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Abstract 

In this paper, an adaptive Kalman Filtering method is presented for the state 

prediction of random systems. It is shown that the adaptive Kalman Filtering method in 

conjunction with equilibrium optimization solution can estimate the initial accelerations 

of targets effectively since the equilibrium optimization solution tunes the state prediction 

vector to diminish the error between measured value and prediction estimation value. We 

evaluate our model on special and random trajectories. Experimental evidence shows that 

the proposed method can robustly estimate an initial acceleration from a dynamic model 

and stably track a trajectory which is moving randomly. 
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1. Introduction 

Target trajectory tracking is fundamentally a problem of estimating current and future 

target motion parameters. Filtering and prediction are necessary technical means to obtain 

them, such as position, velocity and acceleration, etc. Accurate tracking is crucial for 

many applications, such as space-based early warning, radar trajectory prediction system, 

inertial navigation system [1-3]. Despite enormous progress in recent years, the tracking 

abilities of humans still easily outperform state-of-the-art algorithms in real world, both in 

terms of precision and accuracy, if target is moving in a non-maneuvering state [3]. 

During target estimation and prediction in fact, when target tends to maneuver, the 

problem becomes much more complicated. Unfortunately, in the realm of trajectory 

tracking typical filtering, prediction measure and motion pre-model do not lead to meet 

the need of the problem solving. The estimation and prediction are so often divergent that 

have to be taken into account. 

In this work we investigate the question whether it is really beneficial for trajectory 

tracking to improve Kalman Filtering model to solute the problem effectively. We attempt 

to design a new adaptive method such that it offers equilibrium optimization solution to 

diminish the error between measured value and prediction estimation value. For the 

purpose of this paper, the standard Kalman Filtering can be applied to track a non-

maneuvering state trajectory [4,5]. Then by choosing the new adaptive Kalman Filtering 

as the filtering algorithm, it is shown that the adaptive algorithm yields more accurate 

results than the standard Kalman Filtering for the non-maneuvering and maneuvering 

target trajectories. 
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2. Tracking Algorithm 
 

2.1. Linear Kalman Filtering for Discrete-Time Systems 

 

2.1.1. White Noise and Color Noise 

The random process ( )w t  in (1) and (2): 

( )] 0w t                                                            (1) 

( ) ( ) ] ( )ww t w t                                                   (2) 

where ( )w t  is white noise process, in this model, w is the covariance of ( )w t , ( )t   

is the Dirac-  function  

0
( )= ( ) 1

t
t t d

t





 
       

  
，                                  (3) 

Equation (2) is the autocorrelation function of ( )w t , can be expressed as 

( ) ( )w wR t ρ t                                                           (4) 

It shows that the autocorrelation function is related to interval ( )t    but with no 

relationship with time t , so ( )w t  is a smooth process. 

Let t   , the power spectrum of ( )w t  is  as follows 

j( ) ( )w w ws e d   


 


                                               (5) 

If { ( )w k } is a random sequence and satisfies 

) 0kw                                                              (6) 

)k j k kjw w Q                                                          (7) 

then ( )w k  is a white noise sequence, kQ and kj  are covariance matrix and Kronecker-  

function, shown as follows,  of  ( )w k , respectively [6]. 

1

0
kj

k j

k j



 


                                                          (8) 

 

2.1.2. Random Linear Discrete System Model 

Given that state and observation equations of random linear discrete system are 

| 1 1 | 1 1k k k k k k kx Ф x Γ w                                                  (9) 

k k k kz H x v                                                      (10) 

where 
n

kx R  is the system state vector, 
m

kz R  is the measurement vectors, 

| 1

n n

k kФ R 

   is the state transition matrix, | 1

n p

k kΓ R 

   is the noise input matrix, 

m n

kH R   is the measurement matrix, 1

p

kw R   is the system process noise, 
m

kv R  

is the measurement noise. 

The statistical characteristics of the system process noise and measurement noise are 

assumed as 

) 0 Cov , )

v ) 0 Cov v , v )

Cov w , v ) 0

k k j k kj

k k j k kj

k j

w w w Q

R

     


    
  

，

，                              (11)  
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where kQ  is the non-negative definite covariance matrix, kR  is the positive definite 

covariance matrix, kS  is the cross covariance matrix. 

If kz  satisfies (10) constraints, then state estimation ˆ
kx  is in accordance with the 

following equations: 

 Step state prediction 

                    | 1 | 1 1
ˆ ˆ

k k k k kx x                                                          (12) 

State estimation 

| 1 | 1
ˆ ˆ ˆ( )k k k k k k k kx x K z H x                                              (13)  

Filtering gain matrix 
1

| 1 | 1( )T T

k k k k k k k k kK P H H P H R 

                                        (14)  

Step prediction error covariance matrix 

| 1 | 1 1 | 1 | 1 1 | 1

T T

k k k k k k k k k k k kP P Γ Q Γ                                    (15) 

Estimation error covariance matrix 

| 1( )k k k k kP I K H P                                               (16) 

Equation (12)~16) are basic equations of kalman filtering for random linear discrete 

systems. If the initial values 0x̂  and 0P  are given, state estimation ˆ
kx  at time k  can be 

recursive according to the measured values kz . 

 

2.2. Target Tracking Algorithm 

As was mentioned above, when the target motion mathematical model is precise, such 

as uniform linear motion or uniform circular motion, the results of prediction and filtering 

are satisfactory by applying the standard Kalman Filtering. However, when the target 

motion model is not known, it is unable to establish accurate mathematical models for the 

target. At time k , generally we can assume that at any moment, targets are in uniform 

linear motion, thereby establish mathematical models. But this will lead to degradation on 

tracking accuracy, in some cases, even cause filtering divergence. 

 In this section, the target trajectory is random, at time k , target motion parameters 
kx  

are random. To overcome this problem, based on the analysis of motion characteristics of 

maneuvering targets, the modification to state prediction vector | 1
ˆ

k kx   at time k  is 

introduced to improve the prediction on the real value, so as to get a better performance 

than the standard Kalman Filtering [7-10].  

Target maneuvering model 

| 1 1 | 1 1k k k k k k kx Φ x Γ w                                                   (17) 

k k k kz H x v                                                         (18) 

where | 1k kΦ   is unknown. At time k , it is assumed that the real kinematic parameters of 

the  target are 

[ , , , ]T

k k k k kX rx ry vx vy  

Observation vector is 

[ , ]T

k k kz zx zy  

When 3k  , we have 

At time 1k  , observation vector is 

1 1 1[ , ]T

k k kz zx zy    

At time 2k  , observation vector is 
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2 2 2[ , ]T

k k kz zx zy    

At time 3k  , observation vector is 

3 3 3[ , ]T

k k kz zx zy    

At time 1k  , average velocity is defined as follows: 

1 1 1 1 1 2 2[ , ] ([ , ] [ , ] ) /T T T

k k k k k k kv vx vy zx zy zx zy T                      (19) 

At time 2k   

2 2 2 2 2 3 3[ , ] ([ , ] [ , ] ) /T T T

k k k k k k kv vx vy zx zy zx zy T                      (20) 

At time 1k  , average acceleration is 

1 1 1 1 2[ , ] ( ) /T

k k k k ka ax ay v v T                                  (21) 

State prediction vector at time k  after modified is 

| 1 | 1 1 1 1 | 1 1
ˆ ˆ [0,0, , ]T

k k k k k k k k k kx F x vx vy a                              (22) 

where 

| 1

1 0 0

0 1 0

0 0 0 0

0 0 0 0

k k

T

T
F 

 
 
 
 
 
 

，

2

2

| 1

/ 2 0

0 / 2

0

0

k k

T

T
Γ

T

T



 
 
 
 
 
 

 

Prediction error covariance matrix is 

| 1 | 1 1 | 1 | 1 1 | 1

T T

k k k k k k k k k k k kP Φ P Φ Γ Q Γ                                     (23) 

where 

| 1

1 0 0

0 1 0

0 0 1 0

0 0 0 1

k k

T

T
Φ 

 
 
 
 
 
 

， 1

10 0

0 10
kQ 

 
  
 

 

Filtering gain matrix is 
1

| 1 | 1( )T T

k k k k k k k k kK P H H P H R 

                                    (24) 

where 

1 0 0 0

0 1 0 0
kH

 
  
 

，
5000 0

0 5000
kR

 
  
 

 

State estimation is 

| 1 | 1
ˆ ˆ ˆ( )k k k k k k k kx x K z H x                                     (25) 

 Estimation error covariance matrix is 

| 1( )k k k k kP I K H P                                          (26) 

Filtering initialization: 

1̂ [123,234,100,200]Tx  , 2
ˆ [234,345,100,200]Tx  , 3

ˆ [345,456,100,200]Tx   

 Filtering error covariance matrix is 

0

1 0 0 0

0 2 0 0

0 0 1 0

0 0 0 2

P

 
 
 
 
 
 
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3. Experiments Test 

 
3.1. Non-maneuvering Trajectory Tracking Simulations 

The non-maneuvering trajectory is a semi circular curve; the target is still in a state of 

uniform motion. The simulation results are given by Figure 1, Figure 2 and Figure 3. It is 

shown that the standard Kalman Filtering provides good accuracy in estimating 

the target trajectory which can be modeled accurately. 

Although the trajectory is in the state of uniform circular motion, it can get accurate 

mathematical model. Figure 1, Figure 2 and Figure 3 show that Kalman Filtering 

still converge and achieve the satisfied performance. 

 

 

Figure 1. The Semi Circular Curves Trajectories of Ideal, Observation, 
Filtering and Prediction 

 

Figure 2. The Error of Observation, Prediction and Filtering In X 

 

Figure 3. The Error of Observation, Prediction and Filtering In Y 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Hybrid Information Technology 

Vol. 9, No.12 (2016) 

 

 

42  Copyright © 2016 SERSC 

3.2. Random Trajectory Tracking Simulation 

In this simulation, the motion model can not be established, the traditional way is to 

assume that the target is still in uniform linear motion, but the actual motion 

parameters can not be predicted, it will inevitably lead to a decline in the tracking 

accuracy sometimes even lead to filter divergence. 

In view of this situation, this paper constructs a new improved Kalman Filtering 

algorithm. As described above, by improving the prediction value to reduce the error. The 

simulation results given by Figure 4~9 show that the improved algorithm declines faster 

than standard methods but the tracking accuracy is greatly improved. 

 

3.2.1. Standard Kalman Filtering Algorithm 

Figure 5 and Figure 6 show filter errors in X-axis and Y-axis, we can see that the filter 

error in X-axis is even larger than the observation error, in this case algorithm has lost its 

practical significance. 

 

 

Figure 4. The Maneuvering Trajectories of Ideal, Observation, Filtering and 
Prediction 

 

Figure 5. The Error of Observation, Prediction and Filtering In X 
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Figure 6. The Error of Observation, Prediction and Filtering In Y 

 

3.2.2. Improved Kalman Filtering Algorithm 

Figure 7, Figure 8 and Figure 9 demonstrate that the performance, such as tracking 

accuracy, convergence rate and other indicators, of the improved algorithm on tracking 

the same maneuvering curve has risen with respect to that of the standard method. It is 

noted that the initial estimation value is very large, however the improved algorithm for 

tracking a maneuvering motion can still rapidly converge. 

The error curves are shown in Figure 8 and Figure 9. In the case that although the 

observed trajectory and the predict trajectory both present large errors, the filtering 

trajectory by applying the improved algorithm can still get better filtering accuracy. From 

Figure 8, we can see that the local peak value of he prediction error in X-axis is 237.4755. 

Similarly from Figure 9 we can see that the local peak value of prediction error in Y-axis 

is 165.4967. From the figures, during the entire simulation process, the observation errors 

fluctuate wildly, and the same result occures to the prediction error. This indicates that the 

tracking environment is quite bad, however the filtering error curve remains relatively 

small fluctuations, showing greater vitality of the improved algorithm, compared to the 

standard algorithms, in dealing with the the tracking problem in harsh conditions.  

 

 

Figure 7. The Maneuvering Trajectories of Ideal, Observation, Filtering and 
Prediction in Adaptive Algorithm 
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Figure 8. The Error of Observation, Prediction and Filtering In Adaptive 
Algorithm In X 

 

Figure 9. The Error of Observation, Prediction and Filtering In Adaptive 
Algorithm in Y 

 

4. Conclusion 

Kalman Filtering technique has been widely used to solve different filtering problems 

especially for tracking purposes. Extended Kalman Filtering technique is used for 

modeling an adaptive Kalman Filtering algorithm for tracking maneuvering trajectory in 

this paper. 

This paper has resolved this apparent problem by demonstrating firstly that standard 

Kalman Filtering provides tracking performance almost as good as tracking a known non-

maneuvering model,  and secondly that is not robust to tracking maneuvering model. The 

key to this performance degradation is that the model is uncertain and hence too easily 

lead to great prediction error. An improved Kalman Filtering algorithm has been proposed 

to improve initial acceleration by using equilibrium optimization solution which tunes the 

state prediction vector to diminish the error between measured value and prediction 

estimation value. The experimental results have shown that the proposed adaptive 

algorithm provides better performance than the standard algorithm. 
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