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Abstract 

In this paper, the iterative learning control (ILC) scheme combined with the 

backstepping controller is applied to the Wiener system, which is a typical nonlinear and 

non-Lipschitz one. The ILC scheme as a feed forward control can improve the 

convergence speed, and the perfect tracking can be achieved as the system is repeatable. 

The backstepping control is a feedback control which improves the robustness of the 

control system, especially for the existence of non-repeatable noises. The backstepping 

part also guarantees the asymptotic stability, which further improves the convergence 

speed. The design of backstepping controller is based on the error information in the 

current control process, and the Lyapunov method. The convergence condition is 

achieved and the convergence speed is analyzed as well. It can be seen that the 

combination of ILC scheme and backstepping method can improve the system 

performance to a large extant. Numerical simulations validate the above conclusions. 
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1. Introduction 

The ILC scheme which seeks to construct an inverse of the plant dynamics over 

multiple trials [1] is proposed to compensate for output tracking error. The perfect 

tracking is one of the most important advantages from ILC scheme if certain requirements 

are satisfied. One of these requirements is the repeatability of system. However, because 

the basic ILC strategy is essentially a feedforward control approach that fully utilizes the 

past control information [2], the factors such as non-repeatable disturbances may destroy 

the repeatability of system seriously. Improve the robust of the ILC system is an urgent 

task. In the literature, there are many ILC laws proposed for different classes of systems: 

linear or nonlinear systems, time delay systems, cascade systems, stochastic systems etc., 

[3]. The ILC can also be applied in continuous time systems [4], [5] and discrete time 

systems [6]6-11]. 

The main characteristic of the continuous time system is that the input and output 

signals are continuous function of the time. The state of the continuous system can be 

described by differential equation. The discrete time system which is also called sampling 

control system transfers information by discrete digital sequence. The relationship 

between different variables of the discrete time system is described by difference 

equation. Sample time is the main difference of the two systems. Many methods, such as 

Tustin [12][13] rule or backward difference method [14], are applied to the discretization 

of the continuous system. In this paper, the ILC is applied in the continuous Wiener 

system. 

In many cases block structured models, series and parallel arrangements comprising 

alternating linear dynamic and nonlinear systems, may provide an acceptable compromise 

[15]. Generally speaking, the basic block structured models are the Wiener system and the 

Hammerstein system. In this paper, the Wiener system is applied. The Wiener system is 
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composed of a linear dynamical system followed by a nonlinear system which was 

introduced by Wiener [16]. Nowadays, more and more scholars focus on the Wiener 

system because the Wiener system can be used to model the majority of practical systems, 

for example, distillation column, pH process, biological cybernetics, power amplifier and 

others [17]. Any time-invariant system with fading memory may be approximated by a 

Wiener system [18]. In this paper, the linear part in the Wiener system is time-invariant 

linear dynamics with relative degree one while the nonlinear part is an affine system. The 

backstepping method can solve the problems of the system not only with relative degree 

one but alsowith higher relative degree. 

In this paper, the backstepping method is applied to improve the robust of the system. 

This is an effective method to solve the problems caused by the non-repeatability factors 

in the system. In recent years, the backstepping control designtechniques have received of 

great attention because of itssystematic and recursive design methodology for 

nonlinearfeedback control [19]. This method can flexibly combinewith other control 

techniques, such as the adaptive control [20] and the optimal control [21].The 

backstepping method has been successfully applied to many practical applications such as 

the boiler-turbine unit control system of coal-firedpower plant [22], the single machine 

infinite bussystem [23], the Nuclear U-tube Steam Generator [24], the VGT Pneumatic 

Actuator [25], and so on[26]. In this paper, the ILC scheme is combined with the 

backstepping control for the reason that this strategy can improve the system performance 

especially the robust and adaptive to a large extent compared to the ILC scheme. In fact, 

the stability analysis for the ILC system is difficult so that some nonlinear feedback 

control schemes are proposed [27]. Backsteppingalgorithm is designed for stabilizing 

nonlinear systemsin the applications of tracking and regulation [28]. The main advantages 

of the backstepping method are included but not limited to: global stability can be 

achieved with ease, transient performance can be guaranteed and explicitly analyzed, and 

they have the flexibilityto avoid unnecessary cancellation of useful nonlinearities 

compared with the feedback linearization technique [29], the convenience of analyzing 

the stability of system because the controller is a Lyapunov-basedrecursive design 

controller, the stronger robustness and adaptiveness of the system improved by the 

feedback control property, respectively. The backstepping technique combined with the 

ILC mechanism is applied for developing a constructive control strategy to cope with 

Wiener system. To the best of our knowledge, the result we will propose is not covered by 

any of the scarce results, and the problem of backstepping method combined with ILC 

applied in the Wiener system remains open. 

This paper is organized as follows: some preliminaries are introduced in Section 2. The 

backstepping controller is designed in Section 3. In section 4,the convergence of the 

Wiener system is analyzed. Section 5 shows some simulation results to valid the 

conclusions.In the last Section 6, the conclusions are summarized. 

 

2. Preliminaries 

In this Section, the Wiener system is considered which includes linear part and 

nonlinear part as shown in Figure 1. The linear part is a time invariant linear system while 

the nonlinear part is an affine system. 

The Wiener system can be described as 

 ̇ ( )   ̃  ( )   ̃  ( ), 

  ( )      ( ), 

 ̇ ( )   ̃(  ( ))   ̃(  ( ))  ( ), 

  ( )      ( ). 

In the equations above,   ( )and   ( ) are the state variables.The output of the linear 

part is   ( ) while that of the nonlinear part is  ( ).  ( )is also the output of the Wiener 

system.The iteration number is  . The system input is   ( ).The polynomial  ̃(  ( )) 
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and  ̃(  ( )) are related to the state variable of the nonlinear part.The parameters of the 

Wiener system are  ̃,  ̃,    and   , respectively. The three assumptions below should be 

satisfied all through this paper. 

 

Linear Nonlinear C2C1

u x yξ  ω

 

Figure 1. The Wiener System 

Assumption 1. The assumption is satisfied that the linear part and nonlinear part in the 

Wiener system is controllable and observable.So the relationship below can be achieved 

  ( )  (  
   )

    
   ( ), 

  ( )  (  
   )

    
   ( ). 

Then, 

 ̇ ( )     ̇ ( ) 

    ̃  ( )     ̃  ( ) 

    ̃(  
   )

    
   ( )     ̃  ( ) 

    ( )     ( ), 

where 

     ̃(  
   )

    
 , 

     ̃. 

By the same way 

 ̇ ( )     ̇ ( ) 

    ̃(  ( ))     ̃(  ( ))  ( ) 

    ̃((  
   )

    
   ( ))     ̃((  

   )
    

   ( ))  ( ) 

  (  ( ))   (  ( ))  ( ), 

where 

 (  ( ))     ̃((  
   )

    
   ( )), 

 (  ( ))     ̃((  
   )

    
   ( )). 

Assumption 2. The initial values of the system are the same. 

Assumption 3. The system is repeatable. This is a fundamental requirement for the ILC 

scheme. 

Here are some definitions and one lemma which will be used in this paper. 

Definition 1. Suppose   is     matrix and the  -norm of matrix   is defined as 

             ∑ |   |
 
   , 

which is simply the maximum absolute row sum of the matrix. 

Definition 2. A vector norm for  -vector-valued functions   ( ) defined on      as 

follows 

   ( )                   ( )   , 

this is the  -norm of the vector   ( ), where   is a positive constant. 

Lemma 1. In a normed vector space  , one of the defining properties of the norm is the 

triangle inequality, ( ) and  ( ) are continuous functions satisfy 

  ( )   ( )     ( )     ( )  . 

This lemma is called the triangle inequality. 

 

3. Design of Backstepping Controller 

The feedback control is a fundamental method to realize the stability of a nonlinear 

system, at the same time, it is also one of the effective methods as a feedback control to 

solve the nonlinear system problems. The idea behind backstepping is to design the 
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control signal by using some of the statesas “virtual controls” and designing for them as 

intermediate control variables [30]. 

In this section, the backstepping controller is designed to improve the performance of 

the system.Some of the subscript and the variables in the description of function may be 

ignored for the convenience of the introduction. The Wiener system is considered as 

 ̇ ( )     ( )     ( ), 

 ̇ ( )  (  ( ))   (  ( ))  ( ). 

In this system,   and   are the parameters of the linear part in system,  (  ( )) and 

 (  ( )) are the polynomial of nonlinear part which are related to the output of the 

system   ( ). 

Define    ( ), where ( ) is a virtual input of the nonlinear part. And 

 ̇ ( )  
   

   
  ( )   ( ) ( )     ( )   , 

Where   ( )   and   ( )   . It's obvious that 

 ̇   ( )   ( ) ( )   ( )    ( ) . 
Then it's defined that      ( ),so ̇   ̇   ̇( ). Next, define the vector   equals 

to   ̇. So the nonlinear equation in the Wiener system is transferred as 

 ̇   ( )   ( ) ( )   ( ) . 

The Lyapunov function  ( ) is designed as 

 ( )    ( )  
 

 
  , 

so that  ( )    and the derivative of the function  ( ) is 

 ̇( )  
   

   
  ( )   ( ) ( )   ( )     ̇ 

 
   

    ( )  
   

    ( ) ( )  
   

    ( )    . 

Then define   (
   

    ( )    ),    .So 

 ̇( )  
   

    ( )  
   

    ( ) ( )         ( )     , 

which means that 

 ̇( )   . 

The conclusion is achieved that the system with backstepping controller as a feedback 

controller is asymptotic stability.The backstepping controller is designed as 

  ( )  

{
  

   
  (  )   (  )   

   (  )

   (  )
 (  )       (  )     }  (   )     . 

This backstepping design is toselect recursively some appropriate functions of 

statevariables as pseudo-control inputs for lower dimensionsubsystems of the overall 

system [26]. The condition of the Lyapunov function should be satisfied so that the 

system is asymptotic stability. 

Remark 1The backstepping controller as a feedback control process does not influence 

the convergence performance (which will be analyzed in next section),however, the 

convergence speed can be influenced. The robust and adaptive of the system are improved 

by this backstepping controller. 

 

4. Convergence Analysis 

Still the same Wiener system is considered as 

 ̇ ( )     ( )     ( ), 

 ̇ ( )   (  ( ))   (  ( ))  ( ). 

And the ILC scheme is 

    ( )    ( )     ( )    ̇ ( ). 

The learning law is PD type with the learning gains and , respectively.The input 

of the nonlinear part equals to the output of linear part. As mentioned before, the 
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output of the linear part  ( ) tends to the reference input of the nonlinear part,  the 

output of the Wiener system tracks the reference output. 

The solution of  ̇ ( )     ( )     ( ) can be achieved as 

  ( )       ( )  ∫   (   )   ( )
 

 
  . 

Define the output tracking error of the linear part is  ( )    ( )    ( ). The 

convergence condition can be gained by the method of contraction mapping method. 

Then the following relationships can be achieved 

  ( )    ( )    ( ) 

   ( )       ( )  ∫   (   )   ( )
 

 

   

   ( )         ( )  ∫   (   )     ( )
 

 
          ( )  

∫   (   )     ( )
 

 
        ( )  ∫   (   )   ( )

 

 
  . 

Then 

  ( )      ( )        ( )  ∫   (   )     ( )
 

 

   

      ( )  ∫   (   )   ( )
 

 
  . 

From Assumption 2. The initial values of the system are the same., it's known that the 

initial value of the system is the same which meansthat    ( )    ( ). So 

  ( )      ( )  ∫   (   )      ( )    ( ) 
 

 
  . 

Then we have 

  ( )      ( )  ∫   (   )       ( )    ̇   ( )   
 

 

 

 (    )    ( )  ∫    (   )      ( )   
 

 
 ∫   (   )      ( )  

 

 
. 

Applying  -norm to both sides of the equation above, yields the convergence condition 

in the -norm, 

         . 

The conclusion can be achieved that the convergence condition is only related to the 

feedforward control, however, the feedback control dose not influence the convergence 

condition in the -normin this paper. 

In paper [31] the similar idea was also published that the convergence condition of the 

learning control in the feedback configuration does not change from the condition in an 

open-loop configuration, moreover, the proportion learning gain does not influence the 

convergence condition in the -norm, either. The learning speed is changed by the P type 

learning gain. 

 

 

Figure 2. The Tracking Trajectory of the Outputs by the First 

Experiment. The Linear System is  ̇         ,       with PD type 
Learning Law, where     ,    ,     and    , Respectively. The 

Control Direction is Chosen as        
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Remark 2 The learning gains can be efficiently chosen not only by the convergence 

condition, but also can be achieved properly by small gain approach.The control direction 

of the system can be decided by experiments as shown in Figure 2 and Figure 3. In 

Figure 2, the reference output is the middle red line, the output of iteration   is zero and 

that of iteration   is the blue line. It's obvious that the result of the first experiment is what 

we want. The result of the second experiment is obvious that the control direction is 

wrong as shown in Figure 3. Then the direction can be confirmed. Next, learning gains 

can be chosen small enough to meet the convergence condition. The learning gains which 

make the system satisfy the convergence condition can also be achieved by this small gain 

approach. 

 

 

Figure 3. The Tracking Trajectory of the Outputs by the First Experiment. 

The Linear System is  ̇         ,       with PD Type Learning Law, 
where     ,    ,     and    , respectively. The Control Direction is 

Chosen as         

5. Simulation Results 

In this Section,   groups of simulation results are achieved to valid the correction of 

the conclusion in this paper. Only the backstepping controller applied in subsection 5.1. 

Backstepping Control, in subsection 5.2.ILC Scheme only the ILC scheme is used, in 

the end, the ILC scheme combined with backstepping control is applied in subsection 5.3 

ILC Scheme Combined with Backstepping Control. 

The Wiener system is considered as  

 ̇ ( )     ( )     ( ), 

 ̇ ( )   (  ( ))   (  ( ))  ( ). 

In this system,   ( ) is the state of the linear part while   ( ) is the input. The 

output of the nonlinear part is   ( ). The convergence speed by ILC scheme is fast, 

however, the control effect is terrible as the non-repeatable noises are added. While 

only the backstepping control is applied, the Wiener system is asymptotic stability 

as certain requirements are satisfied. In the last case, the ILC scheme combined with 

backsteppingcontrol is used. The convergence speed is a little slower, but strong 

robustness of the system is achieved. This combined method improve the system 

performance. 
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Figure 4. The Backstepping Control is Applied in the Wiener System. 

The Parameters are     ,      ,     and      , Respectively. 

And         ,         ,         ,    

5.1. Backstepping Control 

In this subsection, only backstepping control is utilized as a feedback control.The 

backstepping controller is applied as 

  ( )  

{
  

   
 
  (  )   (  )   

   (  )

   (  )
 (  )       (  )     }  (   )     . 

The simulation result is shown in Figure 4. The system is asymptotic stability by 

backstepping control as a feedback control. The parameters are      ,      , 

    and      , respectively. And the Lyapunov function is         . The 

system can be chosen as        ,    . The x-axis is time while the y-axis is 

output. It's shown that the system is asymptotic stability by backstepping control as 

a feedback control. 

 

Figure 5. The ILC Scheme is Applied in the Wiener System. The Parameters 

are    ,    ,      ,      ,      ,          and    , Respectly 

5.2.ILC Scheme 

In this subsection, only the ILC scheme is applied as a feedforward control. The ILC 

scheme is 

    ( )    ( )     ( )    ̇ ( ). 

The simulation result is shown in Figure 5. The parameters of the system are    , 

    and      , respectively. The learning gains in the ILC scheme are       and 

     . The polynomial in the nonlinear part is        ,    . It's shown that the 
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advantages of the ILC scheme. The output tracking errors are    ( )           and 

   ( )            , respectively. 

However, the system is very sensitive to noises. The random noises are added. The 

variance of the noises is   and the noises are non-repeatable. They are added in the output 

of the linear part in the Wiener system. The result is shown in Figure 6 that the output 

tracking errors are large. 

 

 

Figure 6. The ILC Scheme is Applied in the Wiener System with Non-

Repeatable Noises. The Parameters are    ,    ,      ,      , 

     ,          and    , Respectly 

5.3 ILC Scheme Combined with Backstepping Control 

The ILC scheme combined with backstepping control is applied in this subsection as 
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  (  )   (  )   

   (  )

   (  )
 (  )       (  )     }  (   )     . 

 

 

Figure 7. The ILC Scheme Combined with Backstepping Control is Applied 
in the Wiener System. The Parameters are       ,      ,      , 

     ,      ,      , Respectively. And         ,         , 
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Lyapunov function is achieved as         . The nonlinear part is definedas       
  ,     . Somefactors in the feedback part are        ,      . The random 

noises which are non-repeatable are added in this part to demonstrate the robust of the 

system. The variance of the noises is  and the noises are added in the output of the linear 

part in the Wiener system. It's shown that the output tracking errors decreasing 

monotonically by iterations. The convergence speed is not as fast as that in 

subsection5.2.ILC Scheme but the control process in this subsection satisfies strong 

robustness. 

 

 

Figure 8. The ILC Scheme Combined with Backstepping Control is Applied 
in the Wiener System. The Parameters are       ,      ,      , 

     ,      ,      , Respectively. And         ,         , 

        ,      

This controller is also adaptive. The cases of       and       are applied to the 

previous simulations in this subsection to prove the adaption of the controller. From 

Figure 8, Figure 9, Figure 10, Figure 11, it is known that the simulation results are 

almost the same in the cases of changing parameters. So, this ILC scheme combined with 

backstepping control is adaptive for the Wiener system. 

 

 

Figure 9. The ILC Scheme Combined with Backstepping Control is 

Applied in the Wiener System. The Parameters are     ,      ,      , 

     ,      ,      , Respectively. And         ,         , 

        ,      
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system performance to a large extent obviously. The following Table 1 summarizes the 

differences of the ILC scheme and the ILC scheme combined with backstepping control. 

 

 

Figure 10. The ILC Scheme Combined with Backstepping Control is Applied 

in the Wiener System. The Parameters are       ,   ,      ,      , 

     ,      , Respectively. And         ,         ,       
  ,      

6. Conclusions 

In this paper, the ILC scheme combined with the backstepping control is applied in the 

Wiener system. The Wiener system is consist of a time invariant linear system followed 

by an affine nonlinear system. The convergence speed of the ILC scheme is fast, however, 

it's very sensitive to the non-repeatable noises. As the repeatability of the system is 

destroyed, the effect of ILC scheme is terrible. The backstepping control as a feedback 

control can improve the robust and adaptive of the system and make the system be 

asymptotic stability without changing the convergence condition. Both of the two 

methods above are effect in solving the problem of nonlinear systems. The controller 

designed in this paper combined with ILC scheme and backstepping control can improve 

the system performance of Wiener system to a large extent. The information in the current 

control process, the Lyapunov function and the virtual input are applied in designing the 

backstepping controller. The PD type ILC scheme is applied in the Wiener system. The 

convergence condition is achieved by the contraction mapping method and the 

convergence speed is analyzed. The P type learning gain dose not influence the 

convergence condition in the  -norm which only influences the convergence speed. A 

numerical simulation results are shown to valid the conclusion in this paper. 

 

 

Figure 11. The ILC Scheme Combined with Backstepping Control is 
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Table 1 Comparing the ILC Scheme and the ILC scheme with Backstepping 
Control 

 ILC ILC and backstepping 

Convergence speed faster fast 

Robustness Poor robust Strong robust, adaptive 

 

Acknowledgements 

This work was supported by National Natural Science Foundation of China (61374101, 

61104009, 61075092). 

 

References 

[1] D. H. Owens, B. Chu, E. Rogers, C. T. Freeman and P. L. Lewin, “Influence of Nonminimum Phase 

Zeros on the Performance of Optimal Continuous-Time Iterative Learning Control”, IEEE Transactions 

on Control Systems Technology, vol. 22, no. 3, (2014), pp. 1151-1158. 

[2] J. X. Xu, D. Q. Huang, V. Venkataramanan and T. Huynh, “Extreme Precise Motion Tracking of 

Piezoelectric PositioningStage Using Sampled-Data Iterative Learning Control”, IEEE Transactions on 

Control Systems Technology, vol. 21, no. 4, (2013), pp. 1432-1439. 

[3] X. H. Bu, Z. S. Hou, F. S. Yu and Z. Y. Fu, “Brief PaperIterative Learning Control for a Class of Non-

linear Switched Systems”, IET Control Theory and Applications, vol. 7, no. 3, (2013), pp. 470-481. 

[4] D. Q. Huang and J. X. Xu, “Steady-state Iterative Learning Control for a Class of Nonlinear PDE 

Processes”, Journal of Process Control, vol. 21, no. 8, (2011), pp. 1155-1163. 

[5] D. Q. Huang, J. X. Xu, X. Li, C. Xu and M. Yu, “D-type AnticipatoryIterative Learning Control for a 

Class of Inhomogeneous Heat Equations”, Automatica, vol. 49, no. 8, (2013), pp. 2397-2408. 

[6] X. D. Li, T. F. Xiao and H. X. Zheng, “Brief Paper Adaptive Discrete-time Iterative Learning Control 

forNon-linear Multiple Input Multiple Output Systems withIteration-varying Initial Error and Reference 

Trajectory”, IET Control Theory and Applications, vol. 5, no. 9, (2011), pp. 1131-1139. 

[7] X. D. Li, J. K. L. Ho and T. W. S. Chow, “Iterative Learning Control for Linear Time-variantDiscrete 

Systems Based on 2-D System Theory”, IEEE Proceedings of Control Theory and Applications, vol. 

152, no. 1, (2005), pp. 13-18. 

[8] R. H. Chi, Z. S. Hou and J. X. Xu, “Adaptive ILC for a Class of Discrete-time Systems with Iteration-

varying Trajectory and Random Initial Condition”, Automatica, vol. 44, no. 8, (2008), pp. 2207-2213. 

[9] R. H. Chi, Z. S. Hou, S. L. Sui, L. Yu and W. L. Yao, “A New Adaptive Iterative Learning Control 

Motivated by Discrete-Time Adaptive Control”, International Journal of Innovative Computing, 

Information and Control, vol. 4, no. 6, (2008), pp. 1267-1274. 

[10] R. H. Chi, S. L. Sui and Z. S. Hou, “A New Discrete-time Adaptive ILC for NonlinearSystems with 

Time-varying Parametric Uncertainties”, ActaAutomaticaSinica, vol. 34, no. 7, (2008), pp. 805-808. 

[11] X. F. Li, J. X. Xu and D. Q. Huang, “An Iterative Learning Control Approach for LinearSystems with 

Randomly Varying Trial Lengths”, IEEE Transactions on Automatic Control, vol. 59, no. 7, (2014), pp. 

1954-1960. 

[12] B. Y. Song, L. Xu and X. L, “A Comparative Study on Tustin Rule based DiscretizationMethods for 

Fractional Order Differentiator”, the 4th IEEE International Conference on Information Science and 

Technology (ICIST), (2014), pp. 515-518. 

[13] G. Maione, “On the Laguerre Rational Approximation to FractionalDiscrete Derivative and Integral 

Operators”, IEEE Transactions on Automatic Control, vol. 58, no. 6, (2013), pp. 1579-1585. 

[14] S. Yin, A. Koti, A. Haddadi and K. Hashtrudi-Zaad, “Uncoupled Stability Analysis of Haptic Simulation 

Systems for Various Kinematic Sampled Data and Discretization Methods”, IEEEHaptics Symposium, 

(2014), pp. 563-568. 

[15] F. Giri and E.-W. Bai, “Block-oriented Nonlinear System Identification”, Berlin: Springer, (2010). 

[16] N. Wiener, “Nonlinear Problems in Random Theory”, Cambridge, MA, USA: The MIT Press, (1966). 

[17] B. Q. Mu and H. F. Chen, “Recursive Identification of Errors-in-variables Wiener Systems”, Automatica, 

vol. 49, no. 9, (2013), pp. 2744-2753. 

[18] B. Q. Mu and H. F. Chen, “Recursive Identification of MIMO Wiener Systems”, IEEE Transactions on 

Automatic Control, vol. 58, no. 3, (2013), pp. 802-808. 

[19] R. J. Wai, C. Y. Lin, W. C. Wu and H. N. Huang, “Design of Backstepping Control for High-

performance Inverter with Stand-alone and Grid-connected Power-supply Modes”, Power Electronics, 

IET, vol. 6, no. 4, (2013), pp. 752-762. 

[20] L. Y. Sun, J. Zhao and G. Dimirovski, “Adaptive Coordinated Passivation Control for Generator 

Excitation and Thyristor Controlled Series Compensation System”, Control Engineering Practice, vol. 

17, no. 7, (2009), pp. 766-772. 

Performance 
Controller 



International Journal of Hybrid Information Technology 

Vol.9, No.2 (2016) 

 

 

438   Copyright ⓒ 2016 SERSC 

[21] A. Karimi, M. A. Choudhry and A. Feliachi, “Coordinated BacksteppingControls for Power System 

Stability Enhancement, Power Symposium”, NAPS '08. 40th North American, Canada, (2008) 

September, pp. 1-8. 

[22] F. Fang and L. Wei, “Backstepping-based Nonlinear Adaptive Controlfor Coal-fired Utility Boiler-

turbine Units”, Applied Energy, vol. 88, no. 3, (2011), pp. 814-824. 

[23] L. Y. Sun, S. C. Tong and Y. Liu, “Adaptive Backstepping SlidingMode    Control of Static Var 

Compensator”, IEEE Transactions on Control Systems Technology, vol. 19, no. 5, (2011), pp. 1178-

1185. 

[24] L. Wei, F. Fang and Y. Shi, “Adaptive Backstepping Based Composite Nonlinear Feedback Water Level 

Control for the Nuclear U-tube Steam Generator”, IEEE Transactions on Control Systems Technology, 

vol. 22, no. 1, (2014), pp. 369-377. 

[25] S. Laghrouche, F. S. Ahmed and A. Mehmood, “Pressure and Friction Observer-based Backstepping 

Control for a VGT Pneumatic Actuator”, IEEE Transactions on Control Systems Technology, vol. 22, 

no. 2, (2014), pp. 456-467. 

[26] G. D. Wang, R. J. Wai and Y. Liao, “Design of Backstepping Power Control for Grid-sideConverter of 

Voltage Source Converter-basedHigh-voltage DC Wind Power Generation System”, IET Renewable 

Power Generation, vol. 7, no. 2, (2013), pp. 118-133. 

[27] Y. P. Tian and X. H. Yu, “Robust Learning Control for a Class of Nonlinear Systems with Periodic and 

Aperiodic Uncertainties”, Automatica, vol. 39, no. 11, (2003), pp. 1957-1966. 

[28] F. Ikhouane and M. Krstic, “Adaptive Backstepping with Parameter Projection”, Robustness and 

Asymptotic Performance, Automatica, vol. 34, no. 4, (1998), pp. 429-435. 

[29] S. C. Tong, T. Wang, Y. M. Li and B. Chen, “A Combined Backstepping and Stochastic Small-gain 

Approach to Robust Adaptive Fuzzy Output Feedback Control”, IEEE Transactions on Fuzzy Systems, 

vol. 21, no. 2, (2013), pp. 314-327. 

[30] J. Davila, “Exact Tracking Using Backstepping Control Design and High-order Sliding Modes”, IEEE 

Transactions on Automatic Control, vol. 58, no. 8, (2013), pp. 2077-2081. 

[31] T.-J. Jang, “Iterative Learning Control in Feedback Systems”, Automatica, vol. 31, no. 2, (1995), pp. 

243-248.  

 

Author 
 

Lun Zhai, He received his Bachelor degree and Master degree in 

2008 and 2011, respectively, and now is a Ph.D Candidate in 

Shandong University. His mainly research interests are included but 

not limited to Iterative Learning Control, Networked Control Systems, 

Initialization systems. 

 

 

 

GuohuiTian, He received his Doctoral degree in 1997. His mainly 

research interests are included but not limited to: Service Robots, 

Intelligent Space, Cloud Robotics and DEDS. 

 

 

 

 

 

Yan Li, He received his Doctoral degree in 2008. His mainly 

research interests are included but not limited to: Fractional-order 

Iterative Learning Control, Nonlinear Systems, Control Systems and 

Intelligent control. 


