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Abstact 

Neurocomputing in complex domain has yielded second generation neural networks. 

The neural network, which is based on complex value, contains different layers. The 

attributes of these layers are biases, weights, inputs and outputs. These attributes are also 

complex numbers. The signal processing, speech processing, learning and prediction of 

motion on plane are few areas in which complex domain neurocomputing is applied., 

since in the above said areas, the inputs and outputs are represented by complex values. It 

has been observed that the neural network with complex value can easily perform the 

transformation of geometric figures. The examples of transformations are rotation, 

parallel displacement of straight lines and circles. The neural network can extend to 

complex domain by the application of transformation. A number in complex domain is 

composed of different entities i.e. two real numbers and phase information.  The two real 

numbers and phase information of any point on plane is naturally embedded in this 

number. 
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1. Introduction 

In present era, neural networks have proved as a robust technical tool for many tasks 

e.g.  classification, function approximation, clustering and prediction [5, 8]. The learning 

algorithm of back-propagation is one of the best applied neural network model for its 

training. The learning algorithm provides a way to adjust the parameters of the model 

which are known as weights and threshold values. The main objective of the neural 

network is to study a mapping from input provided to output received. Since these 

weights and the thresholds are real values, therefore the neural network is said to be Real- 

Valued Neural- Network (RVNN). 

RVNN has been worked to different fields such as motion interpretation on plane, 

speech processing, adaptive signal processing etc [3, 6]. These applications generally use 

signals. These signals carry two kind of knowledge i.e. magnitude and phase embedded in 

it. The signal information i.e. the magnitude and the phase are generally shown by two 

different entities and then the neural network can be trained using these two entities which 

are basically known as separate inputs to neural network. Although the training is 

provided to the neural network by these two inputs and it may output desired results, but 

no model can represent the relationship between phase and magnitude of a signal because 

of magnitude and phase caries separate information. 

To preserve the association of the phase and the magnitude needs complex 

mathematical representation of the signal. Therefore the representation of the systems by 

using a model involves the signals with complex values instead of the real values. This 
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proves that the neural- network with complex valued is more applicable for such type of 

applications. 

The neural-network with complex value (CVNN) is the prolongation of neural-network 

with real-value (RVNN). In the neural-network with complex-value, all the attributes such 

as weights, biases, inputs and outputs are formed in complex nature [5, 7]. The neural-

network with complex valued (CVNN) is useful in domains where complex numbers are 

generally used to show different parameters, furthermore inputs and outputs. The potential 

of action in the brain of human being may have distinct pulse patterns. The gap between 
pulses may also be distinct. This facilitates the initiation of the representation of phase 

and amplitude through neural networks with complex domain. 

The neural-network with complex value (CVNN) may be used for the transformation 

of [4] the geometric figures.n The rotation, transformation of straight lines and circles are 

example of geometric transformation. It is not possible to understand these 

transformations using RVNN. The CVNN also confirms good generalization potential for 

above said transformations. 

 

2. Neural Network with Complex Valued 

The present section concentrates on how the ANN differs from the CVNN. Figure 1 

(b), (c) show the ANN and CVNN respectively. It can be observed that the CVNN looks 

exactly similar the ANN as the neurons and the bias. It can also be observed that how it 

operates. The architectures are all similar in both the cases. There is only one difference 

that is the weights. The activation functions are complex valued in the CVNN whereas the 

activation functions were real valued in standard ANN [4, 7]. To examine the response of 

the CVNN, it is quit predictable that the concept of variables and functions in complex 

domains should be pertained. 

 

2.1. The Behavior of Algorithm of Learning in Complex Domain  

The complex back-propagation (Complex-BP) algorithm for CVNN has contemplated 

by many scientists in contemporary times [1, 2, 3]. The complex back-propagation 

(Complex-BP) is a complex domain interpretation of real back-propagation (Real-BP). 

The objective behind this is imprecision a function. That function will provide the 

mapping from the inputs to the outputs by employing a definite set of patterns of learning 

(x, y).  

),( wxfy              (1) 

Here 
pCw ,which tends to whole values of weights and all values of thresholds in 

neural networks. 
nCx  , which tends to whole complex valued training input-patterns 

and 

mCy
 corresponds to all complex valued training output-sequences. 
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Figure 1. The Figure Shows How the CNN Evolved, (A) The Neurons in the 
Brain, (B) The ANN Was Developed By Studying the Neurons While, (C) the 

CNN Came Into Being as an Extension of the ANN 

In the Complex-BP, there are two main classes [1, 3, 5]. The first one describes the 

straight forward extension of activation function. The activation function is mapped 
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complex number to complex number, which is defined through a complex function. While 

in the second concept, the complex variable has two components-one is   real and other is 

imaginary. The activation function works individually on the components to find out the 

complex output which consists of  real and imaginary parts. The next section attains the 

Complex-BP by the second approach and this activation function is applied throughout 

the paper. 

 

2.1.1. Split Activation Function 

The Complex-BP with diverge activation function compromises the activation function 

for its boundary conditions.  It can be proved by the Liouville’s theorem which proposes 

that the complex function is not bounded on the entire plane which is complex except it is 

a constant function. 

The error function can be written as, 
 RCCyyg mm:),( '

   

Here, R
+
 shows the set of positive real numbers. The split activation function applied 

on any non linear function in complex domain, here z = x + i y and i is an imaginary unity 

(i = √(-1)),   is  

)()()( yigxgzg RR       (2) 

The output of the concealed layer neuron is, 

)()(
1

j

N

i
ijij

netfxwfz  


       (3) 

 and the output of the visible layer neuron is, 

)()(
1

k

L

j
jkjk

netfzvfy  


            (4) 

Here,  L is the number of concealed neurons. 

Here, wji and vkj are the weights between input-concealed layer and concealed-output 

layers of neural network with complex value respectively. The result is calculated by 

using a split activation function as suggested in [4]. The non linear function is used 

distinctly to the two parts of complex domain. That is the real and imaginary parts of the 

input of the neuron in split activation function.  

 )()()( yifxfzf
RR

                                                     (5) 

here,      )1/(1)( )( v

R
evf                                                                      (6) 

Above sigmoidal activation function is applied individually for real and imaginary part. 

This type of classification shelters that the range of magnitude of real and imaginary part 

of function f(z) is from 0 to 1. But on another hand, the function f(z) is heretofore  

holomorphic function, since the Cauchy-Riemann equality is not satisfied  i.e., 

0)())(1()())(1(
)()(










yFyFixFxF

Y

zF
i

X

zF
RRRR           (7) 

Hence, the cogently of the holomorphy is agreeed for the boundedness of its activation 

function. In straight forward extension of activation function as suggested by Haykin and 

Leung [1], the nonlinear function maps the complex value to the complex value without 

splitting into the real and imaginary parts.  

)(1

1
)(

ze
zF


                 (8) 

iYXZhere ,  

The complex function f(z) is a holomorphic. But, according to the Liouville’s theorem, 

a function in the complex plane C, which is a bounded holomorphic, is a invariable. To 
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resolve the problems, the authors suggest that the data which are inputted should be taken 

in the complex numbers to some region. It may be possible that the input data are scaled, 

but there is no such limit on the values of the complex weights that can take as an input 

and therefore it is fractious to contrivance.  

 

2.1.2. Learning Rule 

In this paper, activation function of split is applied to implement Complex-BP 

algorithm.The difference between the expected output response and actual output 

response of the network is, 

kkk
yo                       k=1,2,……….,M                                (9) 

It is known as the error response. 

Here Ok represents the expected response at the k
th
 node of the output and yk represents 

the actual output of the k
th
 node. The sum of squared error of the network is given as, 





M

k
kk

yoE
1

2

                     (10) 

The biases and weights are revamped accordingly by applying the descent on the 

function E. The partial derivative of E with respect to the real and imaginary part of the 

weights and biases are found distinctly, since this energy function is a non-analytic 

function. 

The weight update for output layer is given as, 
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Combining equation (11) and (12),  
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 The chain rule is applied, to find partial derivative of error with respect to the real and 

imaginary part. 
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Finding the first term in the chain rule for real and imaginary part, 
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Finding error derivative w. r.t. the aggregated input of the neuron, 
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Using equation (16) and (17), 
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Representing the real and the imaginary part of equation (19) by Re[Δ] and Im[Δ], 
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Finding partial derivative of error with respect to weights, 
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Using equation (20) and (21), 
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Substituting equation (22) in equation (13), 
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In short, the modification in weight is shown by,  
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k
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Equation (2.1.24) gives the formulae for weight modification in the output layer, 

proceeding on the similar lines, the weight modification for input layer is described as, 
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3. Geometrical Transformations 
 

3.1. Rotation Transformation 

Here, the aim is to show that the CVNN is capable of learning and generalizing a 

transformation where each point  )(
)( ki

kk
erI


  is mapped into )(

)()(  
 ki

k

i

k
ereI . 

The magnitude of the two points is same but the angle is updated by a factor
)( ie . In 

training step, a complex pattern of eight values is presented to the network. These input 

points represent a straight line in the complex plane. The output values are the input 

points rotated counterclockwise over Π/4 radians. Architecture of 1-6-1 is used and 

learning rate is set to 0.5. The training is carried out till the error converged to 0.1. 

In Figure 2, triangles represents the input points and squares represents the output 

points. After training with these points, the neural network was presented with points 

representing alphabet Z and O. The Figure 3 shows the output of rotation when the 

network was presented with alphabet Z.  

 

 

Figure 2. Training Points for Rotation Transformation. Triangle Represents 
the Input Points and Squares Represent the Output Points 

Triangles represent the input point, squares represent the coveted output and the circles 

represent the real output of the network. The test results show that the network has 

learned the generalization of the rotation transformation. The same notation is followed in 

the Figure 4 which shows the test results of the network with input representing alphabet 

O. It should be noted that, while CVNN successfully learns and generalizes the rotation 

transformation, the RVNN do es not. 
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Figure 3. Rotation of Alphabet Z 

 

Figure 4. Rotation of Alphabet O 

 
3.2. Similarity Transformation  

In similarity transformation, the complex input pattern is scaled down by 0.5. The 

scaling is in terms of magnitude only, the angle is preserved. The training input pattern 

consists of a set of complex values which represents a line. This line lies in the complex 

plane. The pattern which is outputted is the scaled pattern.  

The training error convergence is 0.1. The generalization ability of the CVNN is 

checked by giving alphabet Z as an input. As seen from Figure 6, the network is able to 

generalize the similarity transformation. 
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Figure 5. Similarity Transformation: Training Input (Triangles) and Output 
(Squares) 

 

Figure 6. Test Results for Similarity Transformation: Test Input (Triangles), 
Desired Outputs (Squares), Actual Outputs (Circles) 

 

4. Conclusions 

The domain of neural-network with complex value has given the second generation of 

neurocomputing. The complex-valued back-propagation is defined and its performance is 

tested for motion on plane. The generalized mapping performed in our experiments, 

which confirm the ability of complex-BP with output function defined in Eq.(2), for the 

processing of amplitude and phase of signals accurately. The complex-valued neural 

network may understand and postulate the both amplitude and phase of each point on 

plane while traditional real valued neural network can not. This research work has future 

scope to extend this work from two dimensions (complex number) to four dimensions 
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(quaternion). The quaternion can be used for easy analysis of three and four dimension 

image processing problems, computer vision and robotics. 
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