
International Journal of Hybrid Information Technology

Vol. 9, No.12 (2016), pp. 209-220

http://dx.doi.org/10.14257/ijhit.2016.9.12.19

ISSN: 1738-9968 IJHIT

Copyright © 2016 SERSC

A Novel Self-Learning Differential Evolution Algorithm in Two-

State Dynamic Optimization

Feng Guiliang
1,2,3

, CaoNing
1,2,3

 and Zhang Xiao
1,2,3,*

1
School of Information Science and Engineering,

Hebei North University,China，
2
 Population Health Informazation in Hebei Province Engineering Technology

Research Center, China ，
3

Medical Informatics in Hebei Universities Application Technology Research and

Development Center, China

6838710@qq.com ,8018997@qq.com, xz1965cn@aliyun.com

Abstract

In this paper we propose a novel differential evolution algorithm based on self-

learning, in order to improve the environment adaptive ability of the population in

dynamic optimization. The proposed algorithm can monitor the environment changes

using re-evaluation of individuals. We direct the population evolution based on the

current best individual and another two random individuals, so that the convergence

speed is faster and the diversity of the population is maintained. In this way we may

reduce the influence from the frequent environment changes. Testing on six dynamic

functions, we study the influences caused by period and dimensions. We also compared

the proposed algorithm with existing algorithms, the experimental results show that our

algorithm has a better environment adaptive ability and achieves better optimization

result.

Keywords: Intelligent computing; Differential evaluation; Dynamic optimization; Self-

learning

1. Introduction

In the large amount of engineering and science optimization problems, the variables,

target functions, and constraints are generally changing through time. The topological

structure of the function is changing. Therefore, the optimization result achieved is only

valid in a short time duration. The optimization of such problem becomes very

complicated. Currently, the dynamic environment can be categorized into three

categories[1]. (1) In the first category, the constraints are changing, such as the

Dynamic Knapsack Problem. (2) In the second category, the dynamic testing environment

is caused by exclusive-or operation based on binary coding. The exclusive-or operator is

performed on the binary coding in the individuals and causing the environment to change.

(3) The third one is the changing of topological structure of functions, such as the

dimension, height, width, and location of peak. In the above mentioned dynamic

optimization problems, the last one is difficult to solve. Multiple factors are changing at

the same time and cause the complexity of the problem to increase. The optimization

result is usually not satisfactory. The computational intelligent algorithms have shown

their ability in handling such dynamic optimization problems[2]. However, the history

information is not always used due to the changing of the environment, and this reduces

the algorithm efficiency. During the fast changes of the environment, the population has

to adaptive to the new environment in time, and this is a great challenge to the existing

learning algorithms. When the population are trapped in local extremes, all individuals

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.12 (2016)

210 Copyright © 2016 SERSC

converge towards the same direction and the population lose the ability to evolve. In order

to better track the changes of the extreme points, the population must keep a good

diversity level. Cobb et al.[3] uses super mutation and local search to increase the

diversity. When the change of environment is detected, the mutation rate is increased

instantly or gradually. Yang et al. [4] propose an incremental learning algorithm based on

population, and individual learning ability is enhanced. Yang et al.[5] propose a new

method of directive individual updating. Fernandes et al. [6] increase the individual

crossover based on Hamming distance. Better diversity is achieved on the population with

further Hamming distance. In reference [7] and [8], prediction and memory is introduced

into dynamic evolution algorithms. Prediction model is used when the environment

factors are changing. Dong et al. [9] Propose an improved algorithm based on the Oracle

penalty function and adaptive differential evolution. Their algorithm may reduce the

number of parameters. Reference [11] uses a method based on differential evolution and

adaptive constraint handling to track the dynamic changes in the environment. Thanh et

al. [10] give a good review of swarm intelligence and dynamic optimization, and analyze

the different performances of optimization algorithms.

In order to reduce the changes in the environment and reduce the complexity of the

optimization problem, we propose a novel self-learning differential evolution algorithm

(SeDE, Self-Learning Differential Evolution). Our proposed algorithm may keep the

population diversity, enhance the influence of elite individuals, and make use of the

history information to improve the algorithm efficiency.

2. Dynamic Function Design

Dynamic Optimization Problems (DOPs) can be represented as：
min (,)

(,) 0, 1,2 ,
. .

(,) 0, 1,2, ,

i

j

f x t

h x t i m
s t

g x t j n

 


 

 (1)

where (,)f x t is the target function with respective to time, (,) 0ih x t  is the i-th

equality constraint condition at time t. There are m constraints in total. (,) 0jg x t  is the j-

th inequality constraint condition related to time t, there are n constraints in total.

When time t is changing, the dimension, the extreme value, and the location of the

extreme of the function (,)f x t may all change. In this paper we study the dynamic

optimization problem caused by the change of the location of extremes. Given the n

dimensional function f(x) under static environment, the i-th state is 1 2(, , ,)i i i inc c c ,

1,2, ,i K , and the dynamic function is:

   , , (,),F x t f x t   (2)

where  , ,F x t is the dynamic function of time, (,)x  is the mapping between

variable x and state o , t is the time variable in f(x), such as iteration number,

physical time, et al.

Use two dimensional Sphere function 2 2

1 2 1 2(,)f x x x x  as an example, given two

points  1 11 12,c c and  2 21 22,c c , the dynamic function is:

2 2

1 1 2 2(, ,) () ()i iF x t x x      (3)

when t satisfies condition  , i=1, otherwise, i=2.  maybe the control parameter

related to the generation number. When t changes, the minimal of the function is 1 or

2 .

All printed material, including text, illustrations, and charts, must be kept within

the parameters of the 8 15/16-inch (53.75 picas) column length and 5 15/16-inch (36

picas) column width. Please do not write or print outside of the column parameters.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.12 (2016)

Copyright © 2016 SERSC 211

Margins are 1 5/16 of an inch on the sides (8 picas), 7/8 of an inch on the top (5.5

picas), and 1 3/16 of an inch on the bottom (7 picas).

3. Adaptive Differential Evaluation Algorithm

SeDE algorithm is based on the dynamic detection of the environment. The algorithm

is consisted of three parts: the dynamic environment detection, the individual two stage

learning, and parameter adaptation. As shown in Table 1.

Table 1. SeDE Algorithm Framework

Alg 1：SeDE

Input：the target function ()f x and domain of definition;

Output: the optimized fitness of function ()f x

Step 1: Initialize population P: Initialize population P in the domain of definition, NP

individual, D dimension,  P , 1, , , 1, ,ijx i NP j D   . Initial parameter F and CR.

Step 2: Dynamic environment detection: detect the environment changes if the environment

changes go to Step 3, otherwise go to Step 4.

Step 3: Learning stage 1: Get the state of the current environment, and use the current best

solution to direct the population P.

Step 4: Learning stage 2: direct population P based on the current best individual.

Step 5: Evaluate population P, select the outstanding individuals from parent and the

offspring generation.

Step 6: Adjust the control parameters: use the adaptive method to update the mutation step

F and crossover rate CR.

Step 7: Record the optimal solution x and the related fitness value ()fit f x

Step 8: When termination criteria is met, output statics, otherwise go to Step 2.

3.1. Environment Detection Method

The environment detection method includes two stages: check if it has been changed

and get the state of the environment. The character of the environment determines the

method of detection [12], in this paper, our dynamic optimization problem has two

different states. The individual fitness changes significantly when the state transfers

from one to the other. In Figure 1, we use the minimization problem of the two-

dimensional Sphere function 2 2

1 2 1 2(,)f x x x x  as an example.
Onli

ne
 Vers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.12 (2016)

212 Copyright © 2016 SERSC

Figure 1. The Fitness Value Change Caused By the Environment Change

The two states are represented as 1 and 2 . u and v are the random individuals

in the population. When the optimization environment is 2o , individual u is close to

the state center and better that individual v . When state transfers from 2o to 1o , the

fitness of individual u decreases significantly and worse than that of individual v .

Therefore, in this paper, we use the specific individual as a monitor of the environment

change. For instance, we may choose the best individual in the population or the random

individual in the solution space.

The second step is to determine the state of the environment. We use the variable

changTime to calculate the number of times the environment changed. Initial value is set

as: 1changTime  . When environment changes, update the variable as:

1changTime changTime  . We use the logical variable Status to denote the current

environment state: mod(,2)Status changeTime , where mod denotes the mode 2 operation.

The environment is at state 1 when 1Status  , otherwise the environment is at state 2.

3.2. Individual Self-Learning Method

To be better adapted to the changing environment, we use the elite individuals to lead

the learning process. Based on the space-time location of the evaluation, the learning

process is divided into two: in the first stage, the population learn from the best solution in

the history under state j, when the environment transfers from state i to state j :

 , , 1,2i j i j  . In the second stage, the population learn from the current best individual.

Detailed algorithm is given in Table 2.

The main title (on the first page) should begin 1 3/16 inches (7 picas) from the top edge

of the page, centered, and in Times New Roman 14-point, boldface type. Capitalize the

first letter of nouns, pronouns, verbs, adjectives, and adverbs; do not capitalize articles,

coordinate conjunctions, or prepositions (unless the title begins with such a word). Please

initially capitalize only the first word in other titles, including section titles and first,

second, and third-order headings (for example, ―Titles and headings‖ — as in these

guidelines). Leave two blank lines after the title.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.12 (2016)

Copyright © 2016 SERSC 213

Table 2. Individual Self-Learning

Alg 2：Self-learning algorithm

Input：Population – P,

fitness value – fit,

best solution in histoy – stageBestIndi,

corresponding fitness –stageBestFit,

environment change counter –changeTime=1.

Output：Environment vector - v

Step1: Get the current best solution: bestIndi, and its fitness value: bestFit

Step2: if bestFit  Revaluate(bestIndi), re-evaluate the optimal solution and determine

whether the environment has changed.

Step3: flag=mod(changeTime, 2)

Step4: if flag==2, State 1 transfers to state 2.

Step5: if bestFit<stageBest(1), Update the history best solution and fitness value of state

1:

Step6: update(bestIndi, bestFit) ;

Step7: for all individual x in population p, Learn from the best individual in history of state

2: v=x+w*(stageBestIndi(2)-x) .

Step8: else transfer from state 2 to state 1.

Step9: if bestFit<stageBest(2), update the best solution in history and its fitness value of

state 2:

Step10: update(bestIndi, bestFit).

Step11: for all individual x in population P, learn from the best individual of history of

state 1: v= w*(stageBestIndi(1)-x)

Step12 changeTime=changeTime+1;

Step13: else learn from the current best individual:

Step14: for all individual x in population P:

1 2 3() ()iv bestIndi F bestIndi randP k randP randP      

Learn from the best solution in history: When the environment state transfers from i to

j, the fitness value and the individual ranking are both changed. The population need to be

adapted to the environment as soon as possible. We use the best solution in history of sate

j as the template for other individuals to learn.

Given the best solution in history of j: ()stageBest j , we have the learning strategy when

state transfers from i to j:

_ *(())x new x stageBest j x  

(4)

where, _x new is the new individual based on x and  is the disturbance

parameter.

In Figure 2 we give the example of two-dimensional and two-state function Sphere to

explain the learning process of individual x . The individual under state 1 is directed to

point v by the best solution of history of sate 2. It is closer to the optimal solution under

state 2 and has a better fitness value.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.12 (2016)

214 Copyright © 2016 SERSC

Figure 2. Individual Self-Learning Method

Learn from the current best solution: the evaluation times, iteration numbers may be

treated as the driven force of the population evolution. In the dynamic optimization

problem, due to the environment change the algorithm needs to fit the new environment in

time. Therefore, we direct the individuals to learn from the current best solution:

1 2 3() ()iv bestIndi F bestIndi randP k randP randP       , where, iv is the over test vector of the

i-th individual, bestIndi is the best individual of the current generation, and

, 1,2,3jrandP j  is the individual selected from population P that is different from bestIndi

or current individual. F is the control parameter of mutation step, and k is the even

distribution in domain (0,1].

3.3. Individual Crossover and Updating

Crossover on iv and iP and generate target vector iu :  1 2, , ,i i i iDu u u u . We have:

(0,1) or _

otherwise

ij

ij

ij

v if U CR j j rand
u

P

 
 


 (5)

where, (0,1)U is the random distribution in domain [0,1], CR is the crossover rate, and

_j rand is the random integer in 1, ,D   . Ensure there is at least one different dimension

between iu and ix . Select the better individual '

ix from iu and ix for the next

generation.

 '
if is superior

otherwise

i i i

i

i

u u x
x

x


 


(6)

3.4. Parameter Adaptation

Individuals in population P, are corresponded to mutation step F and crossover rate CR,

all of them evolve at the same pace. In g+1 generation, we update the F and CR of the i-th

individual as follows [12]:

1

, 1

,

* if <

 otherwise

l u

i g

i g

F rand1 F rand2
F

F





 


 (7)

2

, 1

,

 if <

 otherwisei g

i g

rand3 rand4
CR

CR





 


 (8)

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.12 (2016)

Copyright © 2016 SERSC 215

where, =1,2,3,4jrand j is the random number in [0,1] , 1  and 2 are the adjustment

probability, and they are both set to 0.1. We also set: =0.1,lF 0.9uF 

4. Experimental Results

To verify the algorithm performance, we select six benchmark functions, as shown in

Table 3. We use different parameter configurations and compared the proposed algorithm

with basic differential evaluation algorithm and adaptive differential evolution algorithm.

The selected static functions include unimodal functions, 1f to 4f , and multimodal

functions, 5f and 6f . In order to simulate the dynamic environment, we randomly

generate fix point O in the domain of definition of function ()f x . Let *() ()f x f x o  , and

the states transfer between ()f x and *()f x .

Table 3. The Testing Functions

Function State Space

2

1

1

()
D

i

i

f x x


 10 10ix  

2

1 1

()
DD

i i

i i

f x x x
 

   100 100ix  

3() max { ,1 }i if x x i D   100 100ix  

1
2 2

4 1

1

() [100() (1)]
D

i i i

i

f x x x x






    30 30ix  

2

5

1

1

1
() 20exp(0.2)

1
exp(cos2) 20

D

i

i

D

i

i

f x x
D

x e
D







  

  




 32 32ix  

2

6

1 1

1
() cos() 1

4000

DD
i

i

i i

x
f x x

i 

    600 600x  

4.1. Algorithm Performance under Low Dimension and Dynamic Environment

In order to test the SeDE algorithm in low dimension optimization problem, we test the

algorithm independently for 25 times and each time we re-initialize the population in the

domain of definition. The population size is set to 30 and the iteration maximum time is

set to 2500. The frequency of environment change is set to 25 generations. The

optimization accuracy is set to 1E-8, and the simulation results are shown in Table 4.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.12 (2016)

216 Copyright © 2016 SERSC

Table 4. Optimization Results of SeDe Algorithm under Low Dimension
Dynamic Environment

Function D=5 Mean(Std) D=10 Mean(Std)

State 1 State 2 State 1 State 2

F1 3.31E-03

(6.60E+00) 4.76E-04 (2.76E-01) 1.20E-01 (1.41E+02) 4.59E-02 (2.50E+01)

F2 9.31E-03

(1.90E-01) 3.57E-03 (1.87E-02) 8.05E-02 (1.09E+00) 4.97E-02 (4.81E-01)

F3 3.51E-05

(6.93E-03) 2.85E-06 (3.99E-03) 1.77E-06 (2.92E-03) 2.51E-07 (7.26E-04)

F4 9.52E-07

(6.20E+01) 7.57E-05 (2.83E+01) 5.57E-04 (2.19E+03) 7.56E-04 (1.21E+03)

F5 3.55E-02

(6.69E-01) 1.50E-02 (1.23E-01) 2.12E-01 (1.66E+00) 1.59E-01 (8.95E-01)

F6 1.77E-01

(1.31E-01) 1.05E-01 (7.89E-02) 5.68E-01 (2.04E+00) 5.44E-01 (2.57E-01)

Score 3.75E-02 2.07E-02 1.64E-01 1.33E-01

In the experiment we record the minimum value (, ,)pbest k i j in the j-th period of i-th

independent test under k-th state. To get the optimal value ()sbest k we run the test for 25

times and 1E+5 generations. As shown in Table 4, the mean and standard deviation of the

optimal values are calculated. We can see that when dimension equals 5, the score is

similar to each other. When the dimension increases to 10, the scores are significantly

different. When the dimension increase from 5 to 10, the problem space increases, and

the complexity increases. The optimization results therefore become worse, the changing

environment is more difficult to chase.

When the environment state transfers from i-th state to j-th state, the individual patent

under i-th state is destroyed. The individual learning process under i-th state is also a

destruction to the patent under j-th state. This repeated process causes quasi-periodic

change in the fitness curve, as shown in Figure 3.

0 10 20 30 40 50 60 70 80 90 100
-70

-60

-50

-40

-30

-20

-10

0

10

Number of environmental changes

lo
g

(F
it
n

e
s
s
)

GenLmt=500

GenLmt=100

GenLmt=25

Figure 3. Fitness Curve of the Population in Dynamic Environment

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.12 (2016)

Copyright © 2016 SERSC 217

4.2. Comparison of Algorithms Performances under High Dimension and Dynamic

Environment

In this experiment, we compared the influence of different environment change

frequencies. We compared our algorithm with the standard differential evolution

algorithm and the adaptive differential algorithm in reference [12]. The algorithm is tested

independently for 25 times, the mean of optimal value is used as a static index. In order to

maintain the same number of changes under different environment changing period, we

set the iteration number as GenLmt*100. For all three algorithms, the population size is

set to 30 and the dimension is set to 30, initialization is performed randomly in the

solution space. The simulation results are shown in Table 5 and Table 6. Compared with

other two algorithms, the SeDE algorithm has a obvious advantage. When genLmt equals

to 5 or 10, the environment is changing quickly and the individual has to be adapted to

search for the optimal solution. This requires the algorithm to have a faster learning

speed. In the SeDE algorithm, the best individual in history will lead the individual

learning under the environment change, and the current best solution will lead the

learning afterwards. This character gives the SeDE algorithm a better learning ability, and

may be better adapted to new environment than the other two algorithms. When genLmt

equals to50 and 100, the change of environment slows down. This requires the algorithm

to maintain population diversity for multimodal function and avoid local extremes. The

SeDE algorithm is based on DE algorithm which has a strong ability in keeping

population diversity. The random individuals are included in the individual learning

process to achieve better optimization results.

Table 5. Comparison of Algorithm Performance under Different
Environment Change Frequency (A)

Functio

n

(30

dimensi

on)

MeanBest(GenLmt=5) MeanBest(GenLmt=10)

SeDE DE Reference [12] SeDE DE Reference [12]

F1 3.11e+3 6.40e+3 4.27e+3 1.27e+3 3.03e+3 1.64e+3

F2 2.97e+9 3.24e+6 5.64e+7 3.56e+3 4.16e+6 9.61e+6

F3 2.10e-3 9.11e-3 3.79e-3 1.48e-3 3.17e-3 2.59e-3

F4 6.10e+4 1.66e+5 8.41e+4 2.31e+4 9.03e+4 4.30e+4

F5 1.21e+1 9.65e+0 7.07e+0 6.93e+0 7.40e+0 4.55e+0

F6 2.80e+1 6.02e+1 3.23e+1 1.71e+1 2.26e+1 1.74e+1

Score 4 1 1 5 0 1

Table 6. Comparison of Algorithm Performance under Different
Environment Change Frequency (B)

Function

(30

dimension)

MeanBest(GenLmt=50) MeanBest(GenLmt=100)

SeDE DE
Reference

[12]
SeDE DE Reference [12]

F1 2.13e+2 4.74e+2 2.40e+2 3.22e+1 1.34e+2 5.34e+1

F2 1.95e+0 9.38e+0 3.81e+0 7.38e-1 2.91e+0 2.00e+0

F3 4.21e-4 8.13e-4 5.55e-4 1.14e-4 1.36e-4 1.52e-4

F4 6.35e+3 2.42e+4 5.78e+3 1.57e+3 1.58e+4 8.17e+2

F5 1.70e+0 4.13e+0 2.53e+0 6.48e-1 3.05e+0 2.32e+0

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.12 (2016)

218 Copyright © 2016 SERSC

F6 2.79e+0 5.63e+0 3.17e+0 1.16e+0 2.45e+0 1.51e+0

Score 5 0 1 5 0 1

5. Conclusion

In this paper we propose a novel algorithm SeDE based on the learning process

directed by elite individuals. The new algorithm has the ability of DE algorithm to

maintain population diversity. The environment changes is monitored by re-evaluation of

specific individual, and the self-learning method is adopted to better fit the environment.

When the environment is changed, the best individual in the history is adopted to direct

the learning of the population at once, and the current best individual is adopted after the

population enters the new environment. The diversity is maintained and the convergence

speed is improved. The two-state environment change is taken as an example, and

experimental results show that the proposed algorithm has a strong global and local search

ability. However, in real world applications there are many multi-state problems to be

solved, we will extend our research to this type of optimization problems in the future.

References

[1] J. R. Gonza´lez, D. A. Pelta and C. Cruz, ―Optimization in dynamic environments: a survey on

problems, methods and measures‖, Soft Computing, vol. 15, no. 1, (2011), pp. 1427-1448.

[2] S. Yang and C. Li, ―A clustering particle swarm optimizer for locating and tracking multiple optima in

dynamic environments‖, IEEE Transaction. on Evolutionary Computation, vol. 14, no. 6, (2010), pp.

959-974.

[3] H. G. Cobb and J. J. Grefenstette, ―Genetic Algorithms for Tracking Changing Environments‖,

International Conference on Genetic Algorithms, Morgan Kaufmann, (1993), pp. 523-530.

[4] X. Yao and S. Yang, ―Population-based incremental learning with associative memory for dynamic

environments‖, IEEE Transactions on Evolutionary Computation, vol. 12, no. 5, (2008), pp. 542- 561.

[5] S.Yang, ―Genetic algorithms with memory and elitismbased immigrants in dynamic environments‖,

Evolutionary Computation, vol. 16, no. 3, (2008), pp. 385-416.

[6] A. C. Rosa and C. M. Fernandes, ―Self-adjusting the intensity of assortative mating in genetic

algorithms‖, Soft Computing, vol. 12, no. 10, (2008), pp. 955-979.

[7] H. Chen, M. Li and X. Chen, ―Multi-population Evolutionary Algorithm with Forecast Scheme in

Dynamic Environment‖, Journal of Chinese Computer Systems, vol. 33, no. 4, (2012), pp. 796-781

[8] H. Chen，L. Ming and X. Chen, ―Hybrid memory scheme for genetic algorithm in dynamic

environments‖, Journal of Applied Science, vol. 28, no. 5, (2010), pp. 540-545．

[9] M. Dong, X.i Cheng and Q. Niu, ―Adaptive constrained differential evolution algorithms based on

Oracle penalty function‖, Computer Applications and Software, vol. 31, no. 1, (2014), pp. 290-294

[10] N.T. Thanh, S. Yang and J. Branke, ―Evolutionary Dynamic Optimization: A Survey of the State of the

Art‖, Swarm and Evolutionary Computation, vol. 6, no. 10, (2012), pp. 1-24.

[11] E. K. Silva, H. J. C. Barbosa and A. C. C. Lemonge, ―An adaptive constraint handling technique for

differential evolution with dynamic use of variants in engineering optimization‖, Optimization and

Engineering, vol. 12, no. 1, (2011)2, pp. 31-54．

[12] J. Brest, S. Greiner and B. Bošković, ―Self-adapting control parameters in differential evolution: A

comparative study on numerical benchmark problems‖, IEEE Transactions on Evolutionary

Computation, vol. 10, no. 6, (2006), pp. 646–657

Authors

Feng Guiliang, he is a Lecturer of department of information

science and engineering, Hebei North University, He is good at

the field of software engineering and multimedia development.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.12 (2016)

Copyright © 2016 SERSC 219

Cao Ning, he is a Lecturer of department of information science

and engineering,Hebei North University,He is good at the field of

software engineering and multimedia development.

Zhang Xiao, he is a professor at the school of information science

and engineering; Hebei North University, He is mainly in the field of

medical informatics, software engineering.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Hybrid Information Technology

Vol. 9, No.12 (2016)

220 Copyright © 2016 SERSC

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

