 
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Figure 2. The diagram of the structural framework of the combined 
prediction model 

3. Theoretical Calculation Model of Stress at Measuring Point 
on Bollard Surface 

Theoretical calculation model is built to measuring the port transportation port 

transportation mooring load which is difficult to be measured directly. So theoretical 

calculation model can be used to indirect measure the port transportation port 

transportation mooring load based on the bollard. The bollard body consists of column 

shell and column inner filler, of which the column shell is generally made of cast steel or 

cast iron, and the column inner filler is made of concrete or asphalt concrete. 

 

3.1 Calculation of Tensile Stress 

Since the axial load line of bollard does not pass through the bollard axis, bollard section 

will generate deviation due to uneven axial load. To overcome this uneven force which 

moves the axial load to the axis horizontally, a force couple needs to be added, and its 

torque is the torque of axial load
1F to the axis, namely

1ZM F R  , where R is the radius of 

bollard cross-section. After translation, tensile stress generated by the axial load will 

distribute on the bollard cross-section evenly (as shown in Figure 3). 

When the bollard gives rise to axial tension caused by the axial load, linear strain of 

various vertical line segments will be same, so the tensile strain  caused by the axial load 

at each measuring point is same. According to the Hooke Theorem, axial load is as follows: 

 22111 AEAEF                                (2) 

Where: 
1A is the cross-sectional area of column shell; 

2A is the cross-sectional area of 

column inner filler; 
2E is the elastic modulus of column inner filler. 
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Then, the tensile stress caused by the axial force is: 1E   ; according to formula (1), 

  can be expressed as  1 1 1 1 2 2/E F E A E A   . 

 
Mooring load

Axial load 

Radial load

F

1F

2F

Axial load 

after 

moving

O point

Column 

shell

Column inner filler

Measuring 

point

 

Figure 3. Bollard Structure and Force Analysis 

3.2 Calculation of Bending Stress 

Radial load 2F causes bending deflection of bollard, and only generates action of bending 

moment to neutral axis z on bollard cross-section. Since the bending rigidity of bollard is 

great, which generates small bending deflection, the additional bending moment caused by 

axial load is small, which can be negligible. Therefore, cross-sectional bending moment M

on bollard is the sum of cross-sectional bending moment
1M on column shell and 

cross-sectional bending moment
2M on column inner filler, namely: 

 //
21 2121 zz IEIEMMM                        (3) 

Where: 
1z

I is the inertia moment of neutral axis z of column shell cross-section,

    
1

4 4
2 2 / 64zI R r  ;

2zI is the inertia moment of neutral axis z of column inner filler 

cross-section,  
2

4
2 / 64zI r ; r is the radius of column inner filler cross-section;  is 

radius of curvature of neutral layer. 

 
1 21 21/ / z zM E I E I    can be got according to formula (2); then, bending moment of 

column shell cross-section  
1 1 1 21 1 1 1 2/ /z z z zM E I E I M E I E I   , where is the sum of 

bending moment generated by radial load 2F and bending moment generated by translation 

of axial load, namely 
1 2M F R F l  ; l  is the distance between the point of load and the 

measuring point cross-section of bollard cable. 

Then, the bending stress at the measuring point is
11 / zM y I  , where y is the distance 

between the measuring point and neutral axis. 

In order to determine the distance between each measuring point and the neutral axis, arc 

length
1A Bs and

2A Bs from measuring point A1 and A2 to point B which is the intersection of 

the projection of cable load direction on bollard cross section and the cross section before 

measurement(ship may move back and forth in the case of mooring, resulting in minor 

change of the contact point of cable and bollard; however, such change is slow and the 

system is subject to measurement and design in a short time. Field surveyors can 

quickly measure the arc length again and modify the parameters in the measurement 

system when finding that the contact point changes significantly in the case of 

measurement. In the future, displacement sensors can be chosen to fuse to the system 

M
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established in this text for real-time detection of the contact point of the cable and bollard if 

the development of cable load monitoring system is subject to the measurement for a long 

time), so the included angle between the line of measuring point and center of circle of the 

cross section and neutral axis z is 
1

/ / 2A Bs R    and
2

/ / 2A Bs R   (see 

Figure 4), and then, distance between the measuring point and the neutral axis is

1
sinAy R   and

2
sinAy R  .  

 

Column inner filler

Measuring point A2Measuring point A1

Column shell
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
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

B
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2Ay

 

Figure 4. The Distance between Each Measuring Point and the Neutral Axis 

Therefore, the bending stress at measuring point can be expressed as

 
1 21 2 1 1 2( ) /i i z zE F l F R y E I E I   , where i  is the bending stress at measuring point

i , and iy is the distance between measuring point and the neutral axis. 

 

4. The Component Prediction and Result Synthesis of Port Transportation 

Mooring Loads of Each Layer 

The multi-input and single-output neural network structure is used to predict port 

transportation port transportation mooring load components of each layer respectively. In 

this, 5 neurons are used in the input layer, i.e., the data of five sampling points are inputted, 

6 neurons are used in the hidden layer, and 1 neuron is used in the output layer. The initial 

weight of the network is given by the random function. After wavelet decomposition and 

reconstruction is used, the first 100 data of the components of each layer train each neural 

network respectively. 

Through the established BP neural network prediction module, the last 20 component 

data of 
1d ,

2d ,
3d  and 

3a  are predicted and compared with actual values respectively, 

which, as can be seen from Figure 4, has achieved quite good results in the component 

prediction of each layer. 

 

i
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Figure 5. The Prediction Results of the Components of Each Layer 

After the component prediction of each layer is completed, the prediction results are 

synthesized based on the following formula: 

  1 2 3 3ˆ ˆ ˆˆ ˆ1v t d d d a                                  (4) 

into the prediction series of the original port transportation port transportation mooring 

load as in Figure 5.. 

 

5. The Error Analysis of Prediction Results 

The average relative error, the absolute maximum relative error and the root mean square 

error are used as error indicators to evaluate prediction results. The indicator is calculated 

as follows: 

The average relative error: 

   
 






n

t tv

tvtv

n
RME

1

ˆ1                                  (5) 

Absolute maximum relative error: 

   
 tv

tvtv
MRME




ˆ
max                                  (6) 

Root mean square error: 

    



N

t

tvtv
N

RMSE
1

2
ˆ

1                               (7) 

And the BP neural network and the wavelet neural network model are selected to predict 

original port transportation port transportation mooring load series. The prediction results 

are analyzed and compared with the combined prediction model proposed in this paper. The 

comparison results are shown in Figure6. As can be seen through error analysis, the 

combined prediction average error proposed in this paper are down by 75.8% and 32% 

respectively compared with the BP neural network prediction method and the wavelet 

neural network prediction method, and other evaluation indicators are all better than the 

two methods mentioned above. 
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Experiment results show that the combined algorithm has achieved the short-term 

high-accuracy port transportation port transportation mooring load prediction, that it has 

quite great subdivision and self-learning abilities, that it is more suitable for port 

transportation port transportation mooring load predictions than the BP neural network and 

the wavelet neural network, and that it can meet the engineering needs of accuracy. 
 

 

Figure 6. The Comparison Chart of Prediction Results 

 Table 1. As can be seen through error analysis, the combined prediction average error 

proposed in this paper are down by 75.8% and 32% respectively compared with the BP 

neural network prediction method and the wavelet neural network prediction method, and 

other evaluation indicators are all better than the two methods mentioned above. 

Experiment results show that the combined algorithm has achieved the short-term 

high-accuracy mooring load prediction, that it has quite great subdivision and 

self-learning abilities, that it is more suitable for mooring load predictions than the BP 

neural network and the wavelet neural network, and that it can meet the engineering needs 

of accuracy. 

 

Table 1. The Error Analysis Table of Each Prediction Method 

Evaluation index 

Prediction method 
RME 

MRM

E 
RMSE 

Combined prediction method in this 

paper 
1.87% 0.09 151.1 

Wavelet neural network method 2.75% 0.13 438.6 

BP neural network method 7.72% 0.28 517.6 

 

6. Conclusion 

Due to the combined effects of quite a number of factors, mooring load measurement 

method which is based on theoretical calculation model of stress at measuring point on 

bollard surface is built to collect   mooring load series. The series is characterized by the 

fact that it is quite random and complex. In connection with this feature, a prediction 

method is proposed by which wavelet analysis and BP neural network are combined to 
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build models. Experimental results show that the prediction accuracy of this method is 

higher than the wavelet neural network method and the traditional neural network method, 

that it can meet engineering needs, and that it can be applied to short-term mooring load 

warning systems in harbors. 
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