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Abstract 

The unscented Kalman filter (UKF) has become a popular method for nonlinear state 

estimation during the last decade. However, the conventional UKF may not be suitable 

for real-world applications with state constrains that stem from physical definitions, 

physical laws or model restrictions. A UKF based method with optimized parameters was 

proposed in this paper to handle state constraints via the projection of sigma points. In 

the proposed method, the generated sigma points that violate the state constraints were 

projected onto the constraint boundary first. The three free parameters of the UKF, i.e., 

α ,β ,κ , were then optimized using a Gaussian process optimization (GPO) method. 

Simulations indicate that the proposed optimized UKF algorithm with the projection of 

sigma points can handle constrained state estimation problem effectively and efficiently. 

 

Keywords: Constrained nonlinear state estimation, unscented Kalman filter, sigma 

points projection, parameters learning, Gaussian process optimization 

 

1. Introduction 

State estimation of dynamic systems in wide range applications can be 

characterized by the following state space formulation 

      1 ( , )k k k kx f x u                                          (1a) 

       ( , )k k k ky h x u v                                        (1b) 

where x  is the state vector, y is the measurement, u  is the exterior input,   is the 

process noise with a covariance of R , and v  is the measurement noise with a 

covariance of Q . The most popular method for solving linear state estimation 

problems is the Kalman filter (KF), while the most popular methods for solving 

nonlinear state estimation problems are the extended Kalman filter (EKF) [1], the 

unscented Kalman filter (UKF) [2] and the particle filter (PF) [3], etc. Recently, 

new extensions of the Kalman filter such as the cubature KF [4], the complex UKF 

[5], and the truncated UKF [6], the quadrature KF [20, 21] were proposed and 

studied to improve the state estimation accuracy. 

In practical applications, nonlinear processes with constraints are commonly 

encountered. Some of these constraints stem from physical definit ions, e.g., the 

battery state of charge (the ratio of the remaining amount of capacity to the nominal 

capacity) should be in a range of 0% to 100% [7]. Other constraints may arise from 

physical laws. The mass of constituents in a sealed chemical reactor, for example,  

must remain constant throughout the reaction process [8]. These constraints are 

usually in the form of algebraic equality or inequality relationships. Incorporation of 

such constraints into state estimation is no doubt necessary and will be useful for 

improving estimation performance.  

A number of approaches has been developed to handle these equality and/or 

inequality constraints. For equality constrained state estimation, the measurement -

augmentation KF was one of the most popular techniques. Besides that, the 
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projection based methods such as estimation projection, system projection and gain 

projection were also widely used [9]. A two-step projection algorithm for handling 

nonlinear equality constraints was given in [10]. For inequality constrained state 

estimation, moving horizon estimators (MHE) [11] and constrained Bayesian 

estimators [12-14] were widely used.  In these methods, the constraints were often 

embedded into a nonlinear constrained optimization problem and then solved with 

optimization methods. The optimization was done in each time step and it is 

generally time-consuming.  

In this paper, a parameters optimized UKF algorithm was proposed for 

constrained nonlinear state estimation. The constraints were handled in the 

following manner: In the time update step of the UKF algorithm, those sigma points 

violating the constraints were projected onto the constraint surface first. Then, the 

weighted sum of the new set of sigma points was used as the state prediction. The 

main difference between this method and the state of the art is that the 

parameterized UKF is treated as a Gaussian process (GP) [15] and its three free 

parameters, i.e., , ,   , are determined using a GPO method [19]. The constraints 

were handled using the same projection technique that is used in the parameter 

learning (or parameter optimization) process. A flowchart of the proposed method is 

shown in Figure 1.  

 
 

 

 

 

 

 

 

 

 

Figure 1. Flowchart of the Proposed Parameters Learnt Constrained UKF 

The remainder of this paper is organized as follows: Section II gives a brief 

review of the generic UKF. Section III shows three methods for constraint handling 

in UKF. Section IV describes the parameters learning algorithm for projection based 

UKF with GPO. Section V provides the simulation results and the summary is given 

in Section V. 

 

2. Brief Review of the Generic UKF 

In the generic UKF algorithm, the distribution of the state kx  is specified using a 

minimal set of 2 1n  carefully chosen sigma points  ( 0,1,2,...,2 )i

kX i n : 

  

 

0

1

1 1

1 1

ˆ:

ˆ: ( ) , ( 1,2,..., )

ˆ: ( ) , ( 1, 2,..., 2 )

k k

i

k k k
i

i

k k k
i

X x

X x n P i n

X x n P i n n n







 

 



   

     

                        (3) 

where n  is the dimension of the state, 2: ( )n n     , 1
ˆ

kx   is the state estimation of 

1kx  , 1kP   is the state estimation covariance, i  refers to i-th row of the Cholesky 

factorization, and the sigma points have weights assigned by 
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where 
mw is used to reconstruct the predicted mean, 

cw is used to reconstruct the 

covariance, and { , , } R     are three free parameters of the UKF algorithm. With 

these definitions, the steps of the generic UKF can be summarized as follows: 

 Initialization: 
0 0

ˆ [ ]x E x , 
0 0 0 0 0

ˆ ˆ[( )( ) ]TP E x x x x    

 For 1,2,...k  , do the following steps: 

(1) Calculate the 2 1n  sigma points i

kX according to (3). 

(2) Time update:  

    Propagated states | 1

i

k kX  : | 1 1( , )i i

k k k kX f X u   

    Predicted state x -

k
: 

2

| 10

n i i

m k ki
x w X 

-

k  

    and its covariance -

kP :   
2

T
- - -

| -1 | -1

0

n
i i i

k c k k k k k k

i

P w X x X x


    

(3) Measurement update: 

Propagated measurement
k|k -1Y : | 1 | 1( , )i i

k k k k kY h X u   

Predicted measurement -

ky :
2

| 10

n- i i

k m k ki
y w Y 
  

and its covariance y-

kP :
2

| 1 | 1

0

( )( )
n

y- i i - i - T

k c k k k k k k

i

P w Y y Y y 



    

Cross-covariance xy

kP :
2

-

, | -1

0

( )( )
n

xy i -

k c i k k k i,k|k -1 k

i

P w X x Y y


    

Kalman gain
kK : 1( )xy y-

k k kK P P   

Estimated state ˆ
kx : -ˆ ( )-

k k k k kx x K y y    

Estimated state covariance
kP : - -y T

k k k k kP P K P K   

 

3. Constraints Handling in UKF 

The generic UKF algorithm considers nothing about constraints, but constraints 

handling can still be done within different steps of it, such as the generated sigma 

points, the propagated sate, the predicted state, or the estimated state, etc.  

The sigma points violating the constraints will fall out of the feasible region. An 

intuitive method is to pull the sigma points back into the feasible region by some 

proper transforms, e.g., by sigma points projection or scaling, as illustrated in 

Figure 2. In Figure 2, the blue square represents the feasible region of the 

constrained state. The red circles are the original generated sigma points, and the 

black stars are the sigma points after constraints handling. The dashed ellipse forms 

the profile of the original sigma points, while the dash dotted ellipse is the profile of 

rearranged sigma points. In the “projection” method, only those sigma points that 

are out of the feasible region are projected onto the constraint surface, while in the 

“scaling” method all the sigma points are scaled together to fit the constraint 

surface.The original sigma points distribute symmetrically on an elliptical sphere, 

with the previously estimated state being the center. We’d better preserve the 

symmetry after the transform. 

Another method is not to change the positions of the sigma points, but to modify 

the weights of them to make the predicated state satisfying the constraints.  
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Original state mean and covariance      (a) sigma points projection                (b) sigma points 

scaling 

Figure 2. Illustration of the Two Techniques for Sigma Points 
Rearrangement in the UKF 

 

3.1. Sigma Points Projection 

In the sigma points projection technique, the sigma points violating the 

constraints are projected onto the constraint surface, while the positions of the other 

sigma points are unchanged, as shown in Figure 2(a). The projection is done by 

replacing the sigma point with a point on the surface that has a smallest distance 

from the sigma point. The advantage of projection is that both the mean and 

covariance are computed based on the constraint information, making the state 

estimate more accurate. If it is an equality constraint, i.e., 
1( )k kg x d  , or it is an 

inequality constraint but the constraint feasible region is a close set, say 
1( )k kg x d  , 

the sigma points violating the constraints can be simply projected onto the 

constraint surface 
1( )k kg x d  ; if the feasible region is an open set, e.g., 

1( )k kg x d  , 

the sigma points violating the constraints can not be projected onto the surface 

directly, and they should be projected onto an interior surface, 
1( )k kg x d    with 

  0 , in the feasible region. 

The projection approach is computationally efficient, but it may have poor 

performance for nonlinear constrained system, as shown in [10]. 

 

3.2. Sigma Points Scaling 

In the sigma points scaling technique, all the sigma points are scaled together to 

fit the constraint surface if there exist some sigma points being out of the constraint 

surface, as shown in Figure 2(b). The scaling can be done in an anisotropic way or 

in an isotropic way.  

In the anisotropic scaling manner, only the sigma points that go beyond the 

feasible region are scaled onto the constraint surface by multiplying different sigma 

points with different positive coefficients, and the coefficients may also vary at 

different iterations. In the isotropic scaling manner, all the sigma points are scaled 

together to make them fit the constraint surface if any of the generated sigma points 

go beyond the feasible region of the constraint.  

The sigma points scaling can be done using the scaled unscented transform (SUT) 

[16] with the parameter  not to be 1. Constraints can be handled very well if a 

proper   is chosen. The problem of SUT is that the estimated state covariance 

kP may not be positive semi-definite, since the weight 0

cw for computing covariance 

matrices may be negative when 1  . 

 

3.3. Sigma Points Re-Weighting 

As aforementioned, constraints can also be handled with the predicated state , 

which relies on not only the sigma points, but also the weights mw . As is shown in 
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(4), 
mw  is controlled by the three free parameters  ,  and  , so we can change the 

value of them to modify 
mw . One thing worthy of mentioning is that when we 

change the value of   and  , we modify not only the weights 
mw  of the sigma 

points, but also the locations of the sigma points, so it is actually a composition of 

sigma points re-weighting and scaling. 

Many heuristics have been developed to help set these three parameters. One of 

the heuristics for setting ( , , )  θ  is that 2   is optimal if the state distribution 

is exactly Gaussian [16]. And it is often recommended to set the parameters to 

be 1  , 0   and 3 n   for general non-Gaussian systems [17]. On the other hand, 

arbitrary parameters may cause the UKF to have embarrassingly poor performance 

for nonlinear problems, because the predictive variances can be far too small if the 

sigma points are placed in unlucky locations [18]. 

 

4. Parameter Learning for Projection based UKF with GPO 

As aforementioned, the sigma points projection based method may have poor 

state estimation performance for nonlinear constrained systems, while the sigma 

points scaling based method may fail due to the negative-definite estimated state 

covariance. On the other hand, a combination of these two techniques may have 

good performance since a positive semi-definite estimated state covariance can be 

achieved in the projection based UKF if a proper  is chosen. Extending this idea 

further, we propose in this paper a projection based UKF algorithm with optimized 

parameter vector ( , , )  θ to solve the constrained state estimation problem. The 

parameters are optimally learnt with GPO. 

 

4.1. GPO based Parameters Learning for the Generic UKF 

GPO based parameters learning for the generic UKF was firstly proposed by R. 

Turner and C. E. Rasmussen in [18]. The key idea is to interpret the UKF as a model, 

not merely an approximation method. This interpretation can then allow us to learn 

the free parameters in a model based manner from training data. The proposed 

model based learning algorithm can solve the so called “sigma point collapse” 

problem for the generic UKF, which can result in a significant increase in predictive 

performance over default settings of the parameters in the UKF.  

GPO utilizes a Gaussian process based optimizer to find the optimal model 

parameter θ , which amounts to finding a maximum of a structured function ( )l θ , 

usually the log marginal likelihood with T training observations: 

1: 1: 11
( ) log ( | ) log ( | , )

T

T t tt
l p y p y y 

 θ θ θ    (5) 

A maximization strategy that trades-off exploration with exploitation takes into 

account both the mean function [ ( )]E l θ  and the posterior variance function [ ( )]Var l θ , 

and the optimizer is programmed to evaluate the maxima of 

     ( ) [ ( )] [ ( )]J E l C Var l θ θ θ                  (6) 

where C  is a constant to control the exploration exploitation trade-off. 

GPO treats optimization as a sequential decision problem and assumes we 

provide a feasible set of θ  to search within. At each step it uses its posterior over 

the objective function J  to look for the best θ . The detailed Gaussian process 

optimizer algorithm can be found in [18]. 

 

4.2. Parameters Learning for Constrained UKF 

The original GPO based parameters learning algorithm considers nothing about 

constraint handling. But constraints should be considered and handled during the 
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parameters learning process. The learnt parameters with and without constraints 

concerned may differ greatly, and the learnt parameters without constraints 

concerned will be improper for constrained state estimation, as illustrated in section 

V.  

In order to handle constraints, the original GPO based parameters learning 

algorithm for the generic UKF is extended to the projected UKF. That is, the sigma-

points-projection technology is utilized to handle constraints during the parameters 

learning process. We summarize the proposed method in Algorithm 1. 

 

Algorithm 1. Parameters learning for Projection based UKF with  GPO 

1.  Generate a series of observations according to the process function and the measurement 

function as the training data. 

2.  Choose a proper range of [ , ] [ , ] [ , ]l h l h l hRg        
θ

. 

3.  Build a multi-grid { , 1,2,..., }i i M θ θ  with M  grid points in Rg
θ

. 

4. for 1p   to M  

5.     Calculate { ( )}pY l θ  according to the projection based UKF with { }pθ  as the parameters, 

using the training data. 

6.     for 1q   to C ( C  is the number of evaluated candidates) 

            Sample a random initial point 0 ( ( ),cov( ))p ps N E   ; 

            Maximize the criterion J  w.r.t 
*θ , while 

*θ  initialized at 
0s : ( , ) maxq qs F J . 

7.     end for 

8.     Append (argmax )s F  to   

9.     Append ( (argmax ))l s F  to Y  

10.  end for 

11. return (argmax )Y  

In Algorithm 1, 
l  and 

h are the permitted lowest value and the permitted 

highest value for the parameter   respectively.  The notations  , , ,l h l h     have 

similar meanings. ( ( ),cov( ))p pN E    is the normal distribution with a mean of ( )pE   

and a covariance of cov( )p . 

One thing worthy of mentioning is about the implementation of the algorithm. 

During the parameters learning process,   may vary from 0 to 1 and the estimated 

state covariance 
kP may not be positive semi-definite, which will interrupt the 

normal iterations of the UKF algorithm and result in an unsuccessful learning of the 

parameter. The augmented UKF [16] can help in part to solve the problem, in which 

the augmented state vector a

kx and the augmented state covariance matrix a

kP are 

defined as  
Ta

k k k kx x v and ( , , )a

k k k kP diag P Q R  respectively. 

The proposed parameters learning process is then carried on to the new 

constrained augmented state estimation problem. 

 

5. Constrained State Estimation Simulations 

After the optimized parameters are obtained, constrained state estimation can be 

achieved with the same projection based UKF. 

As an example, we consider the gas-phase, reversible reaction [12]. The discrete 

model of the system is 

1,

1, 1

1,1 2

k

k

r k

x
x

k t x
 

 
, 1,

2, 1 2,

1,1 2

r k

k k

r k

k t x
x x
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The state vector is    1 2

T T

A BP P x x x , and the output is  1 1y  x .
AP  and 

BP  

are the partial pressures. 0.16rk   and t  is the integration step length. Assume the 

system experiences Gaussian noise both in the states and the outputs, and the noise 

have zero means and covariance of 
kQ and 

kR . 

The parameters used for this system are 

1 0.1k kt t t    ,  0 3 1
T

x ,  0
ˆ 0.1 4.5

T
x  

2 2

0 (6 ,6 )P diag , 2 2(0.001 ,0.001 )kQ diag , 20.1kR  . 

The constraints are such that ˆ
k x 0 . 

As Figure 3(a) shows, the unconstrained UKF with default parameters fails to 

converge to the true state. State estimation under the UKF with default parameters 

and constraints handled by sigma points projection is shown in Figure 3(b). As 

Figure 3(b) shows, the state can converge to the true state, but it takes more than 10 

samples for it to converge.  If the pre-learnt optimal parameters 

( , , ) (0.0825,0.4775,0.3150)     is used, the state can converge much faster (only 

about 2 samples), as shown in Figure 3(c). For a comparison, we also show the 

result from Kolås S. et al [12] in Figure 3(d). Our method has smaller estimation 

errors at the initial part. We also measured the average square root error of the true 

and estimated state by 100 Monte Carlo simulations. The average square root 

estimation errors for the four algorithms are [0.659, 0.658]
T
, [0.443, 0.453]

T
, [0.055, 

0.071]
T
, [0.40,0.49]

T
 respectively, which shows that our proposed method is 

superior to the others. 

On the other hand, during the sate estimation process, our proposed method needs 

no optimization procedure and so takes less time to estimate the constrained states.  

 

6. Conclusions 

A UKF based constrained state estimation method is proposed in this paper. The 

three free parameters of the UKF are first optimally learnt based on a GPO method, 

with the constraints embedded and handled by sigma points projection. The state 

estimation is 

       
 

(a) State estimation under unconstrained UKF with default parameters. 
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Figure 3. Simulations for the Two-State Batch Reaction Problem 

 

then done with the projection based optimized parameters UKF. The handling of the 

constraints in the estimation process can be regarded as a combination of sigma 

points projection, scaling and re-weighting. Simulation results on different systems 

show that the proposed method is effective and efficient. 

(c) State estimation with projection based parameters optimized UKF. 

 

(b) State estimation under UKF with default parameters, with constraints handled by 

sigma points projection. 

(d) State estimation with the method of Kolås S et al. 

 

 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Hybrid Information Technology 

Vol. 9, No.11 (2016) 

 

 

Copyright © 2016 SERSC 283 

 

Acknowledgements 

This work is supported by the Zhejiang Provincial Nature Science Foundation of 

China under grant LQ13F010011 and Nature Science Foundation of China under 

grant 61471151. The authors would like to thank Dr. Caisheng Wang from Wayne 

State University for providing helpful comments. 

 

References 

[1] J. Van Hinsbergen, T Schreiter, Zuurbier, J.W.C Van Lint and H.J. Van Zuylen, IEEE Trans. Intell. 

Transp. Syst., vol. 13, no. 1, (2012). 

[2] S. Jafarzadeh, C. Lascu and M. S. Fadali, IEEE Trans. Ind. Elec., vol. 59, no. 11, (2012). 

[3] D. Crisan and A. Doucet, IEEE Trans. Signal Process. , vol. 50, no. 3, (2002). 

[4] Arasaratnam, S. Haykin and T. Hurd, IEEE Trans. Signal Process, vol. 58, no. 10, (2010). 

[5] D. H. Dini, D. P. Mandic and S. J. Julier, IEEE Signal Processing Letters, vol. 18, no. 11, (2011). 

[6] A. F. Garcia-Fernandez, M. R. Morelande and J.Grajal, IEEE Trans. Signal Process, vol. 60, no. 7, 

(2012). 

[7] Z. He, M. Gao, C. Wang, L. Y. Wang and Y. Liu, Energies, vol. 6, no. 8, (2013). 

[8] E. L. Haseltine and J. B. Rawlings, “Texas-Wisconsin Modeling and Control Consortium”, Tech. Rep. 

2002–03, (2003). 

[9] Z. Luo, H. Fang and Y. Luo, “Circuits, Systems and Signal Processing”, vol. 32, no. 5, (2013). 

[10] S. J. Julier and J. J. LaViola, IEEE Trans. Signal Process, vol. 55, no. 6, (2007). 

[11] C.V. Rao, J.B. Rawlings and D.Q. Mayne, IEEE Transactions on Automatic Control, vol. 48, (2003). 

[12] S. Kolås, B. A. Foss and T. S. Schei, Computers & Chemical Engineering, vol. 33, no. 8, (2009). 

[13] R. Kandepu, L. Imsland and B. A. Foss, Proceedings of 16th Mediterranean Conference on Control and 

Automation, Ajaccio, France, (2008). 

[14] J. Prakash, S. C. Patwardhan and S. L. Shah, Proceedings. of the 17th World Congress The International 

Federation of Automatic Control, Seoul, Korea, (2008). 

[15] C. E. Rasmussen and C. K. I. Williams, “Gaussian processes for machine learning”, The MIT Press, 

Cambridge, (2006).  

[16] R. Van Der Merwe, “Sigma-point Kalman filters for probabilistic inference in dynamic state-space 

models”, Oregon Health & Science University, (2004). 

[17] S. Thrun, W. Burgard and D. Fox, “Probabilistic Robotics”, the MIT Press, Cambridge, (2005). 

[18] R. Turner and C.E. Rasmussen, Neurocomputing, vol. 80, (2012). 

[19] M.A. Osborne, R. Garnett and S. J. Roberts, Proceedings of 3rd International Conference on Learning 

and Intelligent Optimization, Trento, Italy, (2009). 

[20] W. I. Tam and D. Hatzinakos, Proceedings of 1997 IEEE International Conference on Acoustics, 

Speech, and Signal Processing, Munich, Germany, (1997). 

[21] P. Closas, C. Fernandez-Prades and J. Vila-Valls, IEEE Trans. Signal Process., vol. 60, no. 12, (2012). 

 

Authors 
 

Yuanyuan Liu, she received her Master degree from Zhejiang 

University, China, in 2004, in information and communication 

engineering. She joined Hangzhou Dianzi University, China, in 2004, 

where she is currently an associate professor in the Department of 

Electronic and Information. Her current research interests are in the 

areas of nonlinear signal processing, circuits and systems. 

 

 

Jingbiao Liu, he received his Master degree from China 

University of Petroleum, in 1991, in applied electronics. He joined 

Hangzhou Dianzi University, China, in 2001, where he is currently a 

professor in the Department of Electronic and Information. His 

current research interests are in the areas of electronic system 

integration technologies, ocean electronics. 

 

 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Hybrid Information Technology 

Vol. 9, No.11 (2016) 

 

 

284  Copyright © 2016 SERSC 

 

Zhiwei He, he received his Ph. D. degree from Zhejiang 

University, China, in 2006, in information and communication 

engineering. He joined Hangzhou Dianzi University, China, in 2006, 

where he is currently a professor in the Department of Electronic and 

Information. His current research interests are in the areas of 

nonlinear signal processing and machine learning. 

 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.




