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Abstract \/

In this paper, an adaptive Kalman Filtering method is presented (fo state
prediction of random systems. It is shown that the adaptive ¥alpan Fjite ethod in
conjunction with equilibrium optimization solution can &% e the iniigal accelerations

oltio th

of targets effectively since the equilibrium optimizatio tun ate prediction
vector to diminish the error between measured va rediction estimation value. We
evaluate our model on special and random trajectokies! Experi evidence shows that

and stably track a trajectory which is mqvi domly. \

Keywords: Kalman Filtering, mar@g trﬁ\h@nitial velocity
1. Introduction ¥ X,

Target trajectory tracking is ftindal a problem of estimating current and future
target motion parameterséering an&% iction are necessary technical means to obtain
them, such as positiaf, ocity and acCeleration, etc. Accurate tracking is crucial for

many application%, bg as sp d early warning, radar trajectory prediction system,
sti

the proposed method can robustly estimattye@ial acgel@ion from a dynamic model

inertial navigati tem [1-3 sPite enormous progress in recent years, the tracking
abilities of Il eamutperform state-of-the-art algorithms in real world, both in
terms of p on an cy, if target is moving in a non-maneuvering state [3].
During target estimati nd prediction in fact, when target tends to maneuver, the
problem become more complicated. Unfortunately, in the realm of trajectory
tracking typic ering, prediction measure and motion pre-model do not lead to meet
the need of the problem solving. The estimation and prediction are so often divergent that
have to b&k@ﬂ into account.

In this Work we investigate the question whether it is really beneficial for trajectory
trackingyto improve Kalman Filtering model to solute the problem effectively. We attempt
gn a new adaptive method such that it offers equilibrium optimization solution to
ish the error between measured value and prediction estimation value. For the
purpose of this paper, the standard Kalman Filtering can be applied to track a non-
maneuvering state trajectory [4,5]. Then by choosing the new adaptive Kalman Filtering
as the filtering algorithm, it is shown that the adaptive algorithm yields more accurate
results than the standard Kalman Filtering for the non-maneuvering and maneuvering
target trajectories.
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2. Tracking Algorithm
2.1. Linear Kalman Filtering for Discrete-Time Systems

2.1.1. White Noise and Color Noise

The random process w(t) in (1) and (2):
E[w(t)]=0 1)
Ew(t)w(t)']= p,0(t 1) &)
where w(t) is white noise process, in this model, p,, is the covariance of w(t), o(t—1)
is the Dirac-6 function

0 t: ©
8(t—r)={oo tiz, [ 8t-nde=1

Equation (2) is the autocorrelation function of w(t), can be expressed asOQ

R,(t—7)=p,0(t-7) (4)
It shows that the autocorrelation function is relate rva\/ ut with no

relationship with time t, so w(t) is a smooth proc
Let 1z =t—7, the power spectrum of w(t) is a

@ =]y @Qdu - g{'o ©)
If {w(k) } is a random sequence an @
q}\ ©)
\A kw @ (7)
then w(k) is a white noise seq ce, are covariance matrix and Kronecker- 6

function, shown as foll f w(k) ; ectively [6].
\ 1 k=]
N . ®)
Q 0 k#j
2.1.2. Ran |near te System Model

Given that state servation equatlons of random linear discrete system are
& k|k 1% +Fk|k Wy )
z, =H.X +Vv, (10)
where 6@ is the system state vector, z, R™ is the measurement vectors,
QR“X” is the state transition matrix, I, ; € R™" is the noise input matrix,
%@ R™" is the measurement matrix, w,_, € R” is the system process noise, v, € R™

is the measurement noise.
The statistical characteristics of the system process noise and measurement noise are
assumed as

E(w,) =0, Cov(w,,w;) =Q,5
E(v,)=0, Cov(v,,v;)=R3 (11)
Cov(w,,v;)=0

38 Copyright © 2016 SERSC



International Journal of Hybrid Information Technology
Vol. 9, No.12 (2016)

where Q, is the non-negative definite covariance matrix, R, is the positive definite
covariance matrix, S, is the cross covariance matrix.

If z, satisfies (10) constraints, then state estimation X, is in accordance with the

following equations:
Step state prediction

)A(k|k—1 = @k|k—lkk—1 (12)
State estimation
)’ik = )’ik|k—1 + K, (Zk - Hk)zk|k—l) 13)
Filtering gain matrix
K k|k 1H (H Pk|k 1HT +R )_l (14)
Step prediction error covariance matrix S
k|k -1 q"( -1k 1Q<|k -1 +Fk|k 1Qk -1 k|k -1 )

Estimation error covariance matrix

Pk :(I _Kka)Pk|k (16)
Equation (12)~16) are basic equations of kalman fil \ r r ear discrete

systems. If the initial values X, and P, are give e tlma\/ time k can be
recursive according to the measured values z

2.2. Target Tracking Algorithm . 9
As was mentioned above, when the@' mou ematlcal model is precise, such
as uniform linear motion or uniform e results of prediction and filtering

are satisfactory by applying t |Iter|ng However, when the target
motion model is not knownsit.is\unable t sh accurate mathematical models for the

rd K
| 0‘\h
target. At timek, general:é we can a at at any moment, targets are in uniform

linear motion, thereby es h mathe al models. But this will lead to degradation on
tracking accuracy, i cases, & cause filtering divergence.

In this sectio rget ory is random, at time k , target motion parameters X,
are random bcome this préblem, based on the analysis of motion characteristics of
maneuveri gets, t ification to state prediction vector X, , at time K is
introduced to impro rediction on the real value, so as to get a better performance
than the standard Filtering [7-10].

Target man ing model
\ l Xy :¢k|k 2% +F|<||< Wi (7
z, =H/ X +Vv, (18)
e@klk_l is unknown. At time k, it is assumed that the real kinematic parameters of
rget are

X, =[x, 1y, vx, v, T’
Observation vector is
Z, = [ZXk ) Zyk]T
When k >3, we have
At time k —1, observation vector is

.
L, = [ZXk—l' Zyk—l]
At timek — 2, observation vector is
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L, = [Zxk—2' Zyk-z]T
At time k —3, observation vector is
Z, 5 =[2% s, Zyk—s]T
At timek —1, average velocity is defined as follows:
Vk—l = [VXk—l' Vyk—l]T = ([ZXk—l’ Zyk—l]T _[ZXK—Z’ Zyk—Z]T) /T
Attime k-2
Vikeo = [ka—z’vyk-z]T = ([Zxk—Z’ Zyk—Z]T _[ZXk—3' Zyk—B]T) IT
At time k —1, average acceleration is
a, = [axk—17 ayk—l]T = (Vk—l _Vk—z) IT
State prediction vector at time k after modified is
Xea = FgeaXs +[0,0,vx, 4, Wl + D@4

where ?N
10T O T2/2 0 0
01 0T *1’2/2
Far=l9 0 0 of Fk'“:& 0
000 0 0 Qv

Prediction error covariance matrix is

Pk|k—1 =¢k|kl&&®Q I k|k—1%%|k—l-r
1 @&% 0 s&@

. @'o 1 S ={10 0}
k|k—1 0 k-1 0 10
@ lo o

Filtering gain rﬁ\\ is ﬁ )

Q RLORAH (HRy H +R)
where
00 O} R :{5000 0 }
0100 | 0 5000
State estima@
X = RXga + K (2 —H R 1)
Estira&'érror covariance matrix is
Pk :(I _Kka)Pk|k—1

where

iltefing initialization:
=[123,234,100,200]", %, =[234,345,100,200]", X, =[345, 456,100, 200]"

Filtering error covariance matrix is

o O NN O
o O O
N O O O

(19)
(20)

(21)

N

(23)

(24)

(25)

(26)
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3. Experiments Test

3.1. Non-maneuvering Trajectory Tracking Simulations

The non-maneuvering trajectory is a semi circular curve; the target is still in a state of
uniform motion. The simulation results are given by Figure 1, Figure 2 and Figure 3. It is
shown that the standard Kalman Filtering provides good accuracy in estimating
the target trajectory which can be modeled accurately.

Although the trajectory is in the state of uniform circular motion, it can get accurate
mathematical model. Figure 1, Figure 2 and Figure 3 show that Kalman Filtering
still converge and achieve the satisfied performance.

Y-distance

Figure 1. The Semi Circular C r rajectoni }of Ideal, Observation,
Filte@ d Pg{@i
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Figure 3. The Error of Observation, Prediction and Filtering In' Y
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3.2. Random Trajectory Tracking Simulation

In this simulation, the motion model can not be established, the traditional way is to
assume that the target is still in uniform linear motion, but the actual motion
parameters can not be predicted, it will inevitably lead to a decline inthe tracking
accuracy sometimes even lead to filter divergence.

In view of this situation, this paper constructs a new improved Kalman Filtering
algorithm. As described above, by improving the prediction value to reduce the error. The
simulation results given by Figure 4~9 show that the improved algorithm declines faster
than standard methods but the tracking accuracy is greatly improved.

3.2.1. Standard Kalman Filtering Algorithm

Figure 5 and Figure 6 show filter errors in X-axis and Y-axis, we can see that the filter
error in X-axis is even larger than the observation error, in this case algorithm has Ioi\it}o

practical significance. ?*
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Figure 6. The Error of Observation, Prediction and Filtering In Y\/.
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t large errors, the filtering

3.2.2. Improved Kalman Filtering Algorithm

Figure 7, Figure 8 and Figure 9 demonstrate that th
accuracy, convergence rate and other indicators, of th
the same maneuvering curve has risen with respe
noted that the initial estimation value is very Iar
tracking a maneuvering motion can still rapidl onverge

The error curves are shown in Flgure 8.4 |gure
observed trajectory and the predict t [ both
trajectory by applying the improved aI m can t better filtering accuracy. From
Figure 8, we can see that the local p ue of |ct|on error in X-axis is 237.4755.
Similarly from Figure 9 we cal s% the local value of prediction error in Y-axis
is 165.4967. From the figure%.‘ the imulation process, the observation errors
fluctuate wildly, and the same réeSult o e prediction error. This indicates that the
tracking environment is e bad, h@ the filtering error curve remains relatively
small fluctuations, sh@Wigg” greaterqvitality of the improved algorithm, compared to the

r
standard algorithm\§Q ealin@e the tracking problem in harsh conditions.
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Figure 7. The Maneuvering Trajectories of Ideal, Observation, Filtering and
Prediction in Adaptive Algorithm
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4. Conclusmn s
Kalman F|It chmque n widely used to solve different filtering problems

especially |ng seS. Extended Kalman Filtering technique is used for
modeling a ptlve wﬁltermg algorithm for tracking maneuvering trajectory in

this paper.
This paper has;@ed this apparent problem by demonstrating firstly that standard

Kalman Filteri ides tracking performance almost as good as tracking a known non-
maneuvering mogel, and secondly that is not robust to tracking maneuvering model. The
key to th%dormance degradation is that the model is uncertain and hence too easily
lead to ’ rediction error. An improved Kalman Filtering algorithm has been proposed
to i nitial acceleration by using equilibrium optimization solution which tunes the
diction vector to diminish the error between measured value and prediction
ation value. The experimental results have shown that the proposed adaptive
algorithm provides better performance than the standard algorithm.
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