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Abstract 

This paper proposes a novel fast direction of arrival (DOA) estimation method for 

scenarios when uncorrelated and coherent signals exist simultaneously. First, using 

uniform transformation, we change complex matrix into real matrix, then, just by 

exploiting real propagator method (RPM), we can attain the uncorrelated signals DOA 

fastly. Second, based on new spatial difference technique, we can eliminate the effection 

of uncorrelated signals and make coherent signals become uncorrelated. Finally, utilizing 

RPM technique, coherent signals DOA can be estimated swiftly. Simulation results 

validate the performance improvement of the proposed algorithm.  

 

Keywords: direction of arrival (DOA), uncorrelated and coherent signals, uniform 

transformation, real propagator method (RPM), spatial difference 

 

1. Introduction 

With the development of array signal processing, there has been swift growing interest 

in developing high resolution direction of arrival (DOA) estimation for narrowband 

planewave. Many perfect algorithms, such as multiple signal classification (MUSIC) 

algorithm and estimation of signal parameters via rotational invariance technique 

(ESPRIT) algorithm [1-2] have been expanded and have received significant attention for 

their high resolution performance over the years. MUSIC and ESPRIT algorithm has 

satisfactory performance when the received signals are uncorrelated, however, they will 

be unsuccessful when signals are coherent. To deal with the coherency problem, many 

decorrelated methods have been proposed [3-14], in which spatial smoothing technique is 

the most typical technology [3-4]. Spatial smoothing technique is a kind of preprocessing 

technique which is based on the scheme that divides the array into overlapping subarrays, 

and then, through the average of the subarray covariance matrixes, coherent signals can be 

decorrelated. Although spatial smoothing technique can deal with coherent signals, it can 

reduce array aperture, so it is inconvenient in practical engineering.  Based on the spatial 

samples of received data, matrix pencil (MP) approach is presented in [5]. The MP 

method can estimate coherent signals DOA conveniently without additional processing, 

however, the required signal-to-noise ratio (SNR) is too high to use in practice. The ML 

[6], Toeplitz and Improved Toeplitz algorithms [7-8] are the other significant methods 

that can be used for coherent signals DOA estimation, however, these approaches cannot 

differentiate uncorrelated signals from coherent signals. The incapability to discriminate 

uncorrelated signals from coherent signals lead to a grievous waste of sensors. 

Consequently, novel methods are proposed which can be classified as another category 

decorrelated technique called spatial difference technique In [9-14]. Spatial difference 

technique deals with uncorrelated and coherent signals separately, so it can handle more 
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signals than sensors. The Spatial difference technique is first recommended in [9], but it 

can only use in the scenario that there has two signals within a coherent group.  Utilizing 

the Toeplitz and non-Toeplitz characters of array covariance matrix, the method in [10] 

can manage more signals. However, when the number of signals in coherent group is odd, 

the difference smooth matrix would be rank deficient, and it needs additional processing 

to recover the rank of matrix. In [11], a method for DOA estimation with fewer sensors is 

presented and in [12], a non Toeplitz matrix is constructed to handle coherent signals. 

Because the computational burdens of these methods are heavy, they are not attractive in 

practice. The method in [13] is also an efficiently approach for uncorrelated and coherent 

signals coexist, and it can avoid the cross-term effects when performing the EVD of 

matrix. This method is effective and efficient, but it needs to perform multiple inverses. In 

[14], Liu proposes new spatial differencing method to resolve more signals when 

uncorrelated and coherent signals coexist. After uncorrelated signals are estimated, by 

utilizing new spatial differencing technique, only coherent signals keep in the defined 

differencing matrix. New spatial differencing method not only can enhance algorithm 

accuracy but also can raise the number of detected signals. All the spatial difference 

techniques above-mentioned need two step to estimate uncorrelated and coherent 

signals ,so it could lead to extra computational burden which will be disadvantage for 

practical engineering. The main computation for DOA estimation lies in the course of 

subspace, and the most conventional approach for getting  the subspace is 

eigendecomposition ,however it is time consuming .To reduce the computational cost of 

subspace algorithm,the propagator method(PM) is presented in [15]. PM is a linear 

operator based upon a partition of the steering vector, and by using propagator method; 

we can obtain the estimated noise subspace fast. In [16], Li expand PM into two –parallel 

uniform linear array (ULA) and Nizar [17] extend it to L-shape array, both of them realize 

2-Dimensional DOA estimation. Unitary transform technology which is first proposed in 

[18] is another technique that can reduce the computation of algorithm and it is spreaded 

in [19-21]. It can enable the computations in the real domain, thereby substantially 

reducing the complexity of algorithms. 

In this paper, fast effective DOA estimation method with uncorrelated and coherent 

signals coexist is proposed. First, we can change complex covariance matrix into real 

covariance matrix by using unitary transform, and then, utlizing RPM, without 

performing eigendecomposition, we obtain the estimated noise subspace for uncorrelated 

signals. Secondly, we exploit new spatial difference to eliminate uncorrelated signals 

contribution so that only coherent signals remain in the defined differencing matrix ,after 

that, through RPM technique, we can get the estimated noise subspace for coherent 

signals . Finally, using the orthogonality and through spectrum sweep, uncorrelated and 

coherent signals DOA can be acquired separately. 

The paper is organized as follows. In Section 2, we introduce the narrowband signal 

model that will be used through the article. In Section 3, we introduce fast DOA 

estimation method for mixing uncorrelated and coherent signals. In Section 4, simulation 

results confirm the perfect performance of our proposed algorithm. Section 5 provides a 

conclusion to summarize the paper. 

 

2. Data Model 

Consider a ULA composed of M  identical sensors ，regarding first array sensor as the 

reference, array interspace is d which is equal to / 2 and  is narrowband signal 

wavelength.Suppose that there are L  far-filed narrowband signals with distinct DOAs 

impinging on the array .The first uL  signals are uncorrelated and the signal that comes 

from  direction ( 1,2, , )i ui L   is corresponding to the propagation of the far-field sources 
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( )is t  with power 2 , 1,2, ,i ui L  .The rest are D groups of 
c uL L L  coherent 

signals,which come from D statistically independent far-filed sources ( )is t  with 

power 2 , 1, ,i u ui L L D    ,and with 
iP multipath signals for each source.In the 

ith coherent group ,the signal that comes from direction , 1,2, ,ip ip P   corresponding to 

the pth  multipath propagation of the far-field sources ( )is t ,and the complex fading 

coefficient is ip .Suppose that coherent signals in different groups are uncorrelated with 

each other . The vector of  received signal at time t  can be modeled as follows: 

1 1 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

u u i

u

L L D P

i i ip ip i

i i L p

u u c c

t s t s t t

t t t

t t

  


   

  

  

 

  x a a n

A s A s n

As n

                                                                            

(1) 

where 1

1 2( ) , ( ) [ ( ), ( ), , ( )]M T

Mt C t x t x t x t x x is array output vector . 
sin( ) ( 1) sin( )

( ) [1, ,..., ]i ij j M T

i e e    
a is  the steering vector, A  is the array manifold 

matrix, 1[ ( ), , ( )A
uu La a   , 1 1 2 2[ , , , ]A A A Ac D D    with 1[ ( ), , ( )]A

ii i iPa a  . 

 
1 2

1
[ , , , ] ,


  i

i

PT

i i i iP i C     is complex fading coefficient vector of the ith coherent 

group, ( ) [ ( ), ( )]T T T

u ct t ts s s is signal  vector in which 1( ) [ ( ), , ( )]
u

T

u Lt s t s ts   is uncorrelated 

signals vector and 1( ) [ ( ), , ( )]
u u

T

c L L Dt s t s ts    is coherent signals vector.The 

1 2( ) [ ( ), ( ), , ( )]T

Mt n t n t n tn   is noise vector, here additional noise is Gaussian white noise 

with the power of each channel equal to 2

n  .  

The operators (.) , (.)H , .E , .  and arg(.)  denote conjugate, conjugate transpose, 

expectation, modulus and phase angle,respectively. The symbol  1 2,diag r r  and 

blkdiag  1 2,Q Q  indicates a diagonal matrix with diagonal entries 1 2,r r  and 

1 2,Q Q  ,respectively.All sources are uncorrelated with each other and ( )tn are uncorrelated 

with sources . With ( )tx , we can evaluate the array auto-covariance matrix as  

  2 2 2( ) ( )H H H H

s n M N NT n M u u u c c c n ME t t           R x x AR A I R R I A R A A R A I         (2)                                                                                                                                                       

where  ,s u cblkdiagR R R  is the signal covariance matrix with 

 ( ) ( )H

u u uE t tR s s and  ( ) ( )H

c c cE t tR s s  respectively. 

And H

N u u uR A R A with  2 2

1 , ,
uu Ldiag  R and H

NT c c cR A R A  with  2 2

1, ,
u uc L L Ddiag   R . MI  

indicates  the M M identity matrix. 
 

3 DOA Estimation of Proposed Method 

In this Section, uncorrelated and coherent signals DOA estimation are given separetely 

in Sections 3.1 and 3.2. 

 

3.1 Uncorrelated Signals fast DOA Estimation 

 

3.1.1 MUSIC Method  

    We first  estimate the DOAs of uncorrelated signals. The coherent signals within one 

group can be seen as an equivalent virtual source.When uD L M  ,carry out 

eigendecomposition of R ,we can acquire  
H H

s s s n n n R U Σ U U Σ U                                                                                      (3)          



 

International Journal of Hybrid Information Technology 

Vol.9, No.2 (2016) 

 

 

230   Copyright ⓒ 2016 SERSC 

where 1[ , , ]
us D LU u u ,  1, ,

us D Ldiag   Σ , 1[ , , ]
un D L M U u u ,  1, ,

un D L Mdiag   Σ , 

and 1 2, , , M   are the eigenvalues and 1 2, , , Mu u u are their  corresponding eigenvector  

with 2

1 2 1u uD L D L M n              . 

    The columns of sU and the columns of uA and cA span the same signal subspace 

which is orthgonal to the noise subspace spaned by the the columns of nU .Therefore  
2

( ) 0, 1, ,DH

i i n i  A U                                                                                                    (4) 

2

( ) ( ) 0 , 1, ,H

i n ug a U i L                                                                              (5) 

where i iA is the linear combination of  ( )a  ,and coherent signals will not  satisfy the 

character of uncorrelated signals shown in(5).That is to say,the effect of coherent signals 

in each group cannot be equivalent to a virtual source  which can be confuse with the 

uncorrelated signals.So there is no false peak for coherent signal in the MUSIC 

spectrum,and only uncorrelated signals DOA  estimation can be attained by the peak of 

1/ ( )g  . 

 

3.1.2 Unitary Transform 

MUSIC algorithm has perfect performance, while it is time-consuming for its complex 

matrix multiplication and eigende composition. Compared with complex multiplication, 

the computational complexity of real multiplication is less. If R is complex centro-

Hermitian, by using unitary transform, we can change it into a real matrix. 

For a given matrix Q , we denote PJ as a P P  dimension exchange matrix with ones 

on its antidiagonal  and zeros in rest .We call  Q is a left-  - real matrix if it 

satisfies *

pJ Q = Q . Define unitary matrix as follows 

2 2 1

0
1 1

, 2
2 2

0

n n

n n T T

n n

n n

n n

j
j

j
j

I I
I I

Q Q 0 0
J J

J J



 
  

    
   

 

                                                               (6)                                                                   

where [0,0, ,0]T0 is zero vector and nI is a n n  dimension identity matrix. Both of 

2nQ and 
2 1nQ are left- - real matrix. We can choose 

2nQ  when sensor number is even and 

select 
2 1nQ  when sensor number is odd. By using 

2nQ or
2 1nQ , R  can be changed into real 

matrix through follow formula 

2 2 2 1 2 1,H H

n n n n 
  R Q RQ R Q RQ                                                                                       (7)        

                                                                                                                                                                           

3.1.3  Fast MUSIC Method based on Real Propagator Method 

By performing unitary transform ,we can acquired real covariance matrix R , however, 

the computational load of eigendecomposition for R is also large, in order to release the 

computation,we can consider the real propagator method. Under the hypothesis that A  

has uL rows which are linearly independent,and the other rows can be showed as a linear 

combination of these uL rows. We suppose that the first uL  rows are linearly independent. 

The definition of the propagator is based upon the partition of A . 

1

2

 
  
 

A
A

A
                                                                                                                                     (8) 

where 1A is u uL L  dimension matrix, 2A is ( )u uM L L   matrix. Then, 2A is a linear 

transformation of 1A . 

1 2

H P A A                                                                                                                                   (9) 

where P is the propagator matrix. 

Partition real matrix R as 
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1

2

 
    

R
R

R
                                                                                                                                (10) 

where 1
R is uM L  dimension real matrix, 2

R is ( )uM M L   real matrix. Without 

consider the noise 

2 1
 R R P                                                                                                           (11) 

Actually, there is always noise in practice, so the propagator matrix can be evaluated 

by the following minimization problem: 

2 1( )csm F
J   P R R P                                                                                                                  (12) 

where .
F

express Frobenius norm. The estimation of P̂ is via 

1

1 1 1 2
ˆ ( )H H   P R R R R                                                                                                                 (13) 

Define real matrix Z   
ˆ[ , ]Z P Ι

u

H H

M L                                                                                                    (14)                                                                                                                              

From above analysis,we know H  Z R 0 .It means that the steering vectors ( )ia   are 

orthogonal to the columns of Z ,therefore ,we have 

   nspan spanZ U                                                                                                                  (15) 

The formula( 15) indicates that the real propagator span the noise subspace as does the 

matrix nU . RPM avoids the eigendecomposition  and the  computation of 

eigendecomposition is larger than linear  combination, by utilizing RPM technique,we can 

release the computation of subspace algorithm.We  construct the following DOA 

estimator for uncorrelated signals: 

( ) ( ) ( )H H

RPMUP    a ZZ a                                                                                                          (16) 

 

3.2 Coherent Signals Fast DOA Estimation 

In this section, new spatial smoothing is carried out to solve coherent signals DOA 

estimation. In the following description, we use the equivalent subarrays to describe 

smoothing technique and assume the number of subarrays is p .The m th subarray 

covariance matrix is given by  
H

m m mR K RK                                                                                                                                  (17) 

where  the selection matrix ( 1)M p M

m C   K  is defined as follows 

( 1) ( 1) ( 1) ( 1) ( )[ ]m M p m M p M p p m         K 0 I 0                                                                              (18) 

 Define a p th order spatial difference matrix pD  

1 1 1

1

1

1
[ ( ) ]

1
[ ]

p

p M p k M p

k

p

k k

k

p

p

D R J R J

W F



   





 

 





                                                                                         (19)       

                                                                                                                                        

where ( 1, , )H

k k k k pR K RK  in which kK is defined in (18).  

1 1 1( )k N M p Nk M pW R J R J


     ,in which 

1 11 11

H H

u uN uNR K R RK A A   with 1 1u uA K A , and 1 1

1 1( )H k k H

Nk k N k u u uR K R K A Φ R A Φ
    

with 
1

2 2
sin sin

, ,
Lu

d d
j j

diag e e
 

 
 

  
  

 
Φ . 1 1 1( )k NT M p NTk M pF R J R J



     ,in which 

1 1 1

H

NT NTR K R K . Because 1uA is a Vandermonde matrix,it is clear that 
1

1 1 1( ) M p

M p u u

  

  J A A Φ ,then we can obtain  
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1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1

1

1 1

1 1 1 1

1

1 1 1 1

1

( ( ) )

( ( ) ) ( )

( ) (

( )

( ) )

H k k H

u u u M p u u u M p

H M p k k H M p H H

u u u u u u

H M p M p H k k H H

u u u u u u

H H

u

k N M p Nk

u u u u u

M p

A R A J A Φ R A Φ J

A R A A Φ Φ R Φ Φ

W R J R

A

A R A A Φ Φ Φ Φ R A

A R A 0

J

A R A

  



  

   

      

      



 

 

 

 

  

                                              (20) 

From formula(19) and (20) we know that there is only coherent signals remaining in 

the spatial  difference matrix pD .In [14],Liu has proved that the rank of pD is equal to cL if  

maxk kp p  .By using  formula(19),we can perform decorrelated operation .According to 

the dimension of pD , utilizing unitary transform matrix,we can get real matrix pD by 

2 2 2 1 2 1,H H

n p n p np np    D DQ D Q Q D Q                                                                                            (21) 

Partition p
D  as two parts 

1

2

p

p

p

 
  
 








D
D

D
                                                                                                            (22) 

where 1p
D is ( 1) cM p L    dimension real matrix, 2p

D is ( 1) ( 1 )cM p M p L       real 

matrix, utilizing 1p
D and 2p

D ,we can get 

1 1 1 2

1

1
ˆ (( )) )(p p

H

p

H

p

    D DP D D                                                                                                        (23) 

Define real matrix 1Z  

1 1 1
ˆ[ , ]

c

H H

M p L   Z P Ι                                                                                          (24) 

and 

 1

H

p
 Z D 0                                                                                                            (25) 

The formula( 25) indicates that 1Z is orthogonal to p
D ,and  we can construct the 

following DOA estimator for coherent signals: 

1 1 1 1( ) ( ) ( )a Z Z a H H

RPMCP                                                                                                           (26) 

where 1( )a  is 1M p   dimension steering vector. 

 

3.3 Summary the Step of Fast Algorithm 

In this section, we will summarize the fast method we proposed as follows: 

Step1: Calculate the covariance matrix R , then, using 
2nQ or

2 1nQ to get real covariance 

matrix R . 

Step2: Calculate 1
R and 2

R  and get the estimated P̂ by equation (13). 

Step3: Construct Z , using the  orthogonality  between Z and ( )a  to estimate the 

DOAs of uncorrelated signals. 

Step4: Utilizing new spatial difference technique to get coherent signals covariance 

matrix through the equation (19), and by using 
2nQ or 2 1nQ to get p

D . 

Step5: Construct 1Z , using the  orthogonality  between 1Z and 1( )a  to estimate the 

DOAs of coherent signals. 

 

3.4 Identifiability and Computational Load 

(1)  The number of detected signals 

To correct estimate uncorrelated signals DOA, uL D M  must be required . To correct 

estimate D  group coherent signals DOA by  spatial difference matrix pD ,the standard 

maxk kp p and 
1

1
D

c k

k

K p M p


    must be satisfied, in which kp refer to the number 
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of coherent signals in the k th group.The proposed algorithm can detect the maximal 

number of  uncorrelated signals is 
2

M 
 
 

and the maximal number of  coherent signals is 

2 ( 1)
2

M 
  
 

 when max 2k kp p   ,and the total number of detected signals is equal to 

3
2

2

M 
 

 
,where .   is floor operator. 

(2) Computational  load analysis 

Through  complex matrix eigendecomposition, the method  in [14] attains estimated 

noise subspace ,and the computational load for uncorrelated signals and coherent signals 

is 2 3( )M N O M  and 2 3( 1) (( 1) )M p N O M p     , respectively. Our algorithm use RPM to 

gain estimated noise subspace and the RPM computational load is 2( )O LM . Contrast with 

complex matrix, the computational load of multiplication for real matrix is only about 

quarter . So, the computational load for uncorrelated and coherent signals with our 

proposed algorithm is 2 2[ ( )]/ 4uM N O L M   and 2 2[( 1) ( ( 1) )]/ 4cM p N O L M p     , 

respectively.Contrast with  the method  in [14],our proposed method is  a low complexity 

algorithm . 

 

4. Simulation Results  

The performance of our fast algorothm is illustrated in this section and 8-element ULA 

with interelement space of half a wavelength will be used. For simplicity,we suppose that 

all signals are of equal power 2

s and the uncorrelated signals and coherent signals come 

from far field at the same time. We use 600  snapshots to estimate the array covariance 

matrix , and the additional noise is ideal Gaussian white noise .When using MUSIC to 

resolve the signals DOA,the scanning is performed over [ 90 ,90 ]  with a step size of 

0.1 .Independent Monte-Carlo research number is 100,and the root mean square 

error(RMSE) for uncorrelated signals and coherent signals is  defined as 

                                     2

1

1 1

1 ˆ( )
uL N

i i

i ku

RMSE
L N

 
 

                                                                 (27) 

                                      2

2

1 1

1 ˆ( )
cL N

i i

i kc

RMSE
L N

 
 

                                                               (28)          
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Figure 1. Method in [14] Spectrum with 10 SNR 
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Figure 2. Our Fast Method Spectrum with 10 SNR 

In the first simulation,we consider three uncorrelated signals and a group of four 

coherent signals are impinging on the array ,the incidence angles are [ 50 , 40 , 25 ]   and 

[ 5 ,10 ,25 ,40 ] , respectively.The fading amplitudes and phases of the coherent signals are 

[0.92,0.85,0.7,06]  and [108.28 ,28.12 ,54.03 ,34.38 ] ,respectively.The SNR of each sources is 

10dB .Simulation results of the method in [14] and our fast method  are shown in Figure 1 

and Figure 2, respectively .From the simulation results ,we know that both algorithms can 

estimate uncorrelated signals and coherent signals correctely and estimated effection both 

are perfect. It is noticed that the sharp difference of spectrum peak between two 

algorithms is not obvious. Because our fast method is based on real propagator method,its 

computational load for uncorrelated signals and coherent signals is 9600 (192) / 4O and 

7350 (196) / 4O . While the computational burden of method in [14] is 38400 (512)O and 

29400 (343)O .The former computational load is far less than the latters. The RMSE 

curves of the DOA estimations versus the SNR and snapshots are shown in Figure 3 and 

Figure 4. The results of Figures indicate that the differenc of RMSE  between two 

algorithms  is not obvious , and because of lower computational load, our fast mthod has  

more wonderful prospect in practical engineering.       
   

-5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

SNR/dB

R
M

S
E
（

de
gr

ee
）

our fast method for coherent signals

method in [14] for coherent signals

our fast method for uncorrelated signals

method in [14] for uncorrelated signals

                         

Figure 3. RMSE Versus SNR 
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Figure 4. RMSE Versus Number of Snapshots 
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The second simulation consider the case that  signals number accesses array elements. 

Four uncorrelated signals impinging from [ 43 , 22 , 10 ,0 ]   and two groups of six 

coherent signals impinging from [ 30 , 20 , 5 ,20 ,40 ,60 ]   . The fading amplitudes of 

coherent signals are [0.94,1,0.72,0.85,0.76,0.91] and [101.21 ,24.15 ,58.06 ,14.31 ,45.21 ,33.59 ] are 

fading phases, and the SNR of each sources is 10dB . From the descrimnation in Section 

3.4 we know that the maximal detected number of signals for two algorithms is the same. 

That is, the maximal estimated  number for uncorrelated signals and coherent signals are 

four and six  respectively when sensors are eight. The Figures of spatial spectrum for 

method in [14] and our fast method are shown in Figure 5 and Figure 6, and the 

simulation results confirm the correction of our throretical analysis. Figure 7 and Figure 8. 

indicate the RMSE curves of the DOA estimations versus the SNR and snapshots. From 

the results of Figure 7 and Figure 8, we know that our fast method has larger RMSE when 

the detected signals number is maximum, however, its computational burden is far less 

than the method in [14], so it is more available in practical engineering . 
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Figure 5. Method in [14] Spectrumwith 10 Signals 
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Figure 6.  Our Fast  Method Spectrum with 10 Signals 
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                    Figure 7. RMSE Versus SNR for the Second Case Simulaiton 
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Figure 8. RMSE Versus Number of Snapshots for the Second Case 
Simulaiton    . 

In the third simulation, we take into account  the situation that the effect of   subarrays  

number p  on the DOA.Suppose that two uncorrelated signals impinging from 

[ 50 , 35 ]  and two groups of four coherent signals impinging from [ 20 ,0 ] and [15 ,35 ] . 

The two groups coherent signals fading amplitudes are [0.64,0.87] and [0.95,0.71] , and the 

phases are [142 ,34 ] and [53 ,87 ] ,respectively . The SNR of each source is 10dB . The 

spatial spectrums with different p  for our fast method are shown in Figure9, from the 

simulation results we know that our fast algorithm can attain better DOA estimation even 

when the number of subarrays is two. The RMSE curves versus the SNR for our fast 

method with different p  are shown in Figure 10. Figure10 indicates that our fast method 

has more perfect accuration with the increasement of SNR. 
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   Figure 9. Our Fast Method Spectrum for Coherent Signals Versus the 
Number of Subarrays 
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Figure 10. RMSE Versus SNR  with Different p  

5  Conclusions 

In this paper ,we present a new fast algorithm when uncorrelated signals and coherent 

signals are impinging together and it is suitable for ULA no matter whether the number of 
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array sensors is odd or even.By using real propagator method ,our algorithm can attain 

uncorrelated signals and coherent signals DOA fastly.The proposed algorithm has two 

advantages ,in which one is that it can estimate more sources than array sensors , the other 

is that it  has lower computational complexity. The computer simulations validate the 

effectiveness of our proposed algorithm.  
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