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Abstract \/’
Multi-criteria (or) attribute decision making (MCDM/MADM) methods W\igh
I

applications in industries for solving real world englneerlng problems. esent
work, MCDM methods of Weighted sum method (WSM), ted Proddc
and TOPSIS, have been employed for the computatl
AA7075 has been taken as work piece for the expe tation and periments were
done on CNC lathe as per the Taguchi’s standd A' Orth alpArray. The cutting
parameters of speed, feed and depth of cut We aken as rlmental inputs and
Material Removal Rate (MRR) and Surface R ess ( % considered as responses.
From the Weighted sum method (WSM) ant®| hted P Rﬁbg ethod (WPM) the optimal
combination for multi-responses Weré t nintl ernative, i.e. speed: 2000 rpm,

feed: 0.4 mm/rev and depth of cut . from the TOPSIS results, the
optimal combination for multi-r@es were at seventh alternative, i.e. speed:
2000 rpm, feed: 0.2 mm/rev, ans —4& mm. Analysis of variance (ANOVA) has
been done by using MINIT statisti ftware to find the influence of cutting
parameters on the multi- ANOVA results of WSM, WPM and relative
closeness coefﬁuent eed rate has high influence (For WSM, WPM

is found t
and C;" the F re 605&60.30 and 91.42 respectively) in affecting the
multi-responses.

Keywor@aterlal al Rate (MRR), Surface Roughness (R,), WSM, WPM,
TOPSIS and ANOVA

O

1. Introduct
In pre%.r , multi criterion Decision-Making methods are gaining importance as

potenti or analyzing complex real problems due to their inherent ability to judge
differ, Qernatlves on various criteria for possible selection of the best or suitable
. In the present study, various MCDM methods were used for the optimization
%ltl -responses. The weighted sum method (WSM) is the earliest and, most commonly
method of MCDM. To overcome the problems associated with WSM, Weighted
product method (WPM) has been proposed. Other widely used methods are ELECTRE
and TOPSIS. [1-6]WSM used for solving single dimensional problems. If there are m
alternatives and n criteria, then the best alternative is the one that satisfies the following
expression, B'WSM =max X(r;W,). Where, B'WSM is the WSM score of the best
alternative, n is the number of decision criteria, r; is the normalized value of the |
alternative in terms of the j™ criterion, and W; is the weight of importance of the i
criterion. The assumption that governs WSM model is the additive utility assumption.
That is the total value of each alternative is equal to the sum of the products of normal
value and the weight of the criteria. In single-dimensional cases, where all the units are
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same, the WSM can be used without difficulty. The difficulty with this method emerges
when it is applied to multi dimensional MCDM problems. To avoid this problem weighted
product method (WPM) has been developed. It is very similar to the WSM but the main
difference is that instead of adding in the model there are multiplication. The WPM can be
used in single- and multi-dimensional MCDM problems. An advantage of the method is
that instead of the actual values it can use relative ones. [7-8] TOPSIS is the technique for
order preference by similarly to ideal solution. It was developed by Hwang and Yoon in
1980 as an alternative to the ELECTRE method and can be considered as one of its most
widely accepted variants. The basic concept of this method is that the selected alternative
should have the shortest distance from the ideal solution and the farthest distance from the
negative-ideal solution in any geometrical sense. The TOPSIS method assumes that each
criterion has a tendency of monotonically increasing or decreasing utility. Therefore, it is
easy to define the positive ideal and negative-ideal solutions. The Euclidean distance
approach was proposed to evaluate the relative closeness of the alternatives to theideal®
solution. Thus, the preference order of the alternatives can be derived from a{Sexies”of
comparisons of these relative distances. The TOPSIS method first conver, arious
criteria, dimensions into non-dimensional criteria. Generally A" indicate$ fhe most
preferable alternative or the ideal solution. Similarly, e%’ci\?e A S the least
preferable alternative or the negative ideal solution. [9-18

Relative importance or weight of a criterion rigicates the rWassigned to the

criterion by the decision-maker while ranking alterndyy i a Multi criteria
Decision-Making (MCDM) environment. umber of metheds are available for
computing the weights, commonly used areg\the» Ratin od and Entropy method.

numerical scale. A higher value for critesio resents its relative importance
over the other criteria. The method N le w is a small number of a criterion,
but may give erroneous results i umber of “eiteria is large. To avoid this entropy
method has been employed% i hat measures the uncertainty associated
with random phenomena of thé“expe ation content of a certain message and
this uncertainty is repres by a di robability distribution. The Entropy Method
estimates the weigh e varigus Criteria from the given payoff matrix and is
independent of th% of the déeision-maker. [11-12]This method is particularly useful
to explore cont etween f data. These sets of data can be mapped as a set of
alternative s in th off matrix where each alternative solution is evaluated in
terms of i tcome&hilosophy of this method is based on the amount of
information availabl its relationship with the importance of the criterion. If the
entropy value is Righy the uncertainty contained in the criterion vector is high,

diversification@e information is low and correspondingly the criterion is less
od is advantageous as it reduces the burden of the decision-maker for

Rating method requires the decision-m 0 express aM the criterion weights on a
s?%

important. TEis
large size lems. [13-15]

The Qc ive of the present work is to optimize the multi-responses (MRR and R,)
und us alternatives. The experiments were carried out on CNC lathe for various

parametric combinations like speed, feed and depth of cut as per the Taguchi’s

stapdard L9 orthogonal Array. [16-19] The MCDM/MADM methods of WSM, WPM and
TOPSIS were employed to find the optimal combination of process parameters that yields
high Material Removal Rate (MRR) and low Surface Roughness (R,) simultaneously.
Entropy-TOPSIS method is used to find the weights of the responses. Finally, the
influence of process parameters on the multiple responses was studied using ANOVA by
statistical software MINITAB-16. [20-21]
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2. Methodology

In the present work, AA7075 has been taken as work piece to conduct the experiments
on CNC lathe as per the Taguchi’s standard L9 Orthogonal Array. Optimization of
multi-responses (MRR and R,) has been carried out using MCDM approaches of WSM,
WPM and TOPSIS methods.

Procedural steps of MCDM

¢ Defining the problem and fixing the criteria.

o Appropriate data collection.

¢ Establishment of feasible/efficient alternatives.

¢ Formulation of the payoff matrix (alternative versus criteria array) as given in
the Tablel.

o Selection of appropriate method to solve the problem. (WSM, WPM and TOPSIS)

o Incorporation of a decision-makers preference structure ’

¢ Choosing the best/suitable alternative. ?\

Table 1. Payoff Matrix
Experiments Speed Feed Depth of \ |ter|a &/ Criteria 2
(Alternatives) (v) () cut (Ra)
( N4
A-l 1000 0.2 0. 2.11
A-2 1000 0.3 (05 |, (2485 5.023
A-3 1000 04 | \M N\3257 9.17
A-4 1500 02 AN075 Q" 20.57 2.036
A-5 1500 03" \Y 39 7.16
A-6 1500 |, S\ 24.85 11.59
A-7 2000, \'O2Z | . Cal 41.14 3.35
A-8 2000 0.3 JaN“05 27 7.25
A-9 0. 4x v 075 39.85 11.75
R g

appro WSM WPM and TOPSIS are most widely used
zing engmeermg problems. The results of MCDM methods

3.1. Weighted ethod (WSM)

Weighted, sur» method is used in single dimensional problems. For m number of
alternati n criteria’s the best alternatives are the one that satisfying
i

Bé“,vs}i: max E r-le

@here, B*yrap is the weighted sum method score of the best alternatives. Calculated
values of WSM with their S/N ratios and ranks were given in the Table 2.

Table 2. WSM Values and Ranking

Experiment No. WSM S/N of WSM Rank
1 0.09596 -20.3582 9
2 0.23811 -12.4644 7
3 0.39244 -8.1245 3
4 0.13115 -17.6446 8
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5 0.35122 -9.0884 4

6 0.44215 -7.0886 2

7 0.23990 -12.3994 6

8 0.31439 -10.0506 5

9 0.49665 -6.0790 1
ANOVA of WSM

ANOVA is applied to the values of WSM to determine the influence of process
parameters on the multiple responses. From the ANOV A for WSM (Table 3), it is found
that feed rate has high influence (F = 60.50) followed by speed (F = 8.66). Depth of cut
has very low influence (F = 1.68) in affecting the multi-responses. Normal probability,
versus fits and versus order plots for the residuals were drawn and shown in the Figures 1,

2and 3. \/0
Table 3. ANOVA for WSM ?“
CA
Source DF Seq SS Adj SS Adj MS F P
0.01782 0.01782 \ u&Q& 3@
Vv 2 - - OO\V . 0.103
; ) O.%2448 O.%2448 36224\%50 0.016
0.00346 0.00 0.00473
d 2 6 ] /&Q . % 1.68 0.372
Error ) 0.00205 %@05 .00102
8 L o 9
Total 8 0.147 ,\
Al .
S =0.0320746, R* = 98.61%." (Ad)) =@%
~ O\
Y >
. Q Norrhal Probability Plot
\ sponse is WSM)
99 _
JOY @
Q0
o O
o 707 @
2 2N
3(3(3
1 T T T T T T T T T
-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04
Residual
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Figure 1. Normal Probability Plot for WSM
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Figure 3. Versus Order Plot for WSM

@Neight Product Method (WPM)

The Weighted Product Method (WPM) is also similar to WSM. The main difference is
that instead of addition in WPM multiplication has to be done. The overall performance

score is computed as
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Here, rj is the normalized values of decision matrix and Wj is the weight of the response.
The best alternative is the one having the highest R; value. The calculated values of R; were
given in the Table 4.

Table 4. R; Values of WPM and Ranking

Experiment No. WPM S/N of WPM Rank
1 0.09594 -20.3600 9
2 0.23717 -12.4988 6
3 0.39180 -8.1387 3
4 0.11921 -18.4737 8
5 0.34800 -9.1684 4
6 0.42530 -7.4261 2
7 0.20805 -13.6366 IR
8 0.31422 -10.0553 N/
9 0.49508 -6.1065 o~ A?V: )

ANOVA of WPM \.?
Analysis of variance is applied for calculated WP s*and ANOVA
given in the Table 5, it is clear that the feed rate has hl’\\ nce (F .30) followed
by cutting speed (F = 6.56). Depth of cut has less=iaflyerice (F = in affectlng the
multi-responses. The Residual plots were drawn a wn in RK es 4,5and 6.

Table 5. ANO»@or WRM%

Source DF Seq SS dj MS F P

v 5 0. c5)1435 {\@%143‘5(\ 0717 6.56 0.132

v ‘b
. ) 0.1 1@ 0131937 0. 86596 60.30 0.016
d 9 0.00246 0246 0.00123 1.13 0.470

LY 2

Error ‘\\Q 0.002§8§ 0.%0218 0.20109
V _
Total g"\\B\ ‘ g, 15894

S =0.0330753, R* = %, R? (Adj) = 94.2%

Q)O
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Figure 5. Versus Fits Plot for WPM
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‘O L,
3.3. TOPSIS Method ‘-?\ D
TOPSIS decision making meth echniqﬁ\ duced by Yoon and Hwang. It is a
worldwide accepted approach ing thesbest alternative that is closest to the ideal
solution. The basic principl@sin\this metﬁ%that chosen alternative should have the
shortest distance from the, positive j ution and the farthest distance from the
negative ideal solution I@DPSIS m of decision making problems, first step is to

determine the Wei\ sing entropy‘approach.
3.3.1. Calculatitns‘etr Wei h&ng Entropy Approach
Calculat Weigh@ entropy method involves in four steps they are

Stepl. Determi @of the decision matrix.
In decision @ he rows are assigned to available alternatives and the columns are
assigned to charactéristics. The general decision matrix can be shown as
& A [V Y2 o Yy Yy

D=A Y1 Yz .. Y
J'!"I!ﬂ le Ym! 1I'm' Y|:'r1|:'1
@re, Ai (i = 1,2,3..m) signifies the potential alternatives, Y;(J = 1,2,3........ n) signifies
thevattributes and Yj; is the performance of A; with respect to characteristic Y;. The actual
decision matrix is given in the Table 6.
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Table 6. Actual Decision Matrix of Responses

Experiment No.
(Alternatives) MRR Ra

A-1 9.21 2.11
A-2 24.85 5.023
A-3 32.57 9.17
A-4 20.57 2.036
A-5 39 7.16
A-6 24.85 11.59
A-7 41.14 3.35
A-8 27 725
A-9 39.85

Step2. Formation of Normalized decision matrix (¥; DE
alternative to the J" factor. T.

In matrix D, Yj is the R

calculated by using below formula and given in the Tabl

Y= z&— (1<1®<.n) \\/

Table 7. Normallze

cision I‘@lx

11. 75%4
mallse Q

atrix is

Experimental No. %ARR Ra

1 o3555\ﬂ0 0.03549

2 \ “0.09598\* 0.08450

3 \ @ 0.12573% 0.15427

4 N\ 0 0.03425

5 P ~ 055 0.12045

6 ) \)0 09593 0.19498

JIRR NS \% 0.15881 0.05636

0423 0.12197

5383 0.19768

s,\\\‘ ‘Q 0.1
0.1
lation

Step3. C tput entropy (§;) using the formula below and the calculated
values was glven in le 8.

J_l 0 }Elejln?”
f* Table 8. Output Entropy Values
£~ Criteria MRR R,
Vo N4 § 0.96991 0.93027
Step4. Calculation of the weight (W;) by using the formula
1-¢
W= o
! E?;j_(-l - Ej}
Where, 2;2;W; =1 and (1- §) is called uncertainty. The calculated values of weights

were given in the Table 9.
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Table 9. Weights of Responses

Criteria MRR R,

W, 0.3014 0.6985

3.3.2. TOPSIS Calculations
TOPSIS calculations involves in 6 steps they are

Stepl. Determine the Normalized decision making matrix.
Normalize the decision matrix of r; can be determined by using the below formula, and

the calculated normalized values were given in the Table 10.
Tij

1
Ivn w2 0
.dEi:'_“lJ

Where, rj; represents the normalized performance of A; with respect to cha rict

rij =

Table 10. Normalized Decisiogg
Experiment No. MRR N

1 0.10088,7 09386
2 02722(& ) \\/ 0.22344
3 0.35 0.40791
4 0 3} ‘M 0.09056
5 042719 __ % 0.31850
6 CA0272208N./) 0.51556
7 _\, “70.45068\ > 0.14902
8 \ © 029575 0.32250
9 \ 0.48650 0.52268

Step2. Construction é@’elghted R@zed decision matrix by

1]
Where, W;r @ the |ght of the J‘“ criteria. The calculated values of Vj;
are given u@
Table@ eighted Normalized Decision Matrix
Expenmeg;w MRR Ra
0.03040 0.06556
L4 2 0.08204 0.15607
P 0.10752 0.28492
() 4 0.06790 0.06325
Yy 5 0.12875 0.22247
6 0.08204 0.36011
7 0.13581 0.10409
8 0.08913 0.22526
9 0.13156 0.36509

Step3. Determine the Positive ideal solution and Negative ideal solution by using
A* = {(max, v,y e]),(mmV, |1 e])1=12...m)}

= {v], 'r:-';J...I.. U e eV}
- = {(mm, V) e]), (maxV, |y efh=12, ... ..m]
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= {r-'l_, [ A ...'r:-';}
J=1,23.... n, associated with the beneficial attributes.
J=1, 2, 3...n, associated with non-beneficial adverse attributes. The PIS and NIS values
were given in the Table 12.

Table 12. PIS and NIS Values

Criteria MRR R,
PIS 0.13581 0.06325
NIS 0.0304 0.36509

Step4. Calculation of separation values from the PIS and NIS.

| i
The separation of each alternative from PIS is given by S;" = ﬂIEj"zl{vf'— vij} ;

Where,i=1,2..m.

\v

Table 13. Distance Me

Where,i=1,2..m. .
The separation of each alternative from NIS is given by S; = *JIEJ-”:@ Vi) s
Si

The calculated S;+ and S; values are given in the Tabl&% ¢ %
es
\ y .
AN

Experiment No. S~ Y
1 0.1 + & 0.29953
2 + 18726 N7 0.21530
3 o~ 0223464 (7, 0.11124
4 .("Q).OG?%:\ 0.30416
5 o (7.5 0.1593N° 0.17324
6 s\\‘ 030469 0.05187
7 ) 04084 0.28148
8 @ % \0.16860 0.15166
9 ., N\ \ ~0.30186 0.10116

N\
Stepb. Calcu@of relativ@s ess to the ideal solutions and corresponding Signal
S

to noise (S@t . )
ativec g5 coefficient, C-l+ = 5517 Wherei=1,2.....m

1 1

The larger t@value, the better the performance of the alternatives. S/N ratios for
;™ values were'ealculated by using Taguchi’s Higher-the-Better characteristic.

SteQank the preference order. The relative closeness coefficient values and their
‘ i

r ng Signal-to-Noise ratios were given in the Table 14.
% Table 14. Relative Closeness Values and Ranking
Experiment No. c’ SIN of C* Rank
1 0.73965 -2.6195 3
2 0.66747 -3.5114 4
3 0.33235 -9.5681 7
4 0.81748 -1.7505 2
5 0.52085 -5.6657 5
6 0.14670 -16.6714 9
7 0.87329 -1.1768 1
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8 0.47355 -6.4927

»

9 0.25100 -12.0065 8

ANOVA of relative closeness coefficient (€i+}

Analysis of variance has been done to find the influence of cutting parameters on the
multiple responses. ANOVA of C;¥ s given in the Table 15. From the Table, it is clear that
feed rate is the high influencing parameter (F = 91.42) which affects the multi-responses.
The Normal probability plot, versus fits and versus order plots of C;" shown in the Figures

7, 8 and 9, signifies that the residuals are following the normal distribution and does not
follow any particular pattern.

Table 15. ANOVA for C;*

Source DF Seq SS Adj SS Adj MS F N
0.01083 0.01083 0.00541 i%
v 2 5 5 8 2.05{»A 0.328
; 5 0.4;8335 0.4;8335 \ U4 0.100
0.03065 0.03065 0453
d 2 e e —\ 7oA 280 0.147
Error ) 0.00528 o.ooszscdo.oozsz\y
7 TN ACA
0.53013 b N~
Total 8 .
5 A\

£ '}
$=0.0514162,  R*=99.00%, &‘@”(Adgi\@f%

\mv r %Iitvy Plot

o w
ﬁ’\\g) >

95

; OQ

70

Percent
838

-0.075 -0.050 -0.025 0.000 0.025 0.050
Residual

Figure 7. Normal Probability Plot for C;+
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Versus Fits
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Figure 9. Versus Order Plot for Ci+

4. Conclusions

¢ From the TOPSIS method, the optimal combination of process parameters is found at
the Speed: 2000 rpm, Feed: 0.2 mm/rev and Depth of cut: 1 mm.
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e From the Weighted Sum Method (WSM) and Weighted Product Method (WPM), the
optimal combination of process parameters is found at the Speed: 2000 rpm, Feed:
0.4 mm/rev and Depth of cut: 0.75 mm.

e From the ANOVA results of WSM, WPM and relative closeness coefficient (C”), it is
found that feed rate has high influence in affecting the multi-responses.
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