International Journal of Hybrid Information Technology
Vol. 9, No.12 (2016), pp. 209-220
http://dx.doi.org/10.14257/ijhit.2016.9.12.19

A Novel Self-Learning Differential Evolution Algorithm in Two-
State Dynamic Optimization

Feng Guiliang™*®, CaoNing"** and Zhang Xiao™**"

'School of Information Science and Engineering,
Hebei North University,China,
2 Population Health Informazation in Hebei Province Engineering Technology
Research Center, China ,
¥ Medical Informatics in Hebei Universities Application Technology Research and
Development Center, China .
6838710@qg.com ,8018997@qqg.com, xz1965cn@aliyun.com \/

Abstract

In this paper we propose a novel differential evo% orit ed on self-
learning, in order to improve the environment adapfi ity population in
dynamic optimization. The proposed algorlthm |tor onment changes
using re-evaluation of individuals. We direct the pulatlo tlon based on the
current best individual and another two ra individ that the convergence
speed is faster and the diversity of the b ion is m ed In this way we may
reduce the influence from the frequent nment g Testing on six dynamic
functions, we study the mfluences c dlmensmns We also compared

the proposed algorithm with existj I orlthm xperlmental results show that our
algorithm has a better ean adapt %ﬁbl ity and achieves better optimization
result.

Keywords: Intelllg&@putmg, Iﬁ@mal evaluation; Dynamic optimization; Self-

learning
1. Introd

In the | mount @neering and science optimization problems, the variables,
target functions, an aints are generally changing through time. The topological

valid in a sh e duration. The optimization of such problem becomes very

rently, the dynamic environment can be categorized into three
==(1) In the first category, the constraints are changing, such as the
psack Problem. (2) In the second category, the dynamic testing environment
y exclusive-or operation based on binary coding. The exclusive-or operator is
ed on the binary coding in the individuals and causing the environment to change.
he third one is the changing of topological structure of functions, such as the
dimension, height, width, and location of peak. In the above mentioned dynamic
optimization problems, the last one is difficult to solve. Multiple factors are changing at
the same time and cause the complexity of the problem to increase. The optimization
result is usually not satisfactory. The computational intelligent algorithms have shown
their ability in handling such dynamic optimization problems[2]. However, the history
information is not always used due to the changing of the environment, and this reduces
the algorithm efficiency. During the fast changes of the environment, the population has
to adaptive to the new environment in time, and this is a great challenge to the existing
learning algorithms. When the population are trapped in local extremes, all individuals

structure of the fi:\q is changing. Therefore, the optimization result achieved is only
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converge towards the same direction and the population lose the ability to evolve. In order
to better track the changes of the extreme points, the population must keep a good
diversity level. Cobb et al.[3] uses super mutation and local search to increase the
diversity. When the change of environment is detected, the mutation rate is increased
instantly or gradually. Yang et al. [4] propose an incremental learning algorithm based on
population, and individual learning ability is enhanced. Yang et al.[5] propose a new
method of directive individual updating. Fernandes et al. [6] increase the individual
crossover based on Hamming distance. Better diversity is achieved on the population with
further Hamming distance. In reference [7] and [8], prediction and memory is introduced
into dynamic evolution algorithms. Prediction model is used when the environment
factors are changing. Dong et al. [9] Propose an improved algorithm based on the Oracle
penalty function and adaptive differential evolution. Their algorithm may reduce the
number of parameters. Reference [11] uses a method based on differential evolution and
adaptive constraint handling to track the dynamic changes in the environment. Thanh et
al. [10] give a good review of swarm intelligence and dynamic optimization a e
the different performances of optimization algorithms.

In order to reduce the changes in the environment and reduce the c y of the
optimization problem, we propose a novel self-learning .s%emm e% algorithm
(SeDE, Self-Learning Differential Evolution). Our p algorith ay keep the
population diversity, enhance the influence of e ividuals, a ake use of the
history information to improve the algorithm efflc@ V
2. Dynamic Function Design Q %

Dynamic Optimization Problems (D Qw be re nted as:
min f (

i=12.. @

st )@0 1;1
where f(x,t) is the t uncti respectlve to time, h(xt)=0 is the i-th
are m constraints in total. g;(x,t)<0 is the j-

equality constraint co t time t.
th inequality cons ondition w%d to time t, there are n constraints in total.

When time t gmg, nsion, the extreme value, and the location of the
extreme of tlon f y all change. In this paper we study the dynamic
optimizati blem by the change of the location of extremes. Given the n
dimensional unctlo under static environment, the i-th state iS o,(c,.c,,*Cy)
i=12,--K,andt |c function is:

F(x0,t)=f(p(x0)t) )

where@,t is the dynamic function of time, ¢(x,0) is the mapping between

variabl nd state o, t is the time variable in f(x), such as iteration number,
physj e, et al.

wo dimensional Sphere function f(x,x,)=x?+x as an example, given two
S o/(cyc,) and o,(cy.cy,), the dynamic function is:
F(x,0,t) =(x _0i1)2 + (% _0i2)2 (3)
when t satisfies condition -, i=1, otherwise, i=2.  maybe the control parameter
related to the generation number. When t changes, the minimal of the function is o, or
0,.
All printed material, including text, illustrations, and charts, must be kept within

the parameters of the 8 15/16-inch (53.75 picas) column length and 5 15/16-inch (36
picas) column width. Please do not write or print outside of the column parameters.
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Margins are 1 5/16 of an inch on the sides (8 picas), 7/8 of an inch on the top (5.5
picas), and 1 3/16 of an inch on the bottom (7 picas).
3. Adaptive Differential Evaluation Algorithm

SeDE algorithm is based on the dynamic detection of the environment. The algorithm
is consisted of three parts: the dynamic environment detection, the individual two stage
learning, and parameter adaptation. As shown in Table 1.

Table 1. SeDE Algorithm Framework

Alg 1 :SeDE
Input :the target function f(x) and domain of definition;
Output: the optimized fitness of function f (x)

Step 1: Initialize population P: Initialize populatlon P in the domain of de n\vNP

individual, D dimension, P = { } =1---,NP,j=1,--,D. Initial parameterFaniC

Step 2: Dynamic environment detection: detect the environment changes, i ironment
changes go to Step 3, otherwise go to Step 4.

Step 3: Learning stage 1: Get the state of the current nent an he current best
solution to direct the population P.

Step 4: Learning stage 2: direct population P bas ) he curr%l individual.
ivi

Step 5: Evaluate population P, select the tandrng i als from parent and the
offspring generation.

Step 6: Adjust the control parameters adaptl od to update the mutation step

F and crossover rate CR. %
Step 7: Record the optimal soluti {‘ nd the fitness value fit = f (x*)

Step 8: When termination criteki et ou statlcs otherwise go to Step 2.

=
3.1. Environment Detec@ Method®

The environm ection me includes two stages: check if it has been changed
envimn The character of the environment determines the
detdGtion [12], in paper, our dynamic optimization problem has two

from one t=:

he i d@ral fitness changes significantly when the state transfers
dimensional Sphere on f(x,x)=x2+x; asan example.

igure 1, we use the minimization problem of the two-
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State Transfer

State 1
; X, VQ
° ©)
Figure 1. The Fitness Value Change Caused By\hs%ﬁviro Change

The two states are represented as o, and o, . v are thessafidom individuals
in the population. When the optimization envir tis ozwdual u is close to
the state center and better that individual v en state @.isfers from o, to o, the

fitness of individual u decreases signifi and wo an that of individual v.

Therefore, in this paper, we use the s N ndivid a monitor of the environment
change. For instance, we may choos(%)est i I\ in the population or the random
individual in the solution space

The second step is to d% he sta the environment. We use the variable
changTime to calculate the nurfiser of tj environment changed. Initial value is set

as:  changTime=1 . V@‘u envir\gb changes, update the variable as:

changTime—changTin;eQ e use the Togical variable status to denote the current

environment state&; =mo% ime,2) , where mod denotes the mode 2 operation.
i w

The environ rQe state 1 Status =1, otherwise the environment is at state 2.
Qelf-L @g Method

3.2. Indivi

To be better ad 0 the changing environment, we use the elite individuals to lead
the learning preeess» Based on the space-time location of the evaluation, the learning
process is divided into two: in the first stage, the population learn from the best solution in

the histo er state j, when the environment transfers from state i to state j :
i# i, j . In the second stage, the population learn from the current best individual.

talledalgorithm is given in Table 2.
% ain title (on the first page) should begin 1 3/16 inches (7 picas) from the top edge
ofNihe page, centered, and in Times New Roman 14-point, boldface type. Capitalize the
first letter of nouns, pronouns, verbs, adjectives, and adverbs; do not capitalize articles,
coordinate conjunctions, or prepositions (unless the title begins with such a word). Please
initially capitalize only the first word in other titles, including section titles and first,
second, and third-order headings (for example, “Titles and headings” — as in these
guidelines). Leave two blank lines after the title.
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Table 2. Individual Self-Learning

Alg 2 : Self-learning algorithm

Input : Population — P,

fitness value — fit,

best solution in histoy — stageBestIndi,
corresponding fitness —stageBestFit,
environment change counter —changeTime=1.
Output : Environment vector - v

Stepl: Get the current best solution: bestindi, and its fitness value: bestFit

Step2: if bestFit # Revaluate(bestindi), re-evaluate the optimal solution and determine
whether the environment has changed.

Step3: flag=mod(changeTime, 2) ?y
Step4: if flag==2, State 1 transfers to state 2. 0

Step5: if bestFit<stageBest(1), Update the history bes d f:@alue of state
1

Step6: update(bestindi, bestFit) ; O VV

Step7: for all individual x in population p, Lea@m the‘bea@dlwdual in history of state
2: v=x+w*(stageBestIndi(2)-x) . \

Step8: else transfer from state 2 to sta
Step9: if bestFit<stageBest(2), upd best @n in history and its fitness value of
state 2:

Stepl10: update(bestindi, bes

Step11: for all mdmdan‘n popul N(&\earn from the best individual of history of

state 1:  v=w™*(stage i(1)-x)

Stepl2 changeT. geT|

Stepl3: else le the c mdividual:
Stepl4: IVId populatlon P:

v, —bestlndl stlndl r; * (randP, —randP,)

ironment as soon as possible. We use the best solution in history of sate

adapted tg the e
jasthet for other individuals to learn.
Give est solution in history of j: stageBest(j), we have the learning strategy when

sfers fromito j:
X _new = X + @ *(stageBest(j) — x)
(4)

where, x_new is the new individual based on x and & is the disturbance
parameter.

In Figure 2 we give the example of two-dimensional and two-state function Sphere to
explain the learning process of individual x. The individual under state 1 is directed to
point v by the best solution of history of sate 2. It is closer to the optimal solution under
state 2 and has a better fitness value.
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A stageBest(2)

- State 2 / /

) @ * (stageBest(2) — x)

Figure 2. Individual Self-Learning Method QE

Learn from the current best solution: the evaluation weratlo%bers may be
treated as the driven force of the population evolutj optimization
problem, due to the environment change the algori S to enwronment in
time. Therefore, we direct the individuals to learn

he curr@% solution:
v, =bestindi + F * (bestIndi —randP,) +k * (randP, - rand where v.s the over test vector of the

i-th individual, bestindi js the best i ual \Q current generation, and
randP,, j=1,2,3 is the individual selecte population,P that is different from bestindi
or current individual. F is the co rame(® utation step, and Kk is the even

distribution in domain  (0,1]. @
9
3.3. Individual Crossover and da@
Crossoveron v, a &nd generatefarget vector wu;: u; =(uy,U,, Uy ) . We have:

IR

and

()

where, is the dlstrlbutlon in domain [0,1], CR is the crossover rate, and
erin [1.--,D]. Ensure there is at least one different dimension

j_rand |sthe rando
between v, and %Iect the better individual x, from v, and x for the next
generation &

N ' . |u, if v, is superior x;
X =
O ' |x otherwise

(6)
ameter Adaptation
dividuals in population P, are corresponded to mutation step F and crossover rate CR,

all of them evolve at the same pace. In g+1 generation, we update the F and CR of the i-th
individual as follows [12]:

F +randl*F, ifrand2<z,
l:i,ngl = F H (7)
g otherwise
c rand3 if rand4<r, ®)
9 T |CR, otherwise
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where, rand; j=1,234 is the random number in [01], ; and -, are the adjustment
probability, and they are both set to 0.1. We also set: F =0.1, F, =0.9

4. Experimental Results

To verify the algorithm performance, we select six benchmark functions, as shown in
Table 3. We use different parameter configurations and compared the proposed algorithm
with basic differential evaluation algorithm and adaptive differential evolution algorithm.
The selected static functions include unimodal functions, f, to f,, and multimodal

functions, f, and f,. In order to simulate the dynamic environment, we randomly
generate fix point O in the domain of definition of function f(x).Let f"(x)=f(x-o0), and
the states transfer between f(x) and "(x).

Function

A a
609=3 ‘Q\A‘ —1@
f,(X) :g|xi|+]j|xi| O \\yK X <100

f,() = max,{ x| 1<i <D} OQ .\@ >—1003xis100

g

f,(x) = Z[lOO(xHl %)%+ (% —1)?%] \ N @ -30<x <30
"Q g&
f(x) =—20exp(-0.2 ’— X Q 8
Z'; Q\ —32<x% <32
—exp( ZcosZ;rx +%® \

fo(x) = &cos(— + 1 —600 < x <600
1

4.1. Algorlthm Per ce under Low Dimension and Dynamic Environment

In order to t@SeDE algorithm in low dimension optimization problem, we test the
algorithm inde ently for 25 times and each time we re-initialize the population in the
domain o@mon The population size is set to 30 and the iteration maximum time is
set to The frequency of environment change is set to 25 generations. The
0 tll’@ n accuracy is set to 1E-8, and the simulation results are shown in Table 4.

Copyright © 2016 SERSC
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Table 4. Optimization Results of SeDe Algorithm under Low Dimension

Dynamic Environment

Function | D=5 Mean(Std D=10 Mean(Std)

State 1 State 2 State 1 State 2
F1 3.31E-03

(6.60E+00) 4.76E-04 (2.76E-01) | 1.20E-01 (1.41E+02) | 4.59E-02 (2.50E+01)
F2 9.31E-03

(1.90E-01) 3.57E-03 (1.87E-02) | 8.05E-02 (1.09E+00) | 4.97E-02 (4.81E-01)
F3 3.51E-05

(6.93E-03) 2.85E-06 (3.99E-03) | 1.77E-06 (2.92E-03) | 2.51E-07 (7.26E-04)
F4 9.52E-07

(6.20E+01) 7.57E-05 (2.83E+01) | 5.57E-04 (2.19E+03) | 7.56E-Q4 (1.21E+03)
F5 3.55E-02 N/

(6.69E-01) 1.50E-02 (1.23E-01) | 2.12E-01 (1.66E+00) 1,59%8.95501)
F6 1.77E-01 v

(1.31E-01) 1.05E-01 (7.89E-02) | 5.68E-Q1 {2.04E+0 &2 -01 (2.57E-01)
Score 3.75E-02 2.07E-02 1. 645\‘& A '33E-01

In the experiment we record the minimum val
independent test under k-th state. To get the opti

times and 1E+5 generations. As shown in Ta
optimal values are calculated. We can se

similar to each other. When the dlme

different. When the dimension incr.

m

L@ue sbe&

when di
crease

(li

th period of i-th
e run the test for 25

the mgar%i standard deviation of the
on equals 5, the score is
10, the scores are significantly

e problem space increases, and

rom
the complexity increases. The opm tion resui\\xefore become worse, the changing

environment is more difficult t
When the environment s
under i-th state is destr

des
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Figure 3. Fitness Curve of the Population in Dynamic Environment
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4.2. Comparison of Algorithms Performances under High Dimension and Dynamic
Environment

In this experiment, we compared the influence of different environment change
frequencies. We compared our algorithm with the standard differential evolution
algorithm and the adaptive differential algorithm in reference [12]. The algorithm is tested
independently for 25 times, the mean of optimal value is used as a static index. In order to
maintain the same number of changes under different environment changing period, we
set the iteration number as GenLmt*100. For all three algorithms, the population size is
set to 30 and the dimension is set to 30, initialization is performed randomly in the
solution space. The simulation results are shown in Table 5 and Table 6. Compared with
other two algorithms, the SeDE algorithm has a obvious advantage. When genLmt equals
to 5 or 10, the environment is changing quickly and the individual has to be adapted to

search for the optimal solution. This requires the algorithm to have a faster Ie_arning.

learning under the environment change, and the current best solution will the

speed. In the SeDE algorithm, the best individual in history will lead the indiw
learning afterwards. This character gives the SeDE algorithm a better Iearni@ity, and

may be better adapted to new environment than the other t augorith genL.mt
equals to50 and 100, the change of environment slows d his reqN e algorithm
to maintain population diversity for multimodal function VOI Ioc extremes The
SeDE algorithm is based on DE algorithm w‘w wg/ I|ty in keeping
population diversity. The random individuals ar luded & individual learning
process to achieve better optimization results. Q %
Table 5. Comparison of Alg Perf e under Different
Envwonme& ge mcy (A)
Functio MeanBest(Gen \ MeanBest(GenLmt=10)
! i)’
(30 N
dimensi | SeDE DE@D Referer@ SeDE DE Reference [12]
on) O\ (
F1 | 3.11e+3 NoDe+3 | __#2Ye+3 1.27e+3 | 3.03e+3 1.64e+3
F2 | 2.97e+ 24e+6 | \ Di6de+7 3.56e+3 4.16e+6 9.61e+6
F3 2.]ge—§ b 9.11e-3 P, 3.7%-3 1.48e-3 3.17e-3 2.59%e-3
F4 | 6.1 1.6 ”  8.4let+4 2.31e+4 9.03e+4 4.30e+4
F5 [ 121e+1 | 9B8e¥0 | 7.07e+0 6.93e+0 | 7.40e+0 4.55e+0
F6 2.80e+&4\ e+l 3.23e+1 1.71e+1 2.26e+1 1.74e+1
Score | 4 Y 1 1 5 0 1
@C . . .
le 6. Comparison of Algorithm Performance under Different
O Environment Change Frequency (B)
%{ion MeanBest(GenLmt=50) MeanBest(GenLmt=100)
(30 Reference
dimension) SeDE DE [12] SeDE DE Reference [12]
F1 2.13e+2 4.74e+2| 2.40e+2 3.22e+1 1.34e+2 5.34e+1
F2 1.95e+0 9.38e+0| 3.81e+0 7.38e-1 2.91e+0 2.00e+0
F3 4.21e-4 8.13e-4 5.55e-4 1.14e-4 1.36e-4 1.52e-4
F4 6.35e+3 2.42e+4| 5.78e+3 1.57e+3 1.58e+4 8.17e+2
F5 1.70e+0 4.13e+0| 2.53e+0 6.48e-1 3.05e+0 2.32e+0

Copyright © 2016 SERSC
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F6 2.79e+0 5.63e+0| 3.17e+0 1.16e+0 2.45e+0 1.51e+0
Score 5 0 1 5 0 1
5. Conclusion

In this paper we propose a novel algorithm SeDE based on the learning process
directed by elite individuals. The new algorithm has the ability of DE algorithm to
maintain population diversity. The environment changes is monitored by re-evaluation of
specific individual, and the self-learning method is adopted to better fit the environment.
When the environment is changed, the best individual in the history is adopted to direct
the learning of the population at once, and the current best individual is adopted after the
population enters the new environment. The diversity is maintained and the convergence
speed is improved. The two-state environment change is taken as an examplg, and,
experimental results show that the proposed algorithm has a strong global and lo
ability. However, in real world applications there are many multi-state p @

h

solved, we will extend our research to this type of optimization problems in
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