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Abstract

The unscented Kalman filter (UKF) has become a popular method for nonlinear state
estimation during the last decade. However, the conventional UKF may not be tab
for real-world applications with state constrains that stem from physical d
physical laws or model restrictions. A UKF based method with optimized p rs
proposed in this paper to handle state constraints via the projection of si ints
the proposed method, the generated sigma points that violatg the stai mts were
projected onto the constraint boundary first. The three Xp am ter e UKF, i.e.,
a B,k , were then optimized using a Gaussia S optl (GPO) method.
Simulations indicate that the proposed optimize ’@ algor h the projection of
sigma points can handle constrained state esti % roblem |vely and efficiently.

Keywords: Constrained nonlinear stat atlon u?hc nted Kalman filter, sigma
points projection, parameters Iearnlng optlmlzatlon

1. Introduction @ s\\
. . . <
State estimation of d?ﬁAlc syste
characterized by the follewing state
. X = o Uy ) + & (1a)
Q zh(xk’uk)+vk (1b)
where x is the vector, theé measurement, u is the exterior input, ¢ is the
process n a.c jance of R, and v is the measurement noise with a
covariance™af#Q . T t popular method for solving linear state estimation

problems is the K filter (KF), while the most popular methods for solving
nonlinear state ion problems are the extended Kalman filter (EKF) [1], the
unscented Ka ilter (UKF) [2] and the particle filter (PF) [3], etc. Recently,

wide range applications can be
rmulation

new extegsjons 0f the Kalman filter such as the cubature KF [4], the complex UKF
[5], an runcated UKF [6], the quadrature KF [20, 21] were proposed and
stud mprove the state estimation accuracy.

ntered. Some of these constraints stem from physical definitions, e.g., the
attery state of charge (the ratio of the remaining amount of capacity to the nominal
capacity) should be in a range of 0% to 100% [7]. Other constraints may arise from
physical laws. The mass of constituents in a sealed chemical reactor, for example,
must remain constant throughout the reaction process [8]. These constraints are
usually in the form of algebraic equality or inequality relationships. Incorporation of
such constraints into state estimation is no doubt necessary and will be useful for
improving estimation performance.
A number of approaches has been developed to handle these equality and/or
inequality constraints. For equality constrained state estimation, the measurement-
augmentation KF was one of the most popular techniques. Besides that, the

@ ctical applications, nonlinear processes with constraints are commonly
b
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projection based methods such as estimation projection, system projection and gain
projection were also widely used [9]. A two-step projection algorithm for handling
nonlinear equality constraints was given in [10]. For inequality constrained state
estimation, moving horizon estimators (MHE) [11] and constrained Bayesian
estimators [12-14] were widely used. In these methods, the constraints were often
embedded into a nonlinear constrained optimization problem and then solved with
optimization methods. The optimization was done in each time step and it is
generally time-consuming.

In this paper, a parameters optimized UKF algorithm was proposed for
constrained nonlinear state estimation. The constraints were handled in the
following manner: In the time update step of the UKF algorithm, those sigma points
violating the constraints were projected onto the constraint surface first. Then, the
weighted sum of the new set of sigma points was used as the state prediction. The
main difference between this method and the state of the art is th heo
parameterized UKF is treated as a Gaussian process (GP) [15] and its t e
parameters, i.e., «,B,x, are determined using a GPO method [19]. T@ raints

were handled using the same projection technique that is used i rameter
learning (or parameter optimization) process. A flow fThe p thod is
shown in Figure 1.

GP Modeling of ’ PW
t

constrained UKF Jith free ptimi2ation
jth GPO

&\ate estimation result

arameters Learnt Constrained UKF
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4

Figure 1. Flowchart he Pro

The remaindeg af\th papek% rganized as follows: Section Il gives a brief
review of the geRenNCUKF 111 shows three methods for constraint handling
in UKF. Seg descr parameters learning algorithm for projection based
UKF with ecti %owdes the simulation results and the summary is given

in Section

2. Brief Revi he Generic UKF
In the%i UKF algorithm, the distribution of the state x, is specified using a

minima@
X =%,

@ X =R +(,/(n+/1)Pk_l)i (i=12,..,n) (3)
X —(,/(n+ﬂ)PH)i,(i =n+Ln+2,..,2n)

where n is the dimension of the state, 1:=a’*(n+x)—n, % _, is the state estimation of

2n+1 carefully chosen sigma points {X;(i =0,1 2,...,2n)}:

x.,, P, is the state estimation covariance, \/ ; refers to i-th row of the Cholesky
factorization, and the sigma points have weights assigned by
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== aatip)
n+A n+A (4)
wWo=w = A . i=12,...2n
2(n+A4)

where w_ is used to reconstruct the predicted mean, w_is used to reconstruct the
covariance, and {«, B3,x}<R" are three free parameters of the UKF algorithm. With
these definitions, the steps of the generic UKF can be summarized as follows:
® Initialization: & =E[x,], P, = E[(X, —%,)(%, —%,)"]
® For k=12,..., do the following steps:
(1) Calculate the 2n+1 sigma points X, according to (3).
(2) Time update:
Propagated states X, ,: Xy, ;= f(X,;,U,)

Predicted state x; : x; =" W, X}, ?y

and its covariance P, : P; ZW( e =% ) (Kigr =

(3) Measurement update: %
Propagated measurementY,, , : Y, , =h(X, \/
Predicted measurementy, : y, = Z W, Yy \\/
and its covariance P : Zw (Ykilk_l@
Cross-covariance P : B —w Klk-1 g&&yk

Kalman gainK, : K,
Estimated state %, : % =

Estimated state co ceP:P ® PYK/

3. Constramts I|n i

The gen algor thmsConsiders nothing about constraints, but constraints
handling e dQ |th|n different steps of it, such as the generated sigma
points, the agate ¢, the predicted state, or the estimated state, etc.

The sigma points {ba g the constraints will fall out of the feasible region. An
intuitive meth pull the sigma points back into the feasible region by some
proper transfd&e.g., by sigma points projection or scaling, as illustrated in
Figure n Figure 2, the Dblue square represents the feasible region of the
constraj ate. The red circles are the original generated sigma points, and the
blac are the sigma points after constraints handling. The dashed ellipse forms
le of the original sigma points, while the dash dotted ellipse is the profile of
nged sigma points. In the “projection” method, only those sigma points that
are out of the feasible region are projected onto the constraint surface, while in the
“scaling” method all the sigma points are scaled together to fit the constraint
surface.The original sigma points distribute symmetrically on an elliptical sphere,
with the previously estimated state being the center. We’d better preserve the
symmetry after the transform.

Another method is not to change the positions of the sigma points, but to modify
the weights of them to make the predicated state satisfying the constraints.
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Figure 2. lllustration of the Two Techniques for Sigma Points
Rearrangement in the UKF

3.1. Sigma Points Projection ’

In the sigma points projection technique, the sigma points E the
constraints are projected onto the constraint surface, whil i the posm other

sigma points are unchanged, as shown in Figure 2( e proj done by
replacing the sigma point with a point on the surfa has a s est distance
from the sigma point. The advantage of projee iS that th? the mean and
covariance are computed based on the cons

infornxn making the state

estimate more accurate. If it is an equality_conStraint, i.e .)=d,,, or it is an
inequality constraint but the constraint feasiqle region' lose set, say g(x)<d,,,
the sigma points violating the corf S can imply projected onto the
constraint surface g(x.)=d, ,; if th éble re an open set, e.g., g(x,)<d.,,
the sigma points violating the alnts ‘%ﬂ be projected onto the surface

terior surface, g(x,)=d, ,—¢& with

directly, and they should Q ted on
£>0, in the feasible region

The projection apprgash is co ta onally efficient, but it may have poor

performance for non(i onst&ne stem, as shown in [10].

3.2. Sigma Poin

In the s@ ints sc technlque all the sigma points are scaled together to
fit the con t surf ere exist some sigma points being out of the constraint
surface, as shown i re 2(b). The scaling can be done in an anisotropic way or

in an isotropic way.
In the anis@c scaling manner, only the sigma points that go beyond the

feasible region are scaled onto the constraint surface by multiplying different sigma
points \%&fferent positive coefficients, and the coefficients may also vary at
differe@ ations. In the isotropic scaling manner, all the sigma points are scaled

make them fit the constraint surface if any of the generated sigma points

toge
% nd the feasible region of the constraint.
e sigma points scaling can be done using the scaled unscented transform (SUT)
[16] with the parameter « not to be 1. Constraints can be handled very well if a

proper « is chosen. The problem of SUT is that the estimated state covariance
P_may not be positive semi-definite, since the weight w’for computing covariance

matrices may be negative when a <1.

3.3. Sigma Points Re-Weighting

As aforementioned, constraints can also be handled with the predicated state,
which relies on not only the sigma points, but also the weights w, . As is shown in
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(4), w, is controlled by the three free parameters «, gand x, so we can change the
value of them to modify w, . One thing worthy of mentioning is that when we
change the value of « and x, we modify not only the weights w_ of the sigma

points, but also the locations of the sigma points, so it is actually a composition of
sigma points re-weighting and scaling.

Many heuristics have been developed to help set these three parameters. One of
the heuristics for setting 6 =(a, 8,x) is that g=2 is optimal if the state distribution

is exactly Gaussian [16]. And it is often recommended to set the parameters to
bea=1, =0 and x=3-nfor general non-Gaussian systems [17]. On the other hand,

arbitrary parameters may cause the UKF to have embarrassingly poor performance
for nonlinear problems, because the predictive variances can be far too small if the
sigma points are placed in unlucky locations [18].

*
4. Parameter Learning for Projection based UKF with GPO \/

As aforementioned, the sigma points projection based method m poor

state estimation performance for nonlinear constrained §ystems, e sigma
points scaling based method may fail due to the ne -defini ated state
es may have

good performance since a positive semi-defini ate
achieved in the projection based UKF if a propes is chosen¥Extending this idea
further, we propose in this paper a prOJect ased U Igorithm with optimized
parameter vector 6 = («a, 3,x) to solve ;p@ ramed estimation problem. The

parameters are optimally learnt with

covariance. On the other hand, a combination I ese’ two t

4.1. GPO based Parameters Lg for the &qxrlc UKF

GPO based parameters ing for eric UKF was firstly proposed by R.
Turner and C. E. Rasmussen in 18]. y idea is to interpret the UKF as a model,
not merely an approxi n meth is interpretation can then allow us to learn

model based Iea algo n solve the so called “sigma point collapse”
problem for e@o ric UKF ich can result in a significant increase in predictive
performan def t@mgs of the parameters in the UKF.

GPO ut a G process based optimizer to find the optimal model

parameter ¢, whic nts to finding a maximum of a structured function (),
usually the log al likelihood with T training observations:

1(6) = log p(Y, 10) =" _10g p(Y, | Yr1.0) (5)

A ma%tion strategy that trades-off exploration with exploitation takes into
accoun the mean function E[l(#)] and the posterior variance functionVvar[l(9)],

@)ptimizer is programmed to evaluate the maxima of
% J(@) =Ell (0)]+C1Nar[l 9)] (6)
here C is a constant to control the exploration exploitation trade-off.
GPO treats optimization as a sequential decision problem and assumes we
provide a feasible set of ¢ to search within. At each step it uses its posterior over
the objective function J to look for the best ¢ . The detailed Gaussian process

optimizer algorithm can be found in [18].

the free parameteurs n\a model sase manner from training data. The proposed

4.2. Parameters Learning for Constrained UKF

The original GPO based parameters learning algorithm considers nothing about
constraint handling. But constraints should be considered and handled during the
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parameters learning process. The learnt parameters with and without constraints
concerned may differ greatly, and the learnt parameters without constraints
concerned will be improper for constrained state estimation, as illustrated in section
V.

In order to handle constraints, the original GPO based parameters learning
algorithm for the generic UKF is extended to the projected UKF. That is, the sigma-
points-projection technology is utilized to handle constraints during the parameters
learning process. We summarize the proposed method in Algorithm 1.

Algorithm 1. Parameters learning for Projection based UKF with GPO

1. Generate a series of observations according to the process function and the measurement
function as the training data.

2. Choose a proper range of Rg, =[e,,, 1x[5,. B.1x[x. %] -

3. Build a multi-grid 8 ={6,,i=12,...,M} with M grid pointsin Rg, .

4. for p=1to M Y

5 ters,

Calculate Y ={I(6,)} according to the projection based UKF with {0}@@

0

using the training data.
for g=1to C (C is the number of evaluated candlda

Sample a random initial point s, [ N(E(8,),

o

Maximize the criterion J w.r.t 6., while 6, i zed at s, q) < maxJ.
7. endfor Q R 9
8.  Append s(argmaxF) to @ O \
9.  Append I(s(argmaxF)) to Y \ @
A
10. end for @ s&

11. return @(argmaxy) '\

highest value for the eter a& tively. The notations 2,2, x,x, have
similar meanings., ,cov(6,)), is the normal distribution with a mean of E(6,)
©,)

In Algorithm 1, « anmre t\@cgtted lowest value and the permitted

of mentidring is about the implementation of the algorithm.
. e%ng process, o may vary from 0 to 1 and the estimated
state covaridhce P, ot be positive semi-definite, which will interrupt the
normal iterations 0 UKF algorithm and result in an unsuccessful learning of the
parameter. Th ented UKF [16] can help in part to solve the problem, in which
the augme]te tate vector x} and the augmented state covariance matrix B?are

=[x & V] and R* =diag(R,Q,,R,) respectively.

defined
T onsed parameters learning process is then carried on to the new
ed augmented state estimation problem.

5. Constrained State Estimation Simulations

After the optimized parameters are obtained, constrained state estimation can be
achieved with the same projection based UKF.

As an example, we consider the gas-phase, reversible reaction [12]. The discrete
model of the system is

Xk K Atx,,

=, X 4 =X
T kA, T T ok Ak,
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The state vector isx=[P, PR,]' =[x x] , and the outputis y=[1 1]x.P, and P,
are the partial pressures. k, =0.16 and At is the integration step length. Assume the

system experiences Gaussian noise both in the states and the outputs, and the noise
have zero means and covariance of Q and R, .

The parameters used for this system are
At=t., —t =01,x=[3 1], %, =[01 45]
P, = diag(6°,6%) , Q, = diag(0.001%,0.001%), R, =0.1*.
The constraints are such that X, >0.

As Figure 3(a) shows, the unconstrained UKF with default parameters fails to
converge to the true state. State estimation under the UKF with default parameters
and constraints handled by sigma points projection is shown in Figure 3(b). As
Figure 3(b) shows, the state can converge to the true state, but it takes more t n 10.
samples for it to converge. If the pre-learnt optimal

(e, B,x) =(0.0825,0.4775,0.3150) is used, the state can converge much ;St nIy

about 2 samples), as shown in Figure 3(c). For a comparison, ow the
result from Kolas S. et al [12] in Figure 3(d). Our ‘has 3@ timation

errors at the initial part. We also measured the aver re root r of the true
and estimated state by 100 Monte Carlo simpuia e a e square root
estimation errors for the four algorithms are [O. @l GSB]W 0.453]", [0.055,
0.071]", [0.40,0.49]" respectively, whlctho that _oursproposed method is

superior to the others. %
On the other hand, during the sate ion proces\) r proposed method needs

no optimization procedure and so ta tlm t imate the constrained states.

6. Conclusions }Aé | s\\

A UKF based constrain te esti ethod is proposed in this paper. The

three free parameters of, UKF a ptimally learnt based on a GPO method,
with the constraints ded and led by sigma points projection. The state

estimation is ‘\
\ States
S @ =
Hir

Fartial Fre:

] 1 2 3 4 5 4] 7 =] =] 10
Time

(a) State estimation under unconstrained UKF with default parameters.
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(b) State estimation under UKF with defa ameter nstralnts handled by
sigma points Jectlon

\

O (c)IState qstimatilon witlh projelction blased pgrametlers optl UKF.

1
O 00 1 2 3 4 5 6 7 8 9 10
Time [s]

(d) State estimation with the method of Kolas S et al.

Figure 3. Simulations for the Two-State Batch Reaction Problem

then done with the projection based optimized parameters UKF. The handling of the
constraints in the estimation process can be regarded as a combination of sigma
points projection, scaling and re-weighting. Simulation results on different systems
show that the proposed method is effective and efficient.
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