
International Journal of Hybrid Information Technology

Vol.9, No.2 (2016), pp. 439-450

http://dx.doi.org/10.14257/ijhit.2016.9.2.39

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2016 SERSC

Data-driven Anomaly Detection Method for Monitoring Runtime

Performance of Cloud Computing Platforms

Mingwei Lin
1
, Zhiqiang Yao

1*
, Fei Gao

1
 and Yang Li

1

1
Faculty of Software, Fujian Normal University, Fuzhou 350108, Fujian, China

yzqfnu@163.com

Abstract

Cloud computing platforms are complex system, which consist of a lot of software

working together. Because of software defects, cloud computing platforms may has

performance anomaly during runtime. In this paper, a data-driven anomaly detection

method is proposed to monitor runtime performance for cloud computing platforms. The

proposed method can not only detect the performance anomaly of cloud computing

platforms during runtime, but also find out which performance metric results in the

anomaly. A series of experiments are conducted on a real private cloud computing

platform based on OpenStack and experimental results show the proposed method is

better than previous anomaly detection methods for cloud computing platforms.

Keywords: Data-driven, Anomaly detection, Cloud computing, Local outlier factor

1. Introduction

Cloud computing, which is a kind of new computing method based on Internet, has

been the research focus in both industry and academia [1]. Many large-scale IT

companies have their own cloud computing platforms. For example, Amazon releases the

Elastic Compute Cloud (EC2) and Simple Storage Service (S3) [2], Microsoft also

customizes an operating system called Microsoft Azure for cloud computing platforms [3].

Experts and scholars from academia follow IT companies and have developed a series of

open source software for cloud computing. For instance, the company Eucalyptus

Systems releases a free and open source computer software, which is called Eucalyptus

(Elastic Utility Computing Architecture for Linking Your Programs To Useful Systems)

and used for building Amazon Web Services (AWS)-compatible private and hybrid cloud

computing platforms [4]. Rajiv Ranjan from University of Melbourne also develops an

extensible simulation toolkit called CloudSim [5]. The open source CloudSim simulation

toolkit is widely used to model and simulate cloud computing platforms and evaluate

resource provisioning algorithms by researchers. These research achievements promote

the quick development of cloud computing. Currently, cloud computing is widely used in

many fields such as medical treatment, education, agriculture, and manufacture.

As the market share of cloud computing grows quickly, a large number of countries list

cloud computing as the national overall development strategy and then promote the

industrial development of cloud computing. For example, United States government

releases a Federal Cloud Computing Strategy white paper in February 2011. This white

paper said that 25% of IT budget would be used to migrate current IT systems to cloud

computing platform in order to solve the problems that the utilization of e-government

infrastructure is very low. United Kingdom government also published a G-Cloud plan in

November 2011. This G-Cloud plan invests 6000 million pounds to build public cloud

service network in order to reduce the IT expense of government.

In the traditional IT infrastructure, each business system monopolizes computing,

storage and network resources, but the average utilization of hardware resources for

business systems is less than 10% [6]. Moreover, hardware devices are changed

International Journal of Hybrid Information Technology

Vol.9, No.2 (2016)

140 Copyright ⓒ 2016 SERSC

frequently. Typically, they are updated every three to five years. In this case, a number of

hardware resources are wasted and IT operation costs of enterprises are very high.

Moreover, in the traditional IT infrastructure, it takes a long time to let new business

systems online and results in delaying the online time of business systems seriously.

Cloud computing often uses the virtualization technology to consolidate existing

hardware resources and forms the shared resource pool [7]. In this case, business systems

built on cloud computing platforms can obtain computing, storage, and network resources

on demand. It can effectively solve the problems of traditional IT infrastructure. As cloud

computing develops and matures continuously, more and more enterprises deploy their

business systems to cloud computing platforms in order to improve the utilization of

hardware resources and reduce the IT operation cost. As the number of business systems

deployed on cloud computing platforms increases continuously, the scales of cloud

computing platforms enlarge continuously and the cloud computing platforms become

increasingly complex. Moreover, virtual machines on the cloud computing platforms

share hardware resources and all software has software defects, especially for complex

system such as cloud computing platforms [8]. All of these cause that cloud computing

platforms are prone to performance anomaly during runtime.

In order to avoid the performance anomaly of cloud computing platforms, a large

number of performance anomaly detection methods have been proposed. However,

previous anomaly detection methods focus on detect the performance anomaly of cloud

computing platforms. None of them do research on how to find out performance metrics

that incur the performance anomaly. In this paper, an efficient data-driven anomaly

detection method is proposed to monitor the performance anomaly of cloud computing

platforms during their runtime. The proposed anomaly detection method introduces an

improved local outlier factor algorithm to detect the performance anomaly and then finds

out the performance metrics that incur the performance anomaly. A series of experiments

are conducted on a private cloud computing platform that is built by using OpenStack and

Xen software. Experimental results show that the proposed anomaly detection method

outperforms previous anomaly detection methods for cloud computing platforms.

The rest of this paper is organized as follows. Section 2 briefly reviews related works.

Our proposed anomaly detection method is presented in Section 3 in detail. Section 4

shows the performance evaluation. Finally, conclusions are drawn in Section 5.

2. Related Works

In this Section, commonly used anomaly detection techniques are first described and

then existing works on performance anomaly detection for cloud computing platforms are

briefly reviewed.

2.1. Anomaly Detection Techniques

Anomaly detection is a process that detects an anomalous data instance from a dataset

[9]. The anomalous data instances are also referred to as anomaly. Anomaly is usually

categorized into three types, which are point anomaly, contextual anomaly, and collective

anomaly [10]. If an individual data instance can be considered as anomalous with respect

to the rest data, then the data instance is referred to as a point anomaly. If a data instance

is anomalous in a specific context, but not otherwise, then it is defined as a contextual

anomaly. If a collection of related data instances is anomalous with respect to the entire

dataset, then it is considered as a collective anomaly. The performance anomaly of cloud

computing platforms belongs to the type of point anomaly [11]. Therefore, this paper

briefly reviews the anomaly detection techniques that are designed for detecting point

anomaly.

(1) Statistical anomaly detection techniques

International Journal of Hybrid Information Technology

Vol.9, No.2 (2016)

Copyright ⓒ 2016 SERSC 141

The underlying design principle of any statistical anomaly detection technique is

that an anomaly is a data instance which is suspected of being partially or wholly

irrelevant because it is not generated by the stochastic model assumed [12]. This

kind of anomaly detection techniques assume that normal data instances often

appear in high probability regions of a stochastic model assumed and anomalies

often occur in the low probability regions of the stochastic model. Statistical

anomaly detection techniques fit a statistical model (usually for normal data

instances) to the given dataset and then use a statistical inference test to determine

whether an unknown data instance belongs to this statistical model or not. If data

instances have a low probability of being generated from a fitted statistical model

based on the applied test statistic, they are considered as anomalies. If the

assumptions regarding the underlying data distribution hold true, statistical anomaly

detection techniques could identify anomalies from a dataset effectively. However,

the statistical anomaly detection techniques rely on the assumptions that the data

instances are generated from a particular distribution and the assumption usually do

not hold true, especially for high dimensional real datasets.

(2) Clustering-based anomaly detection techniques

Clustering is a technique that group similar data instances into several clusters

[13]. Clustering-based anomaly detection techniques introduce the underlying

principle of clustering technique and they often use the Euclidean distance to

measure the similarity between two data instances [14]. Clustering-based anomaly

detection techniques are usually categorized into three types.

The first type of clustering-based anomaly detection techniques assumes that

normal data instances belong to a cluster in the data and anomalies do not belong to

any cluster [15]. Clustering-based anomaly detection techniques based on this

assumption applies a known clustering-based algorithm to the given data in order to

form clusters and defines any data instance that does not belong to any cluster as

anomalous.

The second type of clustering-based anomaly detection techniques is designed

based on the assumption that normal data instances are located close to the centroid

of their closest cluster and anomalies are far away from the centroid of their closest

cluster [16]. This type of clustering-based anomaly detection techniques is

composed of two steps. In the first step, a clustering algorithm is applied to group

the given data instances into clusters. In the second step, the distance of each data

instance to the centroid of its closest cluster is computed as its anomaly score.

The third type of clustering-based anomaly detection techniques assumes that

normal data instances belong to large and dense clusters and anomalies belong to

either small clusters or sparse clusters [17]. Clustering-based anomaly detection

techniques based on this assumption consider data instances belonging to clusters

whose size and/or density is below a threshold, as anomalous.

Clustering-based anomaly detection techniques do not need to know the

distribution of data as statistical anomaly detection techniques. However, clustering-

based anomaly detection techniques must choose a suitable parameter for the width

of clusters.

(3) Classification-based anomaly detection techniques

Classification-based anomaly detection techniques is composed of two steps [18].

In the first step (training phase), a classifier is learned using a set of labeled training

data. In the second step (testing phase), the classifier is adopted to classify a test

instance as normal or anomalous. Classification-based anomaly detection techniques

assume that a classifier that can distinguish normal class from anomalous class can

be learned using a set of labeled training data. Based on the labels of training data in

the training phase, classification-based anomaly detection techniques can be

categorized into two types: multi-class and one-class anomaly detection techniques.

International Journal of Hybrid Information Technology

Vol.9, No.2 (2016)

142 Copyright ⓒ 2016 SERSC

The multi-class classification-based anomaly detection techniques operate based on

the assumption that the labeled training data belonging to multiple normal classes

and the one-class classification-based anomaly detection techniques assume that all

labeled training data belong to only one class. The classification-based anomaly

detection techniques, especially the multi-class ones, can distinguish testing data

instances belonging to different classes. However, the classification-based anomaly

detection techniques depend on the availability of accurate labels for various normal

classes, which is usually impossible.

(4) Nearest neighbor-based anomaly detection techniques

The nearest neighbor-based anomaly detection techniques are designed based on

the assumption that normal data instances appear in the dense neighborhoods and

anomalies occur far from their closest neighbors [19]. Such techniques define a

distance between two data instances, which are often computed using the Euclidean

distance. They can be categorized into two types. The first type of nearest neighbor -

based anomaly detection techniques define the anomaly score of a data instance as

its distance to its k
th

 nearest neighbor and the second type of nearest neighbor-based

anomaly detection techniques compute the anomaly score of a data instance as its

relative density. Nearest neighbor-based anomaly detection techniques are

unsupervised in nature and do not require labels for various classes. Moreover, they

do not need to make any assumptions regarding the distribution for the data.

However, if the anomalies within the data have enough close neighbors, the nearest

neighbor-based anomaly detection techniques will fail to classify them correctly.

2.2. Existing Works on Anomaly Detection for Cloud Computing Platforms

Wang, et al., proposed an online EbAT (Entropy-based Anomaly Testing) approach to

detect anomaly for cloud computing platforms [20]. The EbAT detects anomalies by

analyzing the data performance metric data distributions rather than individual metric data

thresholds. The entropy is used as a measurement to capture the degree of dispersal or

concentration of such distributions. Experimental results show that the EbAT approach

outperforms threshold-based approaches.

Pannu, et al., proposed a self-evolving anomaly detection framework for developing

highly dependable utility clouds [21]. The self-evolving anomaly detection framework

contains two components. The first one is anomaly detector determination. For a new

performance metric data record from cloud computing platforms, the anomaly detector

computes its abnormality score. If the abnormality score is larger than a threshold, a

warning is triggered with the type of abnormality, which can help the administrators of

cloud computing platforms to pinpoint the anomaly. The second one is anomaly detector

evolving and working dataset selection. The anomaly detector can self-evolve by learning

from newly verified and labeled data records in order to improve the performance of

anomaly detector.

Bhaduri, et al., proposed an automated fault detection framework for cloud systems,

which is called FDCS and uses the Ganglia system to collect the performance metric data

from each machine in the cloud computing platforms [22]. The FDCS uses the Euclidean

distance to compute the anomaly score of each machine and then identify whether the

machine is faulty or not.

Smith, et al., showed an autonomic anomaly detection framework for large-scale

computing cloud systems [23]. The proposed autonomic anomaly detection framework

first employs the data transformation step to tackle data diversity. Then, the feature

selection step is conducted to reduce the data dimension for quick and better analysis.

Finally, the anomaly detection step identifies the nodes that show significantly different

performance metric data from others as faulty nodes.

Nguyen, et al., proposed a black-box online fault localization system called FChain for

cloud computing systems to pinpoint faulty components [24]. The FChain is composed of

International Journal of Hybrid Information Technology

Vol.9, No.2 (2016)

Copyright ⓒ 2016 SERSC 143

two parts: FChain master and FChain slave. The FChain slave collects the performance

metric data from virtual machines continuously and normal workload fluctuation patterns

are learned to detect SLO violations. When a SLO violation is detected, the FChain

master pinpoints the faulty virtual machines.

Guan, et al., proposed an adaptive anomaly identification mechanism for cloud

computing infrastructures [25]. The proposed adaptive anomaly identification mechanism

first explores the most relevant principal components for each type of possible failures.

Then, it leverages an adaptive Kalman filter to identify anomalies. Finally, it recursively

learns from the newly verified detection results in order to refine the anomaly detection

performance. Experimental results evaluate the effectiveness of the proposed adaptive

anomaly identification mechanism.

3. Data-Driven Anomaly Detection Method

Through analysis of existing works on anomaly detection for cloud computing

platforms, we can found that none of them focus on pinpointing the performance metrics

that result in the anomalies of cloud computing platforms. In order to solve this problem,

an efficient data-driven anomaly detection method is proposed to identify the anomalies

and then pinpoint the performance metrics that lead to the anomalies.

3.1. Identify Anomalies

The data-driven anomaly detection method introduces the local outlier factor algorithm

to identify anomalies for cloud computing platforms. The local outlier factor algorithm is

a kind of nearest neighbor-based anomaly detection techniques, which was first proposed

by Breunig, et al., in 2000 [26]. The local outlier factor algorithm assigns to each data

instance a degree of being an anomaly. This degree is called the local outlier factor (LOF),

which indicates that whether the data instance is located in a dense region or not. The

local outlier factor of each data instance can be computed as follows.

(1) Computing the k-distance of a data instance p

For any positive integer k, if it satisfies the following two conditions, the k-distance of

a data instance p, denoted as  k distance p , is defined as the distance  ,d p q

between the data instance p and an data instance q.

(1.1) For at least k data instances  ' \q D p it holds that    ', ,d p q d p q ;

(1.2) For at most k-1 data instances  ' \q D p it holds that    ', ,d p q d p q .

The distance  ,d p q between two data instances is usually computed using the

Euclidean distance between these two data instances.

(2) Determining the k-distance neighborhood of the data instance p

Given the k-distance of data instance p, the k-distance neighborhood of data instance p

is a set of data instances whose distances from data instance p are not larger than the k-

distance of data instance p.

           \ | ,kKNN p N p q D p d p q k distance p     (1)

where the term  KNN p is the k-distance neighborhood of data instance p.

(3) Calculating the reachability distance of the data instance p w.r.t a data instance q

The reachability distance of the data instance p with respect to a data instance q is

defined as

       , max , ,kreach dist p q k distance q d p q   (2)

International Journal of Hybrid Information Technology

Vol.9, No.2 (2016)

144 Copyright ⓒ 2016 SERSC

p1

p2

q

reach-distk(p1,q)=k-distance(q)

reach-distk(p2,q)=d(p2,q)

Figure 1. Reachability Distances of the Data Instances 1p and 2p w.r.t the

Data Instance q for 3k 

Figure 1 shows the reachability distance of the data instances 1p and 2p with respect

to the data instance q when k is equal to 3. Because the data instance 1p appears in the k-

distance neighborhood of the data instance q, the reachability distance of the data instance

1p with respect to the data instance q is the k-distance of the data instance q. The data

instance 2p is not inside the k-distance neighborhood of the data instance q, the

reachability distance of the data instance 2p with respect to the data instance q is equal to

the actual distance between the two data instances.

(4) Calculating the local reachability density of the data instance p

The local reachability density of the data instance p is defined as

  

 
 

 

,

1 k

k

q N p

k

k

reach dist p q

lrd p
N p



 
 

  
 
 


 (3)

Intuitively, the local reachability density of the data instance p is computed as the

inverse of the average reachability distance of the data instance p with respect to all the

data instances within the k-distance neighborhood of the data instance p.

(5) Calculating the local outlier factor (lof) of the data instance p

The local outlier factor of the data instance p is defined as

 

 
  

 
k

k

q N p k

k

k

lrd q

lrd p
LOF p

N p





 (4)

Intuitively, the local outlier factor of the data instance is calculated as the average of

the ratio of the local reachability density of the data instance p and those of each data

instance in the k-distance neighborhood of the data instance p.

If the local outlier factor of a data instance is approximately equal to 1, then it is

identified as a normal data instance. If the local outlier factor a data instance is much

higher than 1, then it is considered as an anomaly.

In order to detect the performance anomaly of cloud computing platforms, the

performance metric data are collected from cloud computing platforms during runtime

continuously and then the local outlier factor of each performance metric data is

calculated using the above local outlier factor algorithm. If the local outlier factor of

current performance metric data is approximately equal to 1, it indicates that current cloud

computing platforms perform well. If the local outlier factor of current performance

International Journal of Hybrid Information Technology

Vol.9, No.2 (2016)

Copyright ⓒ 2016 SERSC 145

metric data is much higher than 1, it indicates that current cloud computing platforms are

very likely to have a performance anomaly.

3.2. Pinpoint the Anomalous Performance Metrics

When a performance anomaly is identified from cloud computing platforms during

runtime, the data-driven anomaly detection method continues to pinpoint the anomalous

performance metrics to help system administrators to adopt some measures.

The data-driven anomaly detection method analyzes the formula of the local outlier

factor and looks for anomalous performance metrics that contribute to the anomalous

performance metric data significantly.

(1) The formula of the local outlier factor is analyzed as follows.

 

 
  

 

 

 

  

 
 

 

 
 

 

 
 

    
 

 
2

1

,
1

max , ,

k

k

k

k

k k

k

q N p k

k

k

k

q N p kk

k

q N p

k

q N pk k

k

q N p q N p

k

lrd q

lrd p
LOF p

N p

lrd q

lrd pN p

reach dist p q

lrd q
N p N p

lrd q k distance q d p q

N p









 




















 

 (5)

where the term  kLOF p is the local outlier factor of the data instance p and  kN p is

its k-distance neighborhood.

If the k-distance of the data instance q, denoted as  k distance q , is not less than

the distance between the data instances p and q, then the local outlier factor of the data

instance p is computed as

 

 
 

 
 

 

 
 

 
 

 

2

2

2

k k

k k

k

q N p q N p

k

k

k q

q N p q N p

k

lrd q k distance q

LOF p
N p

lrd q q o

N p

 

 









 

 
 (6)

where the term qo is the kth-nearest neighbors of the data instance q.

Let us assume that the performance metric data of the data instance

1 2, , ,
T

mq q q q    and the performance metric data of the data instance

1 2, , ,
T

m

q q q qo o o o    .

where the term m represents the number of performance metrics.

Then, the local outlier factor of the data instance p can be transformed as follows.

International Journal of Hybrid Information Technology

Vol.9, No.2 (2016)

146 Copyright ⓒ 2016 SERSC

 

 
 

 
 

 

 
 

       
 

 

 
 

 
 

   
  

 

 
 

 
 

 

 
 

2

2

2 2 2 2
1 1 2 2

2

2 2 2
1 1 2 2

2

2
1 1

2

k k

k k

k k k k

k k k

k

k q

q N p q N p

k

m m m m

k q q q q

q N p q N p

k

m m

k q q q

q N p q N p q N p q N p

k

k q k

q N p q N p q N p

k

LOF p

lrd q q o

N p

lrd q q o q o q o q o

N p

lrd q q o q o q o

N p

lrd q q o lrd q

N p

 

 

   

  





        
  



 
      

  



 

 

 

   

   
 

 

 
 

 
 

 

     

2
2 2

2

2

2

1 2

k

k k

q

q N p

k

m m

k q

q N p q N p

k

m

k k k

q o

N p

lrd q q o

N p

LOF p LOF p LOF p



 









   

 

 

 (7)

where the term 1 2, , ,
T

mp p p   represents the performance metric data of data instance

p.

Finally, the contribution of each performance metric is computed as follows.

  
 
 

i

ki

k

LOF p
contribution p

LOF p
 (8)

where the term i is the ith performance metric.

When the k-distance of the data instance q, denoted as  k distance q , is less than

the distance between the data instances p and q, then the local outlier factor of the data

instance p can also be transformed to be the equation (7).

The performance metrics are sorted based on their contributions. The performance

metric with the highest contribution is identified as anomalous and then the anomalous

performance metric can help the system administrators seek out the potential problems

that result in the performance anomaly of cloud computing platforms.

4. Performance Evaluation

In this section, the effectiveness of the proposed data-driven anomaly detection method

is evaluated.

4.1. Experiment Setup

A series of experiments are conducted on a private cloud computing platform that is

built using the open source software OpenStack and Xen. This private cloud computing

platform is composed of six physical nodes, which are connected with a Gigabit Ethernet.

One of them is chosen as a cloud controller, while the rest physical nodes are selected as

International Journal of Hybrid Information Technology

Vol.9, No.2 (2016)

Copyright ⓒ 2016 SERSC 147

compute nodes. Xen is used to created virtual machines. Figure 2 shows the experimental

environment of the private cloud computing platforms.

Figure 2. Experiment Environment

As presented in Figure 2, the data-driven anomaly detection method consists of a

monitoring agent and an anomaly detector, respectively. The monitoring agent is in

charge of collecting the performance metric data from cloud computing platforms

continuously, and the anomaly detector is responsible for detecting the anomalous

performance metric data and pinpointing the anomalous performance metric that results in

the performance anomaly.

In order to generate real workloads, the distributed online service benchmark

application RUBIS is built on the private cloud computing platform and then a fault

injection application is introduced to inject 50 faults with four types into the virtual

machines, such as MemLeak, CPUHog, DiskHog, and NetHog.

The precision, recall, and F-measure are used to evaluate the performance of the

proposed data-driven anomaly detection method. They are defined as follows.

TP

TP FP

N
Precision

N N



 (10)

TP

TP FN

N
Recall

N N



 (11)

 1

2 Precision Recall
F

Precision Recall

 



 (12)

where the term TPN is the number of anomalous performance metric data that are

identified as anomalous, the term FPN represents the number of normal performance

metric data, which are identified as anomalous. The term FNN is the number of

anomalous performance metric data that are identified as normal.

In order to assess the performance of the proposed data-driven anomaly detection

method, the proposed data-driven anomaly detection method is compared with previous

International Journal of Hybrid Information Technology

Vol.9, No.2 (2016)

148 Copyright ⓒ 2016 SERSC

methods that are proposed for cloud computing platforms, which are the EbAT, FDCS,

and FChain.

4.2. Experimental Results

In this section, experimental results are presented and analyzed.

Table 1. Precision, Recall, and F-Measure for Different Anomaly Detection
Methods

Anomaly detection

methods
NTP+NFP NTP Precision Recall F-measure

Proposed data-driven

anomaly detection method
51 48 94.12% 96% 95.05%

EbAT 55 47 89.09% 94% 91.48%

FDCS 53 46 86.79% 92% 89.32%

FChain 52 42 80.77% 84% 82.35%

Table 1 shows the precision, recall, and F-measure for four anomaly detection methods.

It can be seen that the proposed data-driven anomaly detection method outperforms the

EbAT, FDCS, and FChain methods in terms of precision, recall, and F-measure. The

EbAT, FDCS, FChain anomaly detection methods identify the normal performance metric

data fluctuation as anomalies, while the proposed data-driven anomaly detection method

introduces the local outlier factor algorithm to detect the performance anomaly and then

can avoid that the normal performance metric data fluctuation as anomalies. Hence, the

proposed data-driven anomaly achieves the higher precision, recall, and F-measure than

the EbAT, FDCS, FChain anomaly detection methods.

5. Conclusions

In this paper, an efficient data-driven anomaly detection method is proposed for

real cloud computing platforms that are built using the OpenStack and Xen. The

proposed data-driven anomaly detection method applies the local outlier factor

algorithm to the performance metric data collected from cloud computing platforms

during runtime in order to detect the performance anomaly. The local outlier factor

algorithm could avoid that the normal performance metric data fluctuation as

anomalies. In order to pinpoint the anomalous performance metrics that lead to the

anomalous performance metric data, the proposed data-driven anomaly detection

method analyzes the formula of the local outlier factor and then computes the

contribution of each performance metric. A series of experiments are conducted a

private cloud computing platform that is built using the open source software

OpenStack and Xen. Experimental results show that the proposed data-driven

anomaly method is better than previous anomaly detection methods that are

designed for cloud computing platforms in terms of precision, recall, and F-measure.

Acknowledgments

The work of this paper is supported by the National Natural Science Foundation of

China under Grant No. 61502102, No. 61370078, and No. 61402109, Fujian Province

Education Scientific Research Projects for Young and Middle-aged Teachers under

Grant No. JA15122, National Undergraduate Training Programs for Innovation and

Entrepreneurship under Grant No. 201510394021, and Fujian Normal University

Undergraduate Training Programs for Innovation and Entrepreneurship under Grant No.

cxxl-2015163.

International Journal of Hybrid Information Technology

Vol.9, No.2 (2016)

Copyright ⓒ 2016 SERSC 149

References

[1] F. Nadeem and R. Qaiser, “An early evaluation and comparison of three private cloud computing

software platforms”, Journal of Computer Science and Technology, vol. 30, no. 3, (2015), pp. 639-654.

[2] M. Balduzzi, J. Zaddach, D. Balzarotti, E. Kirda and S. Loureiro, “A security analysis of amazon's

elastic compute cloud service”, Proceedings of the ACM Symposium on Applied Computing, (2012),

pp. 1427-1434.

[3] B. Di Martino, G. Cretella, A. Espostito and R. G. Sperandeo, “Semantic representation of cloud

services: A case study for Microsoft windows azure”, Proceedings of 2014 International Conference on

Intelligent Networking and Collaborative Systems, (2015), pp. 647-652.

[4] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff and D. Zagorodnov, “The

eucalyptus open-source cloud-computing system”, Proceedings of 2009 9th IEEE/ACM International

Symposium on Cluster Computing and the Grid, (2009), pp. 124-131.

[5] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose and R. Buyya, “CloudSim: A toolkit for

modeling and simulation of cloud computing environments and evaluation of resource provisioning

algorithms”, Software - Practice and Experience, vol. 41, no. 1, (2011), pp. 23-50.

[6] C.-F. Wu, “Learning attitude and its effect on applying cloud computing service to IT education”,

International Journal of u- and e- Service, Science and Technology, vol. 6, no. 1, (2013), pp. 39-48.

[7] W. Bai and W. Geng, “Research on operation management under the environment of cloud computing

data center”, International Journal of Database Theory and Application, vol. 8, no. 2, (2015), pp. 185-

192.

[8] M. Gupta, A. B. Sharma, H. Chen and G. Jiang, “Context-aware time series anomaly detection for

complex systems”, 2013 Workshop on Data Mining for Service and Maintenance, (2013), pp. 14-22.

[9] M. Xie, S. Han, B. Tian and S. Parvin, “Anomaly detection in wireless sensor networks: A survey”,

Journal of Network and Computer Applications, vol. 34, no. 4, (2011), pp. 1302-1325.

[10] V. Chandola, A. Banerjee and V. Kumar, “Anomaly detection: A survey”, ACM Computing Surveys,

vol. 41, no. 3, (2009), Article no. 15.

[11] S. Fu, “Performance metric selection for autonomic anomaly detection on cloud computing systems”,

IEEE Global Telecommunications Conference, (2011), pp. 1-5.

[12] Y.-J. Chang, K.-P. Lin, L.-D. Chou, S.-F. Chen and T.-S. Ma, “Statistical anomaly detection for

individuals with cognitive impairments”, IEEE Journal of Biomedical and Health Informatics, vol. 18,

no. 1, (2014), pp. 384-390.

[13] F. Ren, L. Hu, K. Zhao, H. Liang and W. Ren, “ADIC: an anomaly detection algorithm using

incremental clustering”, Journal of Information and Computational Science, vol. 6, no. 2, (2009), pp.

1051-1057.

[14] M. Leng, X. Lai and Y. Liu, “Clustering model for anomaly detection in time series sets”, Journal of

Information and Computational Science, vol. 7, no. 1, (2010), pp. 85-93.

[15] M. Ester, H.-P. Kriegel, J. Sander and X. Xu, “A density-based algorithm for discovering clusters in

large spatial databases with noise”, Proceedings of 2nd International Conference on Knowledge

Discovery and Data Mining, (1996), pp. 226-231.

[16] Z. He, X. Xu and S. Deng, “Discovering cluster-based local outliers”, Pattern Recognition Letters, vol.

24, no. 9-10, (2003), pp. 1641-1650.

[17] M. Otey, S. Parthasarathy, A. Ghoting, G. Li, S. Narravula and D. Panda, “Towards NIC-based

intrusion detection”, Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, (2003), pp. 723-728.

[18] P.-N. Tan, M. Steinbach and V. Kumar, “Introduction to data mining”, Addison-Wesley, (2005).

[19] S. Boriah, V. Chandola and V. Kumar, “Similarity measures for categorical data: A comparative

evaluation”, Proceedings of the 8th SIAM International Conference on Data Mining, (2008), pp. 243-

254.

[20] C. Wang, V. Talwar, K. Schwan and P. Ranganathan, “Online detection of utility cloud anomalies using

metric distributions”, Proceedings of the 2010 IEEE/IFIP Network Operations and Management

Symposium, (2010), pp. 96-103.

[21] H.-S. Pannu, J. Liu and S. Fu, “A self-evolving anomaly detection framework for developing highly

dependable utility clouds”, 2012 IEEE Global Communications Conference, (2012), pp. 1605-1610.

[22] K. Bhaduri, K. Das and B. L. Matthews, “Detecting abnormal machine characteristics in cloud

infrastructures”, Proceedings of 11th IEEE International Conference on Data Mining Workshops,

(2011), pp. 137-144.

[23] D. Smith, Q. Guan and S. Fu, “An anomaly detection framework for autonomic management of

compute cloud systems”, Proceedings of 34th Annual IEEE International Computer Software and

Applications Conference Workshops, (2010), pp. 376-381.

[24] H. Nguyen, Z. Shen, Y. Tan and X. Gu, “FChain: Toward black-box online fault localization for cloud

systems”, Proceedings of 2013 IEEE 33rd International Conference on Distributed Computing Systems,

(2013), pp. 21-30.

International Journal of Hybrid Information Technology

Vol.9, No.2 (2016)

150 Copyright ⓒ 2016 SERSC

[25] Q. Guan and S. Fu, “Adaptive anomaly identification by exploring metric subspace in cloud computing

infrastructures”, Proceedings of 2013 IEEE 32nd International Symposium on Reliable Distributed

Systems, (2013), pp. 205-214.

[26] M.-M. Breunig, H.-P. Kriegel, R.-T. Ng and J. Sander, “LOF: identifying density-based local outliers”,

Proceedings of the ACM SIGMOD International Conference on Management of Data, vol. 29, no. 2,

(2000), pp. 93-104.

Authors

Mingwei Lin, He received his B.S. and Ph.D. degrees from

Chongqing University, China, in July 2009 and December 2014.

Currently, he is a lecturer in the Faculty of Software, Fujian Normal

University, China. His research interests include anomaly detection,

NAND flash memory, Linux operating system, and cloud computing.

He got the CSC-IBM Chinese Excellent Student Scholarship in 2012.

Zhiqiang Yao, He received the PhD degree from Xidian

University, China, in 2014. Currently, he is a professor in the Faculty

of Software, Fujian Normal University, ACM Professional

Membership, Senior Member of China Computer Federation (CCF).

His current research interests mainly focus on security in cloud

computing, multimedia security.

Fei Gao, He is a junior student in the Faculty of Software, Fujian

Normal University, Fuzhou, China. He majors in Software

Engineering. He has applied for a National Undergraduate Training

Program for Innovation and Entrepreneurship successfully. His

current research interests include cloud computing, android

application development, and flash memory.

Yang Li, He is a junior student in the Faculty of Software, Fujian

Normal University, Fuzhou, China. Her major is Software

Engineering. She is hosting a Fujian Normal University

Undergraduate Training Program for Innovation and

Entrepreneurship. Her current research interests include anomaly

detection, cloud computing, and flash memory.

