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Abstract ¢

This work proposes the application of a hybrid Particle Swarm Optimizati 0)
with Levenberg Marquardt Back-Propagation (LMBP) algorithm to tfai tificial
Neural Networks (ANNSs) for classification of medium resolutian mu satellite
imageries. ANNs have been widely used in satellite im ifi have been

Propagation (BP) algorithm traditionally used i
local minima entrapment, thus affecting the ac Y and

classifier. A hybrid combination of PSO a P algor, is applied to resolve the
aforementioned problem and enhance;t curacy aﬁ@erformance of the ANN
classifier. To investigate the perform the ed method, medium resolution
multispectral satellite imagery wa |f|ed @e proposed classifier and its
performance compared with tha onventio BP and Scaled Conjugate Back-
ults obtained shows that the hybrid PSO

s the conventional LMBP and SCBP
accuracy on the test medium resolution

shown to outperform traditional classifiers in i itUationsN\However the Back

Propagation (SCBP) tramed A ssifier.
and LMBP trained ANN c ier out

trained ANN classifier @achzeve

satellite imagery. s\,
Keywords: \e Ima@flmal Neural Networks, and Particle Swarm

Optimizati Q

1. Introduction

Thematic m"wd from remotely-sensed satellite images are invaluable sources of
I

crucial infor for wvarious applications such as agriculture, modelling of
environmen iables, understanding habitats distribution, planning, monitoring and
managenKEw natural resources, (Gomez et al, 2016; Ahmen and Al-Noman, 2015).
Image ification, aims at categorizing all pixels in the satellite image into various land

e@asses which can then be used to produce thematic maps, like land use/cover
%\ in the satellite image (Agrawal and Bawane, 2015). The accuracy and efficiency
ofNefassification techniques used to produce these thematic maps are crucial (Gomez et al,
2016; Anchang 2016; Meher 2015), as these maps, provide the basis for deciding and
implementing policies and plans for sustainable development at the local, regional and
global scale.

Artificial Neural Network, are being widely used as an alternative to traditional
statistical models because they have the notable ability to derive meaning from
complicated or imprecise data and can be used to extract patterns and detect trends that
are too complicated to be recognized by either humans or traditional computing
techniques (Chen et al 2015). They have been reported to yield comparable or superior
accuracy compared to statistical classifiers (Agrawal and Bawane, 2015). They have
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found applications in wide variety of problems such as data processing, classification,
regression analysis, time series prediction and pattern recognition, arising from a variety
of disciplines, including mathematics, computer science, and engineering (Melo and
Watada, 2016; Chen et al 2015; Jacovides et al 2015).

Feedforward Neural Networks (FNNs) are the most popular ANNSs used in practical
applications (Chen et al 2015) and have been found suitable for supervised classification
of multispectral satellite images (Agrawal and Bawane, 2015). The training process is an
important aspect of a FNN model and performance of FNNs are dependent on the success
of the training process. The aim of the training phase is to minimize a cost function
defined as a mean squared error (MSE), or a sum of squared error (SSE), between its
actual and target outputs. This is achieved by adjusting the FNNs weights and biases. The
method most commonly used for finding the optimum weight and biases combination of
FNNs is the Back Propagation algorithm (BP) (Melo and Watada, 2016; Das et al, 2014;
Rumelhart et al, 1986). Although, the Levenberg Marquardt (LM) algorithm i
efficient in speeding up the convergence rate of BP algorithms, but being a gradi
algorithm it still suffers from local minima entrapment which may Iead
finding a global optimal solution (Chen et al 2015; Nawi em%jom Zh 007).

From literature, the use of novel heuristic optimizati ads ( mlzatlon)
or evolutionary algorithms is a popular solution to e rob of BP-based
learning algorithms (Cao et al, 2016). Global se ization iques have the
ability to adjust the weights for neural networks toia n he mea problem (Melo
and Watada, 2016; Garro and Vazquez, 2015; al, 2014) though there is no one
size fits all solution, Particle Swarm Optlmlz@w (PSO) ithms have been found to

be efficient and practical in finding the we| hts a given network, thereby
reducing local minimal entrapment ( as et al, 2014; SeyedAli et al,
2012) and enhancing the accuracy cla process. This study therefore
applies a hybrid PSO-L ithm to ' a FNN for medium resolution
multispectral satellite mag% atlor; % is done with the aim of enhancing the
accuracy of information obtainee fro maps produced from medium resolution

multispectral satellite i
PSO-LMBP algorith

ies. To t of our knowledge, application of hybrid

e classifi n of medium resolution satellite imageries has

not been reported 4 ure. &
The rest of per is d as follows: Section 2 and 3 present a brief
introductio ’ orlthms Section 4 discusses the hybrid PSO-LMBP
training of for medi solutlon satellite image classification. Section 5 discusses

the preparation of th ts used for the simulation. Simulation results are provided in
7 concludes the paper.

section 6. Finally@
2. Artificial Neural Networks

is a system that performs a mapping between input and output patterns that
a problem (Garro and Vézquez, 2015). Typically, ANN structures are
d of three different layers: input, hidden (one or more) and output layers
inel et al 2015). These layers are interconnected by links called weights. The
operations of a FNN can be explained as follows; from figures 1 and 2, the input layer is
composed of input units (x; = 1, .....n), these values are transferred to the hidden layer
units where the input unit values are multiplied by the weights that connect that unit with
the hidden unit. Summation of all the weights connected to the hidden unit minus its
threshold 6; is shown in equation 1.

Zinj = Ni=oXiWij — 6; 1)
where w;; is the weight of the ith unit in input layer jth, the threshold is denoted as 6;
and the ith input unit is x;. The activation function f(Zinj) is calculated by using Egs. 2
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and 3, where z;,; is the sum of all the input weights multiplied by the input unit value in
the hidden layer:

xi=1

Neuron

f(Zinj) Vi

>
O
SIS
O\

Figure 1. Typical Neuron in aFeed Forward Network
*

N

A N\
Input layer Hi ‘8}3 I‘ @ \Output layer
@,\% ‘2\‘
31

W52

@Figure 2. Neural Network Structure (Source: Melo and Watada, 2016)

1
f(zn)) = ooy "

zj = f(2in;) @)
The summation of the hidden units value (zy,;, j = 1,....,H) multiplied by its
corresponding weights w;, minus its threshold 6, is calculated using equation (4):

Copyright © 2016 SERSC 217



International Journal of Hybrid Information Technology
Vol. 9, No.11 (2016)

The next step is to calculate the output unit value (y,, k = 1,....,0) by applying a
sigmoid function (equation 5) using equation 6:

Yk = f Oink) (5)
. (6)

1+exp~Yink)
The training error E can be calculated by the difference between the target value that
corresponds to the input unit value and the actual value at each output unit:

1
E =—¥LoWik — Yi)?, (7)

where m is the number of categories (number of units in the output layer), y;; is the
current output of an output unit k and Y;; is the proper output of this unit. The sum of net
partial errors for the whole training set provides the total error E of the network. The error,
is then back-propagated and weights are altered to minimize it. This process i%i’w

Yk = [ Qi) =

until the computed error drops below a predetermined value or the number of ions
exceeds a predefined maximum. This is where the chosen training algofit vital,

because the training algorithm helps to finding an optimal sét of weig ases that
will give desired values at the network’s output when pre with rent patterns at
its input (Chen et al, 2015; Xu and Zhang, 2014). \/

3. Particle Swarm Optimization \\/

PSO is a population based evolutlonary ompU auont ue proposed by Kennedy
and Eberhart (Mirjalili et al, 2012). ithm is | d by observations of social
and collective behaviour of bird flockléd fish g in search of food and survival
(Garro and Vazquez, 2015, Das et a The m works by initializing a flock of
birds randomly over the sear ce Wher very bird is called a particle. These
particles fly with a certain \@Q” nd fm Iobal best position after some iteration.

the influence of its best p jon pl(co e component) as well as the best position of its
neighbours p, (soaa onent) n compute a new position that the particle is to
fly to (Zhang, 200

PSO can d mathe afly as follows (Garro and Vazquez, 2015):
vt + 1évi(t) pi(6) = %:(1)) + car2 (pg (8) — (1)) (8)

Sl +1) ©

velocity of particle i at iteration t,; ¢; and ¢, are acceleration
nd r, are uniformly distributed random numbers between (0,1);
ponent) is the particle own best position; p4(social component) is the
of a particle in a population; x; is the current position of particle i at iteration

4 weighting function or inertia weight that determines the influence of the current
ity on the subsequent velocity and can be represented as (Sallama, 2014)

w. —Wmni .
Ltermax

At each iteration, each partlcle C ! outy vector, based on its momentum and
dt

Xi(t + 1) = X

where v; i
coefficientsy r;
p;(cogniti
best

W= Wnax —

where w,, 4, is initial weight; w,,,;;, is final weight; iter;,, 4, IS maximum iteration; iter;
is current iteration.
The first part of (8) wv;(t) provides exploration ability for PSO, the second and third

parts, c;ry(pi(t) — x;(¢)) and c,my (pg(t)—xi(t)) represents private thinking and

collaboration of particles respectively. The PSO starts by randomly placing the particles
in a problem space. After each iteration, the velocities of the particles are calculated using

218 Copyright © 2016 SERSC



International Journal of Hybrid Information Technology
Vol. 9, No.11 (2016)

equation 8. After defining the velocities, the positions of particles can be updated using
equation 9. The process of changing particles positions will continue until an end criterion
is met (Mirjalili, et al, 2012).

4. Hybrid PSO-LMBP Algorithms for Training FNN’s

Generally, when training FNNs using a heuristic algorithm, the heuristic algorithms are
used for finding a combination of weights and biases which provide the minimum error
for the network (Mirjalili et al, 2012). When using the PSO algorithm for training ANN’s,
every particle represents a set of weights and biasis and the PSO algorithm searches for
the best combination of weights and biases that provides a minimum error for the ANN.
The searching process, as adapted from Zhang et al, 2007 is as follows, initialize a group
of random particles and update the particles using equations 8 and 9 until a new
generation set of particles is generated (each particle represents a possible solution).,,
Those particles are then used to search the global best position in the soluti &qpe
Finally the LMBP algorithm is used to search around the global optimum. Thi

algorithm is to use PSO to search for a global optimistic resylt.
used to find a local optimistic result among the global o %
algorithms complement each other; PSO is good r@
searches, while LMBP has a strong ability to find‘o timi
find global optimistic results is weak (Zhang et ah=2007). In
LMBP for a FNN the following elements n@sto be def
using the error of the FNN should be d to evalu rticle fitness. Second, an
encoding strategy should be defined to a@ the V@hts and biases of the FNN. The
elements are described as follows; s\\

4.1. Fitness Function
Fitness function of the 1 ining sam@s defined as (Melo and Watada, 2016;
Zhang et al, 2007)

to design the PSO-
irst, a fitness function

fitness(X;) (11)
E is the traini as ea@xed in section 2.
4.2. Enco tlo
Encodlng strateg used to represent the weights and biases of the FNN. At this

(Mirjalili et al, hang, 2007). An example of this encoding for the FNN of Fig. 3 is

stage every par |c!? oded as a matrix. Decoding using this method is highly efficient
provided as foll

lCle( ;-;L) - VVIrBlrWZJBZ] (12)

O Wiz Wa3 0, W3e
@ W, = (W1a Was|, By = |60;|\W, = |Wse
Wis Wys 05 Wse

Where W; is the hidden layer weight matrix, B; is the hidden layer bias matrix, W, is
the transpose of W,, W, is the output layer weight matrix and
B is the hidden layer bias matrix.

, B,=[6,4]
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’Eé
Figure 3. FNN with A 2-3-1 Qre ( e: Mll’jallh Et al, 2012)
e Pseudo code for the PS algorlthr%g}férface is as follows;
tlons and cities are initialized from a uniformly
distributed random ability i lem search space within the range of [0 1]
Step 2: Evaluat nitialized patticle’s fitness value (difference in error between
the target o G% the actfabputput of the FFN). If the fitness value is better than

Step 1: The particles

its local b est pos @ pg is evaluated from the current particles positions.

Step @e stope @ or maximum iteration is reached go to Step 8, else go to

Step 4.
e Step 4: Th e with the best fitness value p, is selected. The positions and
velocitie the particles are updated according to Egs. 8 and 9. The coefficients

%

220

cia , afe updated by sampling a Gaussian distribution. The boundaries for

ries, the new value is set to be the minimum or maximum.

vel'p& nd position are checked. If the new position or velocity is beyond the

p 5: Evaluate each particles fitness value and the worst particle is replaced by the
stored best particle. Update the best particle p, if the new particle’s fitness py;, is
better than p,

Step 6: Reduce the inertia weights w

Step 7: If the current p, is unchanged for a specified number of generation, then go
to Step 8; else, go to Step 3.

Step 8: Use the LMBP algorithm to search around p, for some epochs, if the search
result is better than p, output the current search result. Else output p,
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4.3. Classification
Classification is carried out as follow;

i. The optimal network formed from Step 8 (optimum combination of weights and
biases as encoded in the best particle structure) is trained using the training dataset.

ii. Thereafter, use the trained network to classify the test dataset

5. Data

The data was generated from a 2007 NigeriaSatl image (resolution of 32m) covering
part of Obafemi Awolowo University (O.A.U), lle-Ife. The dataset was prepared using the
procedure used in preparing the UCL repository LandSat dataset (Keogh et al, 1998). The
dataset was generated by taking a small section from the original data. One frame of the
imagery dataset consists of three digital images of the same scene in different spectral®
bands. Two of these are in the visible region (corresponding approximately to d
red regions of the visible spectrum) and one is in the (near) infra-red reglo |er is
an 8-bit binary word, with 0 corresponding to black and, 255 to whit spatial
resolution of a pixel is 32m x 32m. Each line contal fixel %ﬁ the three
spectral bands (converted to ASCII) of each of the 9 p| e 3x3 netgibourhood and

a number indicating the classification label. The £ e’classific for comparison
purpose was done manually using historical high r|on im WIocal knowledge of
the area. The training dataset contains a total 41 pixels (usingva 3x3 neighbourhood).
The test dataset contains a total of 361 pixels a SXS@bourhood). In each line of

el are gi first followed by the three

data the three spectral values for the top-

spectral values for the top-middle pix en‘go@)r the top-right pixel, and so on
with the pixels read out in sequence -righ -to-bottom. Table 1 describes the
dataset while Figures 4 and 5 s OW mage of t dataset and baseline classification
respectively. Output of the% classﬁ%on is in 3x3 neighbourhood blocks (i.e.
each block consist of 3x3 pixe

. &1. Ch r;%leristics of the Dataset
4« & N
Number of N?g ix€ls (3x3 neighbourhood)
e | Y

example aset
O\'est 61 (3x3 neighbourhood).

datas

Number of | 27 tral bands x 9 pixels in neighbourhood)
attributes

Attributes @ attributes are numerical, in the range 0 to 255

“Features Colour
1 (water body) Blue

Dec 2 (woodland) Light green
3 (settlement) Red
Qb 4 (wetland) Pink
5 (cultivation) Yellow

5.1. Pre-processing

Before training, the inputs and targets were scaled within a specified range [-1 to 1]. At
the output the values were reverted back to their actual values.
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Figure 5. Baseline Classification

6. Result and Discussion

The hybrid PSO-LMBP algorithm was used in training FNNs, for the classification of
medium resolution, multispectral satellite images. Table 2 lists the algorithm specific
parameters used for the classification.
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Table 2. Simulation Parameters

PSO parameters

Particle Population size 60
Number of epochs 1000
Maximum inertial weight 0.9
Minimum inertial weight 0.2
Inertial weight 0.2
Acceleration constants c; 2
Acceleration constants c; 2 N e
Particle velocity 0.8 Ayy
ANN parameters O
A\ 2 N
Number of hidden layer 3
Activation function used for hidden layer Tanslg\ PureI|
Pre-processing for the input layer Conw mputsWn -land1
Type of network used S8 . 9
\§ N
Performance function SE ( square error)
r'\ )

Most of the parameters in @re determined after multiple simulation runs using
different parameters to flnd | para rs for the classification. Result obtained
for PSO-LMBP over three independ are presented in Table 3. The average

number of mwclasmﬂcaﬂ@as 13. 6% ge MSE was 0.0316 and average accuracy of
classification was 96 Q@ of classification was obtained using equation 12

ccurac
%o of samples—no of misclassification
Accuracy of cl atlon\G x 100% (12)

total no of samples

classification'With twel sclassifications. From the performance plot in Figure 6, it can
be observed that aft 0 epoch there is no significant increase in the performance of
the training pro s e regression plot in Figure 7 shows an almost perfect fit for the
data and target icating a high level of accuracy in the classification process. Figure 8
ed output with twelve misclassifications.

rative study, the classification was also done using LMBP and Scaled
C) BP and the results are shown in Table 4. It can be observed from Table 4
M-BPNN outperforms the LMBP and SCBP trained NN’s in terms of number of

%assification, accuracy of classification and MSE.

Flgures 7 sho@ erformance plot during training and regression plot for the
0
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Table 3. Number of Misclassification, Accuracy of Classification and MSE
for Test Data over Three Independent Runs for PSO-LMBP Trained NN

Algorithm No of misclassification Accuracy of classification (%) MSE

PSO Trained LM-BPNN 12 96.66% 0.0241

(total no of samples is 361(3x3

neighbourhood pixels) 13 96.39% 0.0324
16 95% 0.0384

Average 13.66 96.01%

Mean Squared Error (mse)
*
%

10_2 C @ 1 1 1 1 1 1 1 1 |
0 @ 200 300 400 500 600 700 800 900 1000

1000 Epochs

Figure 6. Performance Plot
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Training: R=0.97415
' o o

Data

0.5

Output ~= 0.95*Target + 0.022

Figure 8. Classified using PSO-LMBB trained NN (12 errors)
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Table 4. Number of Misclassification, Accuracy of Classification and MSE
for Test Data over 3 Independent runs for PSO-LMBP, LMBP and SCG
TRAINED NN’S

Algorithm No of misclassification Accuracy of MSE
classification (%)
PSO trained LMBP-NN | 12 96.66% 0.0241
13 96.39% 0.0324
16 95% 0.0384
Average =13.66 Average =96.01% Average =0.0316
LMBP trained NN 23 93.6% 0.0417 . N
26 92.3% 0.0430 -
21 94.2% 0.0412 .,
Average = 23.3 Average = 93.36% Avgr@(hz
Scaled conjugate 33 90% *
gradient (SCG) BP \ N
trained NN /\0 N N/
29 z% ) Sé }0.045
31 =01.4% 0.041
Average =31 ,&Verage = o Average = 0.0456

\

7. Conclusion @
Wsas\a

In this paper, hybrid PS v@XMBP pplied in training a FNN for the
classification of medium r | satellite imageries. PSO was used to
select the best global particles While algorithm was used thereafter to search

around the best global es to obtﬁ‘Q5 optimal network that will be used in training
the dataset. The hyb -LMBﬁ algorithm was evaluated by classifying a medium

resolution multis satelli ge using PSO-LMBP, LMBP and SCGBP and

comparing thei ormance hybrid PSO-LMBP algorithm outperforms the
Conventlor\m Pan P tralned ANN classifier and achieves ~95% accuracy on
the test d rom tt ts obtained it can be concluded that the hybrid PSO-LMBP

is suitable for class edium resolution multispectral satellite imageries. In future
research works, focus on how to apply this hybrid PSO-LMBP algorithm for
classifying hig@tlon multispectral satellite imageries.

ent

ors would like to acknowledge the contributions of Mr Jasini for providing the
at 1 image used in this work.
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