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Abstact

Neurocomputing in complex domain has yielded second generation neural new.’
The neural network, which is based on complex value, contains different la e
attributes of these layers are biases, weights, inputs and outputs. These att re also
complex numbers. The signal processing, speech processingy learning |ction of
motion on plane are few areas in which complex doma&uroco is applied.,
since in the above said areas, the inputs and outputs ar sente plex values. It
has been observed that the neural network Wlth 3|Iy perform the
transformation of geometric figures. The exam of tran ions are rotation,

complex domain by the application of tra tion. er in complex domain is

composed of different entities i.e. two re® bers e information. The two real
numbers and phase information of int @ is naturally embedded in this

number.
Keywords: Magnitude ase, Neﬁ(@twork with real value, Neural Network
with complex value, ac tion funct mplex back-propagation, split activation
function, Liouville’s é sigmoid ction, Cauchy-Riemann equation

1. IntroducU@ \Q

In prese J\weural n %Jrk have proved as a robust technical tool for many tasks
e.g. classi n, fun proximation, clustering and prediction [5, 8]. The learning
algorithm of back-p ion is one of the best applied neural network model for its
training. The I% gorithm provides a way to adjust the parameters of the model

parallel displacement of straight lines and Ies The etwork can extend to
hE

which are knowm, a% weights and threshold values. The main objective of the neural
network is to y a mapping from input provided to output received. Since these
weights aﬁd&e thresholds are real values, therefore the neural network is said to be Real-
Valued I- Network (RVNN).

RYNN"has been worked to different fields such as motion interpretation on plane,
Sps processing, adaptive signal processing etc [3, 6]. These applications generally use
S Is. These signals carry two kind of knowledge i.e. magnitude and phase embedded in
it. The signal information i.e. the magnitude and the phase are generally shown by two
different entities and then the neural network can be trained using these two entities which
are basically known as separate inputs to neural network. Although the training is
provided to the neural network by these two inputs and it may output desired results, but
no model can represent the relationship between phase and magnitude of a signal because
of magnitude and phase caries separate information.

To preserve the association of the phase and the magnitude needs complex
mathematical representation of the signal. Therefore the representation of the systems by
using a model involves the signals with complex values instead of the real values. This
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proves that the neural- network with complex valued is more applicable for such type of
applications.

The neural-network with complex value (CVNN) is the prolongation of neural-network
with real-value (RVNN). In the neural-network with complex-value, all the attributes such
as weights, biases, inputs and outputs are formed in complex nature [5, 7]. The neural-
network with complex valued (CVNN) is useful in domains where complex numbers are
generally used to show different parameters, furthermore inputs and outputs. The potential
of action in the brain of human being may have distinct pulse patterns. The gap between
pulses may also be distinct. This facilitates the initiation of the representation of phase
and amplitude through neural networks with complex domain.

The neural-network with complex value (CVNN) may be used for the transformation
of [4] the geometric figures.n The rotation, transformation of straight lines and circles are
example of geometric transformation. It is not possible to understand these
transformations using RVNN. The CVNN also confirms good generalization potenw
above said transformations.

2. Neural Network with Complex Valued Qy’ 0

The present section concentrates on how the ANN N. Figure 1
(b), (c) show the ANN and CVNN respectively. It served e CVNN looks
exactly similar the ANN as the neurons and the @ can a % pbserved that how it
operates. The architectures are all similar in b cases. There Is only one difference
that is the weights. The activation functions arémplex Y in the CVNN whereas the
activation functions were real valued in st ANN [4, 0 examine the response of
the CVNN, it is quit predictable that cept f@ables and functions in complex
domains should be pertained. ’\

2.1. The Behavior of Algorith @earm Complex Domain

The complex back-propagation (C mg‘ P) algorithm for CVNN has contemplated
by many scientists in (%mporary [1, 2, 3]. The complex back-propagation
(Complex-BP) is ap ex do ai mterpretatlon of real back-propagation (Real-BP).
The objective be |s i ision a function. That function will provide the
mapping froi ts to the uts by employing a definite set of patterns of learning

(%, y)-
Q} (x,w) €

Here WEC:& ends to whole values of weights and all values of thresholds in
eC"

neural network , which tends to whole complex valued training input-patterns

and y e05£corresponds to all complex valued training output-sequences.

Q)O
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Figure 1. The Figure Shows How the CNN Evolved, (A) The Neurons in the
Brain, (B) The ANN Was Developed By Studying the Neurons While, (C) the
CNN Came Into Being as an Extension of the ANN

In the Complex-BP, there are two main classes [1, 3, 5]. The first one describes the
straight forward extension of activation function. The activation function is mapped
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complex number to complex number, which is defined through a complex function. While
in the second concept, the complex variable has two components-one is real and other is
imaginary. The activation function works individually on the components to find out the
complex output which consists of real and imaginary parts. The next section attains the
Complex-BP by the second approach and this activation function is applied throughout
the paper.

2.1.1. Split Activation Function

The Complex-BP with diverge activation function compromises the activation function
for its boundary conditions. It can be proved by the Liouville’s theorem which proposes
that the complex function is not bounded on the entire plane which is complex except it is
a constant function.

The error function can be written as, ,

g(y,y):C"xC" —>R"

Here, R" shows the set of positive real numbers. The split activation fuw I|ed

on any non Ilnear function in complex domain, here z = x and iis ry unity
(i =(-1)), _ * %
g(z):gR(X)+|gR(y) (2)

The output of the concealed layer neuron is,

Z, = f(ZW"X )@ (net, )9\ 3)

and the output of the visible Iayer neU\Q

Yy, = f( &%—f& ) @)

Here, L is the number ofﬁ%a ed neLPr
Here, wji and vy are th elg ts be nput -concealed layer and concealed-output

layers of neural networ h comp ue respectively. The result is calculated by
using a split activai nction as, suggested in [4]. The non linear function is used
distinctly to the t s of domain. That is the real and imaginary parts of the

input of the @split acti n function.
6 (@) = 1.0 +if(¥) ©

e™) (6)
vation function is applied individually for real and imaginary part.
This type of classification shelters that the range of magnitude of real and imaginary part

of functi@n f(z) is from O to 1. But on another hand, the function f(z) is heretofore
holomo nction, since the Cauchy-Riemann equality is not satisfied i.e.,
oF(z) .oF(2) :
O i, = @R xF () +ill- Ry (xFe () =0 ()
%nce, the cogently of the holomorphy is agreeed for the boundedness of its activation
function. In straight forward extension of activation function as suggested by Haykin and

Leung [1], the nonlinear function maps the complex value to the complex value without
splitting into the real and imaginary parts.

1
F(2)=—
@ 1+et

(8)

here,Z = X +1Y
The complex function f(z) is a holomorphic. But, according to the Liouville’s theorem,
a function in the complex plane C, which is a bounded holomorphic, is a invariable. To
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resolve the problems, the authors suggest that the data which are inputted should be taken
in the complex numbers to some region. It may be possible that the input data are scaled,
but there is no such limit on the values of the complex weights that can take as an input
and therefore it is fractious to contrivance.

2.1.2. Learning Rule

In this paper, activation function of split is applied to implement Complex-BP
algorithm.The difference between the expected output response and actual output
response of the network is,

0,=0, Y, k=1,2,000cn M 9)

It is known as the error response.
Here Oy represents the expected response at the k™ node of the output and y, represents
the actual output of the k™ node. The sum of squared error of the network is given a&v’

E=Yo, -y, g? (10)

k=1
The biases and weights are revamped accordingly |ym t on the
function E. The partial derivative of E with respect to y part of the
weights and biases are found distinctly, since thi rgy fL\/ a non—analytic

function.

The weight update for output layer is given

Re[v, (n+1)]= Re[vkj(n)] 6E’ a1

Imfv, (n+1)]= \Q}]— Im[v ] (12)

Combining equation( and 12)

V(N + 1) 1 \ (13)
e[vk, M E lm[vk, (n)]
The ch is appllw find partial derivative of error with respect to the real and
imaginary
oE 6E ORe[y,] oRe[net,] 1)
0 ORely,] 6Re[net ] oRe[v,]
O\b o o Jlmly,] Jlm[net] 15)
olmv,]1 odIlm[y,] olm[net ] oIm[v,]
@w ing the first term in the chain rule for real and imaginary part,
_E =-2-Re[4,] (16)
oRely, ]
_E 5 mfg] (17)
almly,]

Finding error derivative w. r.t. the aggregated input of the neuron,
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0E  OE . OE

= +1
onet, ORe[net ] Jlm[net, ]

Using equation (16) and (17),

oE  ¢E .8Re[yk] i oE _ﬁlm[yk]

onet, _aRe[yk] ORe[net,] oIm[y,] Jdlm[net, ]

=—2 Re[dk] ) Re[yk] ) (1_ Re[yk]) =2 Im[dk] ) Im[yk] ) (1_ Im[yk]) (19)
Representing the real and the imaginary part of equation (19) by Re[A] and Im[A],

oE

(18)

=—-2(Re[A]+1Im[A]) (20)
onet,
Finding partial derivative of error with respect to weights,
oE oE . OE 0;

v, aRe[vkj] a Im[v, ] @
O ORe[met] ~ OF 9 m[l\
6Re[net 1 ORe[v,] al 0
. OE  ORe[net,] OaE \n[net ]
aRe[net ] Jdlm]v, %Im%@ olmlv,]
Using equation (20) and (2%
SV—E:—Z(Re[A] z ]+ Ir@n[z 1) —2i(Re[A] - Im[z,]+ Im[A]-Re[z,])

=—2A-Z; \\Q

(21)

=22, (Rel! ﬂ\ (1 Re[y ])+iIm[5,]-Im[y,]- (A —Im[y,]))22)
Substltutmg equa ) in equation (13),
vy (n+1) ={Q@77-ZI-(Re[ﬁk]-RE[yk]-(l—Re[yk])Hlm[5k]-lm[yk]-(l—lm[yk]))

(23)
In shoWodification in weight is shown by,

Vi (n+1) =V (n)+ 77(dk - yk) f '(netk )Z: (24)

Q f (net,) is given by
(netk) = Re[ék] ) Re[yk] ) (1_ Re[yk]) +i Im[§k] : Im[Yk] : (1_ Im[yk])
(25)
Equation (2.1.24) gives the formulae for weight modification in the output layer,
proceeding on the similar lines, the weight modification for input layer is described as,

w, (n+1) =w, (n)+7-x .{Re[z,]-(1-Re[z,])

3 (Rel6,]- Rel,]- (—Rely,])- Re[, ]
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+ Im[ék] ) Im[yk] ) (1_ Im[yk])' Im[vkj])
—im[z;]-(1- |m[Z,-])><kZ:,(Re[5k]°Re[yk]°(1—Re[yk])° Im[v, ]
- Im[ék] ) Im[yk] ) (1_ Im[yk]) ) Re[vkj])} (26)

3. Geometrical Transformations

3.1. Rotation Transformation
Here, the aim is to show that the CVNN is capable of learning and generalizing a
transformation where each point 1, (=re"*’) is mapped into I, e"* (= r’ke('%.0

The magnitude of the two points is same but the angle is updated by a facto Vin
training step, a complex pattern of eight values is presented to the networ&e input
re

points represent a straight line in the complex plane. The utput valyes e input
points rotated counterclockwise over I1/4 radians. Arcki re of 4; Is used and

learning rate is set to 0.5. The training is carried out till conyergetiio 0.1.
In Figure 2, triangles represents the input poj squa s&(sents the output
Msented with points

points. After training with these points, the neu work %&

representing alphabet Z and O. The Figure(ihows the autp

network was presented with alphabet Z. ¢
‘O L,

- k&\mg ngd%@

T QY o

o @ _
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R |
M _

& : _

% D 1 1 1 1 1 1 1 1 1
<:::> ] 0.1 o2z 03 04 05 0B 07 08 08 1

Real part

of rotation when the

%Jre 2. Training Points for Rotation Transformation. Triangle Represents
the Input Points and Squares Represent the Output Points

Triangles represent the input point, squares represent the coveted output and the circles
represent the real output of the network. The test results show that the network has
learned the generalization of the rotation transformation. The same notation is followed in
the Figure 4 which shows the test results of the network with input representing alphabet
O. It should be noted that, while CVNN successfully learns and generalizes the rotation
transformation, the RVNN do es not.
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Figure 4. Rotation of Alphabet O

larity Transformation

similarity transformation, the complex input pattern is scaled down by 0.5. The
scaling is in terms of magnitude only, the angle is preserved. The training input pattern
consists of a set of complex values which represents a line. This line lies in the complex
plane. The pattern which is outputted is the scaled pattern.
The training error convergence is 0.1. The generalization ability of the CVNN is
checked by giving alphabet Z as an input. As seen from Figure 6, the network is able to
generalize the similarity transformation.
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Similarity Transformation
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clusions

he domain of neural-network with complex value has given the second generation of
neurocomputing. The complex-valued back-propagation is defined and its performance is
tested for motion on plane. The generalized mapping performed in our experiments,
which confirm the ability of complex-BP with output function defined in Eq.(2), for the
processing of amplitude and phase of signals accurately. The complex-valued neural
network may understand and postulate the both amplitude and phase of each point on
plane while traditional real valued neural network can not. This research work has future
scope to extend this work from two dimensions (complex number) to four dimensions
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(quaternion). The guaternion can be used for easy analysis of three and four dimension
image processing problems, computer vision and robotics.
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