
International Journal of Hybrid Information Technology 

Vol.9, No.2 (2016), pp. 439-450 

http://dx.doi.org/10.14257/ijhit.2016.9.2.39 

 

 

ISSN: 1738-9968 IJHIT 

Copyright ⓒ 2016 SERSC 

Data-driven Anomaly Detection Method for Monitoring Runtime 

Performance of Cloud Computing Platforms 
 

 

Mingwei Lin
1
, Zhiqiang Yao

1*
, Fei Gao

1
 and Yang Li

1
 

1
Faculty of Software, Fujian Normal University, Fuzhou 350108, Fujian, China 

yzqfnu@163.com 

Abstract 

Cloud computing platforms are complex system, which consist of a lot of software 

working together. Because of software defects, cloud computing platforms may has 

performance anomaly during runtime. In this paper, a data-driven anomaly detection 

method is proposed to monitor runtime performance for cloud computing platforms. The 

proposed method can not only detect the performance anomaly of cloud computing 

platforms during runtime, but also find out which performance metric results in the 

anomaly. A series of experiments are conducted on a real private cloud computing 

platform based on OpenStack and experimental results show the proposed method is 

better than previous anomaly detection methods for cloud computing platforms. 
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1. Introduction 

Cloud computing, which is a kind of new computing method based on Internet, has 

been the research focus in both industry and academia [1]. Many large-scale IT 

companies have their own cloud computing platforms. For example, Amazon releases the 

Elastic Compute Cloud (EC2) and Simple Storage Service (S3) [2], Microsoft also 

customizes an operating system called Microsoft Azure for cloud computing platforms [3]. 

Experts and scholars from academia follow IT companies and have developed a series of 

open source software for cloud computing. For instance, the company Eucalyptus 

Systems releases a free and open source computer software, which is called Eucalyptus 

(Elastic Utility Computing Architecture for Linking Your Programs To Useful Systems) 

and used for building Amazon Web Services (AWS)-compatible private and hybrid cloud 

computing platforms [4]. Rajiv Ranjan from University of Melbourne also develops an 

extensible simulation toolkit called CloudSim [5]. The open source CloudSim simulation 

toolkit is widely used to model and simulate cloud computing platforms and evaluate 

resource provisioning algorithms by researchers. These research achievements promote 

the quick development of cloud computing. Currently, cloud computing is widely used in 

many fields such as medical treatment, education, agriculture, and manufacture. 

As the market share of cloud computing grows quickly, a large number of countries list 

cloud computing as the national overall development strategy and then promote the 

industrial development of cloud computing. For example, United States government 

releases a Federal Cloud Computing Strategy white paper in February 2011. This white 

paper said that 25% of IT budget would be used to migrate current IT systems to cloud 

computing platform in order to solve the problems that the utilization of e-government 

infrastructure is very low. United Kingdom government also published a G-Cloud plan in 

November 2011. This G-Cloud plan invests 6000 million pounds to build public cloud 

service network in order to reduce the IT expense of government. 

In the traditional IT infrastructure, each business system monopolizes computing, 

storage and network resources, but the average utilization of hardware resources for 

business systems is less than 10% [6]. Moreover, hardware devices are changed 
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frequently. Typically, they are updated every three to five years. In this case, a number of 

hardware resources are wasted and IT operation costs of enterprises are very high. 

Moreover, in the traditional IT infrastructure, it takes a long time to let new business 

systems online and results in delaying the online time of business systems seriously. 

Cloud computing often uses the virtualization technology to consolidate existing 

hardware resources and forms the shared resource pool [7]. In this case, business systems 

built on cloud computing platforms can obtain computing, storage, and network resources 

on demand. It can effectively solve the problems of traditional IT infrastructure. As cloud 

computing develops and matures continuously, more and more enterprises deploy their 

business systems to cloud computing platforms in order to improve the utilization of 

hardware resources and reduce the IT operation cost. As the number of business systems 

deployed on cloud computing platforms increases continuously, the scales of cloud 

computing platforms enlarge continuously and the cloud computing platforms become 

increasingly complex. Moreover, virtual machines on the cloud computing platforms 

share hardware resources and all software has software defects, especially for complex 

system such as cloud computing platforms [8]. All of these cause that cloud computing 

platforms are prone to performance anomaly during runtime. 

In order to avoid the performance anomaly of cloud computing platforms, a large 

number of performance anomaly detection methods have been proposed. However, 

previous anomaly detection methods focus on detect the performance anomaly of cloud 

computing platforms. None of them do research on how to find out performance metrics 

that incur the performance anomaly. In this paper, an efficient data-driven anomaly 

detection method is proposed to monitor the performance anomaly of cloud computing 

platforms during their runtime. The proposed anomaly detection method introduces an 

improved local outlier factor algorithm to detect the performance anomaly and then finds 

out the performance metrics that incur the performance anomaly. A series of experiments 

are conducted on a private cloud computing platform that is built by using OpenStack and 

Xen software. Experimental results show that the proposed anomaly detection method 

outperforms previous anomaly detection methods for cloud computing platforms. 

The rest of this paper is organized as follows. Section 2 briefly reviews related works. 

Our proposed anomaly detection method is presented in Section 3 in detail. Section 4 

shows the performance evaluation. Finally, conclusions are drawn in Section 5. 

 

2. Related Works 

In this Section, commonly used anomaly detection techniques are first described and 

then existing works on performance anomaly detection for cloud computing platforms are 

briefly reviewed. 

 

2.1. Anomaly Detection Techniques 

Anomaly detection is a process that detects an anomalous data instance from a dataset 

[9]. The anomalous data instances are also referred to as anomaly. Anomaly is usually 

categorized into three types, which are point anomaly, contextual anomaly, and collective 

anomaly [10]. If an individual data instance can be considered as anomalous with respect 

to the rest data, then the data instance is referred to as a point anomaly. If a data instance 

is anomalous in a specific context, but not otherwise, then it is defined as a contextual 

anomaly. If a collection of related data instances is anomalous with respect to the entire 

dataset, then it is considered as a collective anomaly. The performance anomaly of cloud 

computing platforms belongs to the type of point anomaly [11]. Therefore, this paper 

briefly reviews the anomaly detection techniques that are designed for detecting point 

anomaly. 

(1) Statistical anomaly detection techniques 



International Journal of Hybrid Information Technology 

Vol.9, No.2 (2016) 

 

 

Copyright ⓒ 2016 SERSC  141 

The underlying design principle of any statistical anomaly detection technique is 

that an anomaly is a data instance which is suspected of being partially or wholly 

irrelevant because it is not generated by the stochastic model assumed [12]. This 

kind of anomaly detection techniques assume that normal data instances often 

appear in high probability regions of a stochastic model assumed and anomalies 

often occur in the low probability regions of the stochastic model. Statistical 

anomaly detection techniques fit a statistical model (usually for normal data 

instances) to the given dataset and then use a statistical inference test to determine 

whether an unknown data instance belongs to this statistical model or not. If data 

instances have a low probability of being generated from a fitted statistical model 

based on the applied test statistic, they are considered as anomalies.  If the 

assumptions regarding the underlying data distribution hold true, statistical anomaly 

detection techniques could identify anomalies from a dataset effectively. However, 

the statistical anomaly detection techniques rely on the assumptions that the data 

instances are generated from a particular distribution and the assumption usually do 

not hold true, especially for high dimensional real datasets.   

(2) Clustering-based anomaly detection techniques 

Clustering is a technique that group similar data instances into several clusters 

[13]. Clustering-based anomaly detection techniques introduce the underlying 

principle of clustering technique and they often use the Euclidean distance to 

measure the similarity between two data instances [14]. Clustering-based anomaly 

detection techniques are usually categorized into three types. 

The first type of clustering-based anomaly detection techniques assumes that 

normal data instances belong to a cluster in the data and anomalies do not belong to 

any cluster [15]. Clustering-based anomaly detection techniques based on this 

assumption applies a known clustering-based algorithm to the given data in order to 

form clusters and defines any data instance that does not belong to any cluster as 

anomalous. 

The second type of clustering-based anomaly detection techniques is designed 

based on the assumption that normal data instances are located close to the centroid 

of their closest cluster and anomalies are far away from the centroid of their closest 

cluster [16]. This type of clustering-based anomaly detection techniques is 

composed of two steps. In the first step, a clustering algorithm is applied to group 

the given data instances into clusters. In the second step, the distance of each data 

instance to the centroid of its closest cluster is computed as its anomaly score. 

The third type of clustering-based anomaly detection techniques assumes that 

normal data instances belong to large and dense clusters and anomalies belong to 

either small clusters or sparse clusters [17]. Clustering-based anomaly detection 

techniques based on this assumption consider data instances belonging to clusters 

whose size and/or density is below a threshold, as anomalous. 

Clustering-based anomaly detection techniques do not need to know the 

distribution of data as statistical anomaly detection techniques. However, clustering-

based anomaly detection techniques must choose a suitable parameter for the width 

of clusters. 

(3) Classification-based anomaly detection techniques 

Classification-based anomaly detection techniques is composed of two steps [18]. 

In the first step (training phase), a classifier is learned using a set of labeled training 

data. In the second step (testing phase), the classifier is adopted to classify a test 

instance as normal or anomalous. Classification-based anomaly detection techniques 

assume that a classifier that can distinguish normal class from anomalous class can 

be learned using a set of labeled training data. Based on the labels of training data in 

the training phase, classification-based anomaly detection techniques can be 

categorized into two types: multi-class and one-class anomaly detection techniques. 
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The multi-class classification-based anomaly detection techniques operate based on 

the assumption that the labeled training data belonging to multiple normal classes 

and the one-class classification-based anomaly detection techniques assume that all 

labeled training data belong to only one class. The classification-based anomaly 

detection techniques, especially the multi-class ones, can distinguish testing data 

instances belonging to different classes. However, the classification-based anomaly 

detection techniques depend on the availability of accurate labels for various normal 

classes, which is usually impossible. 

(4) Nearest neighbor-based anomaly detection techniques 

The nearest neighbor-based anomaly detection techniques are designed based on 

the assumption that normal data instances appear in the dense neighborhoods and 

anomalies occur far from their closest neighbors [19]. Such techniques define a 

distance between two data instances, which are often computed using the Euclidean 

distance. They can be categorized into two types. The first type of nearest neighbor -

based anomaly detection techniques define the anomaly score of a data instance as 

its distance to its k
th

 nearest neighbor and the second type of nearest neighbor-based 

anomaly detection techniques compute the anomaly score of a data instance as its 

relative density. Nearest neighbor-based anomaly detection techniques are 

unsupervised in nature and do not require labels for various classes. Moreover, they 

do not need to make any assumptions regarding the distribution for the data. 

However, if the anomalies within the data have enough close neighbors, the nearest 

neighbor-based anomaly detection techniques will fail to classify them correctly. 

 

2.2. Existing Works on Anomaly Detection for Cloud Computing Platforms 

Wang, et al., proposed an online EbAT (Entropy-based Anomaly Testing) approach to 

detect anomaly for cloud computing platforms [20]. The EbAT detects anomalies by 

analyzing the data performance metric data distributions rather than individual metric data 

thresholds. The entropy is used as a measurement to capture the degree of dispersal or 

concentration of such distributions. Experimental results show that the EbAT approach 

outperforms threshold-based approaches. 

Pannu, et al., proposed a self-evolving anomaly detection framework for developing 

highly dependable utility clouds [21]. The self-evolving anomaly detection framework 

contains two components. The first one is anomaly detector determination. For a new 

performance metric data record from cloud computing platforms, the anomaly detector 

computes its abnormality score. If the abnormality score is larger than a threshold, a 

warning is triggered with the type of abnormality, which can help the administrators of 

cloud computing platforms to pinpoint the anomaly. The second one is anomaly detector 

evolving and working dataset selection. The anomaly detector can self-evolve by learning 

from newly verified and labeled data records in order to improve the performance of 

anomaly detector. 

Bhaduri, et al., proposed an automated fault detection framework for cloud systems, 

which is called FDCS and uses the Ganglia system to collect the performance metric data 

from each machine in the cloud computing platforms [22]. The FDCS uses the Euclidean 

distance to compute the anomaly score of each machine and then identify whether the 

machine is faulty or not. 

Smith, et al., showed an autonomic anomaly detection framework for large-scale 

computing cloud systems [23]. The proposed autonomic anomaly detection framework 

first employs the data transformation step to tackle data diversity. Then, the feature 

selection step is conducted to reduce the data dimension for quick and better analysis. 

Finally, the anomaly detection step identifies the nodes that show significantly different 

performance metric data from others as faulty nodes. 

Nguyen, et al., proposed a black-box online fault localization system called FChain for 

cloud computing systems to pinpoint faulty components [24]. The FChain is composed of 
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two parts: FChain master and FChain slave. The FChain slave collects the performance 

metric data from virtual machines continuously and normal workload fluctuation patterns 

are learned to detect SLO violations. When a SLO violation is detected, the FChain 

master pinpoints the faulty virtual machines. 

Guan, et al., proposed an adaptive anomaly identification mechanism for cloud 

computing infrastructures [25]. The proposed adaptive anomaly identification mechanism 

first explores the most relevant principal components for each type of possible failures. 

Then, it leverages an adaptive Kalman filter to identify anomalies. Finally, it recursively 

learns from the newly verified detection results in order to refine the anomaly detection 

performance. Experimental results evaluate the effectiveness of the proposed adaptive 

anomaly identification mechanism. 

 

3. Data-Driven Anomaly Detection Method 

Through analysis of existing works on anomaly detection for cloud computing 

platforms, we can found that none of them focus on pinpointing the performance metrics 

that result in the anomalies of cloud computing platforms. In order to solve this problem, 

an efficient data-driven anomaly detection method is proposed to identify the anomalies 

and then pinpoint the performance metrics that lead to the anomalies. 
 

3.1. Identify Anomalies 

The data-driven anomaly detection method introduces the local outlier factor algorithm 

to identify anomalies for cloud computing platforms. The local outlier factor algorithm is 

a kind of nearest neighbor-based anomaly detection techniques, which was first proposed 

by Breunig, et al., in 2000 [26]. The local outlier factor algorithm assigns to each data 

instance a degree of being an anomaly. This degree is called the local outlier factor (LOF), 

which indicates that whether the data instance is located in a dense region or not. The 

local outlier factor of each data instance can be computed as follows. 

(1) Computing the k-distance of a data instance p 

For any positive integer k, if it satisfies the following two conditions, the k-distance of 

a data instance p, denoted as  k distance p , is defined as the distance  ,d p q  

between the data instance p and an data instance q. 

(1.1) For at least k data instances  ' \q D p  it holds that    ', ,d p q d p q ; 

(1.2) For at most k-1 data instances  ' \q D p  it holds that    ', ,d p q d p q . 

The distance  ,d p q  between two data instances is usually computed using the 

Euclidean distance between these two data instances. 

(2) Determining the k-distance neighborhood of the data instance p 

Given the k-distance of data instance p, the k-distance neighborhood of data instance p 

is a set of data instances whose distances from data instance p are not larger than the k-

distance of data instance p. 

                           \ | ,kKNN p N p q D p d p q k distance p                (1) 

where the term  KNN p  is the k-distance neighborhood of data instance p. 

(3) Calculating the reachability distance of the data instance p w.r.t a data instance q 

The reachability distance of the data instance p with respect to a data instance q is 

defined as 

                              , max , ,kreach dist p q k distance q d p q                      (2) 
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p1
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reach-distk(p1,q)=k-distance(q)

reach-distk(p2,q)=d(p2,q)

 

Figure 1. Reachability Distances of the Data Instances 1p  and 2p  w.r.t the 

Data Instance q  for 3k   

Figure 1 shows the reachability distance of the data instances 1p  and 2p  with respect 

to the data instance q when k is equal to 3. Because the data instance 1p  appears in the k-

distance neighborhood of the data instance q, the reachability distance of the data instance 

1p  with respect to the data instance q is the k-distance of the data instance q. The data 

instance 2p  is not inside the k-distance neighborhood of the data instance q, the 

reachability distance of the data instance 2p  with respect to the data instance q is equal to 

the actual distance between the two data instances. 

(4) Calculating the local reachability density of the data instance p 

The local reachability density of the data instance p is defined as 

                                    

 
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q N p
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
                               (3) 

Intuitively, the local reachability density of the data instance p is computed as the 

inverse of the average reachability distance of the data instance p with respect to all the 

data instances within the k-distance neighborhood of the data instance p. 

(5) Calculating the local outlier factor (lof) of the data instance p 

The local outlier factor of the data instance p is defined as 

                                           
 

 
  

 
k

k

q N p k

k

k

lrd q

lrd p
LOF p

N p





                                         (4) 

Intuitively, the local outlier factor of the data instance is calculated as the average of 

the ratio of the local reachability density of the data instance p and those of each data 

instance in the k-distance neighborhood of the data instance p. 

If the local outlier factor of a data instance is approximately equal to 1, then it is 

identified as a normal data instance. If the local outlier factor a data instance is much 

higher than 1, then it is considered as an anomaly. 

In order to detect the performance anomaly of cloud computing platforms, the 

performance metric data are collected from cloud computing platforms during runtime 

continuously and then the local outlier factor of each performance metric data is 

calculated using the above local outlier factor algorithm. If the local outlier factor of 

current performance metric data is approximately equal to 1, it indicates that current cloud 

computing platforms perform well. If the local outlier factor of current performance 
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metric data is much higher than 1, it indicates that current cloud computing platforms are 

very likely to have a performance anomaly. 

 

3.2. Pinpoint the Anomalous Performance Metrics 

When a performance anomaly is identified from cloud computing platforms during 

runtime, the data-driven anomaly detection method continues to pinpoint the anomalous 

performance metrics to help system administrators to adopt some measures. 

The data-driven anomaly detection method analyzes the formula of the local outlier 

factor and looks for anomalous performance metrics that contribute to the anomalous 

performance metric data significantly. 

(1) The formula of the local outlier factor is analyzed as follows. 
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where the term  kLOF p  is the local outlier factor of the data instance p and  kN p  is 

its k-distance neighborhood. 

If the k-distance of the data instance q, denoted as  k distance q , is not less than 

the distance between the data instances p and q, then the local outlier factor of the data 

instance p is computed as 
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where the term qo  is the kth-nearest neighbors of the data instance q. 

Let us assume that the performance metric data of the data instance 

1 2, , ,
T

mq q q q     and the performance metric data of the data instance 

1 2, , ,
T

m

q q q qo o o o    . 

where the term m represents the number of performance metrics. 

Then, the local outlier factor of the data instance p can be transformed as follows. 
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 (7) 

where the term 1 2, , ,
T

mp p p   represents the performance metric data of data instance 

p. 

Finally, the contribution of each performance metric is computed as follows. 

                                              
 
 

i

ki

k

LOF p
contribution p

LOF p
                                          (8) 

where the term i is the ith performance metric. 

When the k-distance of the data instance q, denoted as  k distance q , is less than 

the distance between the data instances p and q, then the local outlier factor of the data 

instance p can also be transformed to be the equation (7). 

The performance metrics are sorted based on their contributions. The performance 

metric with the highest contribution is identified as anomalous and then the anomalous 

performance metric can help the system administrators seek out the potential problems 

that result in the performance anomaly of cloud computing platforms. 

 

4. Performance Evaluation 

In this section, the effectiveness of the proposed data-driven anomaly detection method 

is evaluated. 

 

4.1. Experiment Setup 

A series of experiments are conducted on a private cloud computing platform that is 

built using the open source software OpenStack and Xen. This private cloud computing 

platform is composed of six physical nodes, which are connected with a Gigabit Ethernet. 

One of them is chosen as a cloud controller, while the rest physical nodes are selected as 
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compute nodes. Xen is used to created virtual machines. Figure 2 shows the experimental 

environment of the private cloud computing platforms. 

 

 

Figure 2. Experiment Environment 

As presented in Figure 2, the data-driven anomaly detection method consists of a 

monitoring agent and an anomaly detector, respectively. The monitoring agent is in 

charge of collecting the performance metric data from cloud computing platforms 

continuously, and the anomaly detector is responsible for detecting the anomalous 

performance metric data and pinpointing the anomalous performance metric that results in 

the performance anomaly. 

In order to generate real workloads, the distributed online service benchmark 

application RUBIS is built on the private cloud computing platform and then a fault 

injection application is introduced to inject 50 faults with four types into the virtual 

machines, such as MemLeak, CPUHog, DiskHog, and NetHog. 

The precision, recall, and F-measure are used to evaluate the performance of the 

proposed data-driven anomaly detection method. They are defined as follows.  

                                                   
TP

TP FP

N
Precision

N N



                                             (10) 

                                                    
TP

TP FN

N
Recall

N N



                                                 (11) 

                                              1

2 Precision Recall
F

Precision Recall

 



                                            (12) 

where the term TPN  is the number of anomalous performance metric data that are 

identified as anomalous, the term FPN  represents the number of normal performance 

metric data, which are identified as anomalous. The term FNN  is the number of 

anomalous performance metric data that are identified as normal. 

In order to assess the performance of the proposed data-driven anomaly detection 

method, the proposed data-driven anomaly detection method is compared with previous 
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methods that are proposed for cloud computing platforms, which are the EbAT, FDCS, 

and FChain. 

 

4.2. Experimental Results 

In this section, experimental results are presented and analyzed. 

 

Table 1. Precision, Recall, and F-Measure for Different Anomaly Detection 
Methods 

Anomaly detection 

methods 
NTP+NFP NTP Precision Recall F-measure 

Proposed data-driven 

anomaly detection method 
51 48 94.12% 96% 95.05% 

EbAT 55 47 89.09% 94% 91.48% 

FDCS 53 46 86.79% 92% 89.32% 

FChain 52 42 80.77% 84% 82.35% 

 

Table 1 shows the precision, recall, and F-measure for four anomaly detection methods. 

It can be seen that the proposed data-driven anomaly detection method outperforms the 

EbAT, FDCS, and FChain methods in terms of precision, recall, and F-measure. The 

EbAT, FDCS, FChain anomaly detection methods identify the normal performance metric 

data fluctuation as anomalies, while the proposed data-driven anomaly detection method 

introduces the local outlier factor algorithm to detect the performance anomaly and then 

can avoid that the normal performance metric data fluctuation as anomalies. Hence, the 

proposed data-driven anomaly achieves the higher precision, recall, and F-measure than 

the EbAT, FDCS, FChain anomaly detection methods. 

 

5. Conclusions 

In this paper, an efficient data-driven anomaly detection method is proposed for 

real cloud computing platforms that are built using the OpenStack and Xen. The 

proposed data-driven anomaly detection method applies the local outlier factor 

algorithm to the performance metric data collected from cloud computing platforms 

during runtime in order to detect the performance anomaly. The local outlier factor 

algorithm could avoid that the normal performance metric data fluctuation as 

anomalies. In order to pinpoint the anomalous performance metrics that lead to the 

anomalous performance metric data, the proposed data-driven anomaly detection 

method analyzes the formula of the local outlier factor and then computes the 

contribution of each performance metric. A series of experiments are conducted a 

private cloud computing platform that is built using the open source software 

OpenStack and Xen. Experimental results show that the proposed data-driven 

anomaly method is better than previous anomaly detection methods that are 

designed for cloud computing platforms in terms of precision, recall, and F-measure. 
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