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Abstract 

Accurate storm tracking and forecasting are essential parts of severe weather warning 

operations. The main problem of existing tracking and forecasting algorithms is 

unphysical split and merger of cloud clusters within the life cycle of Mesoscale 

Convective System (MCS). To address this issue, an automatic algorithm called TFCC 

(Tracking and Forecasting Convective Cells) is proposed for tracking and forecasting 

convective cells using infrared (IR) image sequences from geostationary meteorology 

satellite. In this paper, convective cells are utilized for tracking and forecasting instead of 

MCS because convective cells are stable portion in MCS. TFCC algorithm utilizes 

overlapping technique and uses a dynamic constraint technique based combinatorial 

optimization method. Moreover, displacement of the geometrical centroid is utilized to 

forecast the movement of convective cells. Case studies show that convective cells are 

tracked and forecasted efficiently in different phases of MCS lifecycle including genesis, 

maturity and dissipation using TFCC algorithm. Categorical statistics and contingency 

tables method applied to various case studies over China show that TFCC algorithm 

efficiently and accurately. 
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1. Introduction 

Mesoscale Convective System (MCS), which is a convective phenomenon, plays a 

vital role in dominating the rainfall over China [1–3]. Convective cells are crucial element 

of MCS and associated with hazardous consequences, and generate a lot of rain during the 

monsoon period [4, 5]. Convective cells can be detected and tracked by radar or satellite. 

Radar has a limited coverage and no possibility to detect a developing convective cell [6]. 

The alternative source is satellite data. Compared with radar, satellite provides higher 

coverage. 

A group of detecting and tracking techniques of MCS have been developed in the past 

decades [4–8]. Threshold methods [7, 8] depend on the brightness temperature (Tb) 

threshold, usually provide unreliable detection results. ETITAN (enhanced thunderstorm 

identification, tracking, and nowcasting) algorithm uses multi-threshold to identify 

convective cell, and proposes a dynamic constraint-based combinatorial optimization 

method to track storms [9, 10]. These techniques provide enhancements to the original 

TITAN (thunderstorm identification, tracking, and nowcasting) algorithm, however, 

sometimes they provide inaccurate identification, tracking, and forecasting results. 

FORTRACC [15] (forecast and tracking the evolution of cloud clusters) is an algorithm 

for tracking and forecasting radioactive and morphological characteristics of MCS using 

geostationary satellite image. A variational-data-assimilation tool was developed to track 
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and analyze convective cloud systems [4, 5], whereas, the technique is time-consuming. 

Source apportionment (SA) approach was presented to track and forecast MCS [16]. An 

algorithm named TOOCAN (tracking of organized convection algorithm through a 3-D 

segmentation) was designed to detect and track MCS based on an iterative process of 3-D 

segmentation using the infrared imagery from geostationary satellite over the tropics [17]. 

However, this method is required to handle real-time problem. A method for detecting 

and tracking rainfall clouds in non-Doppler radar images can be usefully exploited by 

radar operators to automatically detect, characterize, and follow the precipitation fields in 

real time [11]. However, the primary method for tracking remains the area-overlapping 

techniques [12–14].  

MCS detecting, which is usually implemented by threshold methods [16], is the 

basis of tracking and forecasting of MCS. Detection methods proposed by various 

researchers use a Tb value to depict continuous areas of deep convective cloudiness 

[17]. Tb threshold below 241 K are usually utilized to detect convective areas [18]. 

The definition of genesis, maturity and dissipation is closely associated with the 

coldest cloud top area [19]. Another significant factor is the continuous selection of 

the pixels as mentioned in the definition of MCS [16, 18]. 

At the tracking and forecasting stage, unphysical splitting and merging of cloud 

clusters within the life cycle of the MCS remains a significant problem [17]. To address 

this issue, we present an automatic algorithm called TFCC for tracking and forecasting 

convective cells using geostationary satellite IR image sequences. In this paper, 

convective cells are utilized for tracking and forecasting instead of MCS because 

convective cells are stable portion in MCS. Moreover, some morphological operations [9, 

20] have been proposed to improve the track ability of storms. Inspired by TITAN 

method, ETITAN method and FORTRACC algorithm, we utilize overlapping technique 

and dynamic constraint technique based combinatorial optimization method to track 

convective cells. Moreover, trajectory (displacement of the geometrical centroid) is 

utilized to forecast the movement of convective cells. 

In this paper, Section 2 introduces the methods used for convective cells tracking and 

forecasting. Section 3 describes experiment data and three case studies, while Section 4 

describes validation methods. Summary and conclusions are presented in a subsequent 

Section. 

 

2. Methods 
 

2.1 Mathematical Morphology Descriptions 

In grayscale mathematical morphology, structuring element is used to probe or interact 

with a given image, drawing conclusions on how this shape fits or misses the shapes in 

the image [20]. Grayscale structuring elements are called "structuring functions". An 

image is denoted by f(x) and the structuring function is denoted by b(x), the grayscale 

dilation is given by  

                                          ( )( ) sup[ ( ) ( )]
y E

f b x f y b x y


                            (1) 

   Where "sup" denotes the supremum of a function. Similarly, the grayscale erosion is 

given by 

                                         ( )( ) inf[ ( ) ( )]
y E

f b x f y b y x


  !                          (2) 

Where "inf" denotes infimum of a function. Opening is erosion followed by dilation, 

which is given by 

                                                  ( )f b f b b !                                      (3) 

Close operation is given by  
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H-maxima transform suppresses all maxima which below or equal to a given threshold 

in the intensity image [20]. Therefore, H-maxima transform which is applied to 

convective cells detection can avoid separation of the maxima points within the same cell. 

H-maxima transform is given by  

                                                         )()( hXRXHMAX fh  
                                        (5) 

Where X denotes original image, h denotes threshold, 


fR  denotes dilate reconstruction. 

The regional extremum, which is computed by the pixel value of an original image 

minus H-maxima, is given by  

                                                    )()( hXRXXRMAX fh  
                                         (6) 

Extended maxima, which is defined as the regional minima of the H-maxima, is given 

by 

)]([)( XHMAXRMAXXEMAX hh                                      (7) 

This method extracts seed point of convective cells more efficiently and provides a 

good foundation for later convective cells tracking and forecasting. For more information 

about these terms, please refer to our previous work [21]. 

 

2.2 The Details of TFCC Algorithm 

At the MCS detection stage, we proposed an algorithm named extended maxima 

transform based region growing (EMTRG) [21] to detect MCS. This algorithm uses 

region growing method to identify contiguous pixels. In this paper, some morphological 

operations have been suggested to improve the track ability of storms before tracking. 

At the tracking stage, the main method for tracking remains the area-overlapping 

technique. This technique assume that a cloud at next time frame corresponds to that at 

last time frame, considering the previous constraints of size and temperature, there are 

common pixels in consecutive images [15]. The comparison of successive satellite images 

is carried out forward and backward in time [13, 14], so there are five types of possible 

situations: spontaneous generation, natural dissipation, continuity, split and merger (see 

Figure 1). Figure 1(a) shows the intersection of the surfaces area respectively occupied by 

a convective cell in an image and the following one, which is continuity mentioned above. 

Split and merger are more complicated situation as illustrated in Figure1 (b) and Figure 1 

(c). 

 

 
(a)                                         (b)                                            (c) 

Figure 1. Three Types of Possible Tracking Situations. The Gray Ellipse 
Represents MCS in The first Time Step while White Dotted Ellipse 

Represents the Next Time Step. (a) Continuity, (b) Split, and (c) Merger 

Unphysical splitting and merging of cloud clusters strongly limit the use of MCS 

tracking and forecasting results. The main problem of existing tracking algorithms is split 

and merger events [17]. To address this issue, we present an automatic algorithm called 

TFCC for tracking and forecasting convective cells using geostationary satellite IR image 

sequences. Inspired by TITAN and ETITAN method, TFCC algorithm adopts overlapping 

technique and then uses a dynamic constraint technique-based combinatorial optimization 

method [9]. Hungarian method [22, 23] is utilized to solve the combinatorial optimization 

problem similar to TITAN algorithm. At the forecasting stage, trajectory (displacement of 
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the geometrical centroid) is utilized to forecast the movement of convective cells instead 

of using motion vector field of MCS in ETITAN algorithm. The procedure of TFCC 

algorithm is given below:   

 

Algorithm 1 Tracking and Forecasting Convective Cells (TFCC) 

Input: Successive satellite image data X 

Initialization: 

Set Tb threshold T=241K. 

while Tb >T 

Tb ← 0 

end while 

Detection: 

Compute convective cells using EMTRG algorithm. 

Tracking: 

Preprocessing using morphological operations according to Eq. (1)-(4). 

Overlapping technique and Hungarian method are utilized to tracking each convective cell. 

Forecasting: 

Displacement of the geometrical centroid is used to forecast movement of convective cells. 

Output: Results T 

 

3. Satellite Data and Case Studies 
 

3.1 Satellite Data 

In this paper, IR data from FY-2F (fengyun-2F geostationary meteorological satellite) 

of China are used for the case study. A five-channel visible and infrared spin scan 

radiometer and a space environment monitor are main payloads of FY-2F (Table 1). 

 

Table 1. FY-2F Satellite Imager Radiometric Channels 

Channel Wavelength (m) Spatial Resolution (km) Used 

IR1 10.3-11.3 5 √ 

IR2 11.5-12.5 5 √ 

IR3 6.3-7.6 5 √ 

IR4 3.5-4.0 5  

VIS 0.55-0.90 1&5  

 

IR image sequences with time intervals 6 minutes and spatial resolution 5 km in 

August 2014 have been selected for case study of convective cells tracking and 

forecasting. We tried experiment with multiple-channels and found that 10.3-11.3µm IR 

channel can get the best tracking and forecasting results. Therefore, data from FY-2F in 

the 10.3-11.3µm IR channel (i.e., IR1) are used for case study in this paper. 

 

3.2 Case Studies 

Brightness temperature image reflects the Tb difference of clouds. Various 

approximate outlines of convective cells can be observed in brightness temperature image 

(red and yellow portion). Detection results compare with the red and yellow portion in 

brightness temperature image to verify the efficiency of EMTRG algorithm during MCS 

lifecycle. EMTRG algorithm proposed by us can distinguish adjacent region of 

convective cells efficiently, and provides a good foundation for later convective cells 

tracking and forecasting. 
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In this section, the efficiency of TFCC algorithm for convective cells tracking and 

forecasting is illustrated using IR image sequences. In China, rainstorms occur frequently 

in August. Therefore, 10.3-11.3 µm IR image sequences with 6 minutes time intervals and 

spatial resolution of 5 km in August 2014 are selected for case study. The following three 

case studies represent three complex scenes which contain different phases of MCS life 

cycle including genesis, maturity and dissipation. The first case study over South China 

will be discussed in more details. 

Figure 2 shows tracking schemes over a selection of images for the convective 

situation which occurred over the region of South China at 1424 UTC August 27, 2014. 

Figure 2(a) is the original IR image and it contains several cloud clusters. Figure 2(b) 

represents the corresponding brightness temperature images of Figure 2(a), which indicate 

the different values of Tb for clouds. An approximate contour of all convective cells (see 

the red portions) can be seen in the brightness temperature images. Figure 2(c) depicts the 

corresponding result (colored contour and its interior) of convective cells detection using 

EMTRG [21] algorithm and tracking resulting using TFCC algorithm. We use the same 

color to identify the contour of matched convective cells in successive image. First of all, 

we can observe subjectively that EMTRG algorithm identifies MCS much as one would 

do from viewing the infrared images. The capability of detecting convection in its 

triggering stage is vital in a perspective of forecast applications [17]. EMTRG algorithm 

can detect different phases of MCS lifecycle including genesis, maturity and dissipation. 

Note that EMTRG algorithm identifies 30 convective cells for this period (Figure 2(c)). 

Convective cells are superimposed on the original image to make it clear, note that the 

contour of the cells is consistent with the approximate contour of convective cells shown 

in brightness temperature images. Figure 2(d) depicts the result (colored contour and its 

interior) of convective cells detection using EMTRG algorithm after 30 min. Note that 

each red arrow in Figure 2(c) directs to the center of mass of matched convective cell in 

Figure 2(d). The red box and the purple box in Figure 2(c) depict merge events processed 

by TFCC algorithm. Note that the two red arrows in the red box are direct to the same 

position where is the centroid of matched convective cell in the red box of Figure 2(d). 

The green color convective cell in red box in Figure 2(d) is the matched object of the 

green and purple convective cells in the red box in Figure 2(c) using TFCC algorithm. It 

is obvious that the red box in Figure 2(d) only one convective cell survives, which is 

merged from the last frame. Similar to the red box, the purple box in Figure 2(c) and 

Figure 2(d) demonstrate the same processing using TFCC algorithm. The area evolution 

of other convective cells are smooth because no split or merge events take place. 

 

              
(a)                                                                             (b) 
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(c)                                                                             (d) 

Figure 2. 30 min Intervals Convective Cells Tracking which Occurred Over 
the Region of South China at 1424 UTC August 27, 2014. (a) The Original IR 
Image. (b) The Corresponding Brightness Temperature Image. (c) Results of 
30 min Intervals Convective Cells Tracking. (d) Convective Cells Detection 

using EMTRG Algorithm with 30 min Intervals 

Figure 3 shows the tracking results for the convective situation which occurred over 

the region of South China at 1524 UTC August 27, 2014. Note that EMTRG algorithm 

identifies MCS much as one would do from viewing the Tb images (Figure 3(b)). 

EMTRG algorithm identifies 27 convective cells for this period (see Figure 3(c)). Figure 

3(c) illustrates tracking result of MCS by TFCC algorithm. Figure 3(d) depicts the result 

(colored contour and its interior) of convective cells detection after 60 min using EMTRG 

algorithm. Each red arrow in Figure 3(c) directs to the centroid of matched convective cell 

in Figure 3(d). This case study has several dissipation events occur, here we only 

demonstrate one. The red box in Figure 3(c) contains 4 convective cells, depicts 

dissipation events occurrence dealt with by TFCC algorithm. Note that there are not any 

arrows survive in the red box in Figure 3(c) because the 4 convective cells dissipation in 

the next time frame. We can observe that no convective cell survive in the red box in 

Figure 3(d) because the 4 convective cells in the red box in Figure 3(c) dissipation in this 

time frame.  

 

               
(a)                                                                              (b) 

               
(c)                                                                              (d) 

Figure 3: 60 min Intervals Convective Cells Tracking which Occurred Over 
the Region of South China at 1524 UTC August 27, 2014. (a) The Original IR 
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Image. (b) The Corresponding Brightness Temperature Image. (c) Results of 
60 min Intervals Convective Cells Tracking. (d) Convective Cells Detection 

using EMTRG Algorithm with 60 min Intervals 

Figure 4 shows tracking schemes over a selection of images for the convective situation 

which occurred over the region of East China at 1030 UTC August 28, 2014. This case 

study shows the most complex situation and contains the most convective cells. EMTRG 

algorithm identifies 61 convective cells for this period (Figure 4(c)). Convective cells are 

superimposed on the original image for clear to understand. Figure 4(d) depicts the result 

(colored contour and its interior) of convective cell detection using EMTRG algorithm 

after 90 min. This case study shows the EMTRG algorithm to detect small MCS 

efficiency, especially the right top of Figure 4(c). Over the tropical region, the detecting 

of small MCS is pivotal because large population of MCS has short lifetime duration [24]. 
 

            
(a) (b) 

            
(c)                                                                           (d) 

Figure 4. 90 min Intervals Convective Cells Tracking which Occurred Over 
the Region of East China at 1030 UTC August 28, 2014. (a) The Original IR 

image. (b) The Corresponding Brightness Temperature Image. (c) Results of 
90 min Intervals Convective Cells Tracking. (d) Convective Cells Detection 

using EMTRG Algorithm with 90 min Intervals 

The analysis of these case studies illustrates the issues caused by merger and 

dissipation. It has also emphasized the capacity of TFCC algorithm to deal with these 

issues, for different tropical regions or organized convective situations in MCS lifecycle. 

 

4. Validation Method 

The subjectivity inherent in the tracking of MCS enhances the difficulty to evaluate 

and to validate a new tracking algorithm [17]. However, it is vital to evaluate its capacity 

to track MCS and then to have a measure of its efficiency. Several methods have been 

developed to evaluate tracking algorithm [9, 25–29]. Contingency tables method and 

Categorical statistics were utilized to evaluate our algorithm in this paper [28, 29]. 
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4.1 Contingency Tables Method 

To the best of our knowledge, MCS life cycles with frequent splits and mergers are 

difficult to validate. A contingency tables method was implemented to measure the TFCC 

algorithm skill. This validation process takes into consideration all of situations since 

many life cycles have merger and split events. The four combinations of forecasts and 

observations are defined as follows: (1) Correct negative: Tb of the forecasted and 

observed pixel is above 241 K. (2) False alarm: Tb of the forecasted pixel is below 241 K 

while the observed temperature is above 241 K. (3) Hit: Tb of the forecasted and observed 

pixel is below 241 K. (4) Miss: Tb of the forecasted pixel is above 241 K while the 

observed temperature of that pixel is below 241 K. 

In contingency table method, various statistical indexes were calculate to describe 

particular aspects of forecast performance like accuracy (ACU), bias score (BIAS), 

probability of detection (POD), and false alarms rate (FAR) [28, 29]. ACU is the score of 

correctly forecasted pixels compared with the total number of pixels. The BIAS score 

measures the error between the number of pixels predicted as MCS (Tb <241 K) and the 

number of pixels observed as MCS (Tb < 241 K). POD denotes the observed pixels that 

have been correctly predicted. FAR denotes a pixel with Tb < 241K is predicted but it is 

not observed.  

Table 2 indicates the statistical indexes for 30, 60, 90, and 120 min forecast. ACU 

shows larger values for 30 min forecast lead time, 89% of the pixels have been correctly 

predicted. This value is high because most of the values correspond to correct negative 

pixels (Tb<241 K). POD of 30 min forecast reaches approximately 0.88 and FAR is 

around 0.09. That is to say, while 88% of the observed pixels corresponding Tb<241 K 

were correctly forecasted, 9% of the forecasted pixels were not observed. For the 120 min 

forecast, ACU index is about 0.84 for the period, POD and FAR seem to be somewhat too 

far from the desired situation. 

 

Table 2. POD, FAR, ACU, BIAS for 30 min, 60 min, 90 min and 120 min 
Forecast Lead Times for the Period 1-30 August 2014 

Time 30 min 60 min 90 min 120min 

POD 0.89 0.86 0.85 0.83 

FAR 0.09 0.10 0.12 0.13 

ACU 0.89 0.88 0.86 0.84 

BIAS 0.88 0.86 0.85 0.82 

 

4.2 Categorical Statistics 

Figure 5 is an example of time evolution of the number of MCS pixels observed and 

predicted (Tb<241 K) for the entire image for 30 min, 60 min, 90 min, and 120 min 

forecast lead times for the period 10-16 August 2014. Note that the diurnal cycle is 

correctly forecast. The mean amount of observed pixels is slightly higher than the mean 

value of the predicted ones for the same period. With the forecast time grows, the error 

number of forecast pixels gradually increasing. Most error situation is obtained for 120 

min forecast lead time (Figure 5(d)), where the larger underestimations are present. This 

reason for this is that the behavior of MCS is more complex with initiation, dissipation, 

merger, split, frequent regenerations, and spontaneous generation etc. 
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(a)                                                                             (b) 

           
(c)                                                                             (d) 

Figure 5: Number of Observed and Forecasted MCS Pixels per Image during 
the Period 10-15 August 2014. (a) 30 min Forecast. (b) 60 min Forecast. (c) 

90 min Forecast Range. (d) 120 min Forecast 

5. Summary and Conclusions 

A novel algorithm named TFCC is developed in this paper for tracking and forecasting 

convective cells. Inspired by TITAN method, ETITAN method and FORTRACC algorithm, we 

utilize overlapping technique and dynamic constraint technique based combinatorial optimization 

method to track convective cells. Moreover, trajectory (displacement of the geometrical centroid) 

is utilized to forecast the movement of convective cells instead of using motion vector field of 

MCS in ETITAN algorithm. Convective cells are utilized for tracking and forecasting instead of 

MCS in our algorithm. Some morphological operations have been proposed to improve the track 

ability of storms. Note that the algorithm is capable of tracking and forecasting convective cells 

efficiently. The performance of the algorithm is illustrated for the lifecycle of MCS. It also shows 

the capacity and the effectiveness of the TFCC algorithm to tackle merger and dissipation issues in 

the life cycle of MCS. Categorical statistics and contingency tables method applied to various case 

studies over China show that the proposed TFCC algorithm efficiently and accurately. Moreover, 

the ability of TFCC algorithm with good computational efficiency makes it a desirable choice for 

near-real time operational purposes, for instance, short-term forecast within 2 hours. 
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