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Abstract 

This paper presents a new technique for marker selection called marker selection using 

skeletonization. Markers are the most reliable pixels that represent a particular class. 

Marker selection using skeletonization is further analysed to do classification of 

hyperspectral image with very low training samples, as low as one pixel per class. Both 

spatial and spectral information are used to improve the final classification accuracy. An 

Extended Morphological Profile with duality is used to extract spatial information. 

Furthermore, it is shown that by using the spatial and spectral information with non-

parametric supervised feature extraction methods, better classification accuracy can be 

achieved even when very low training samples are available. The classification maps will 

be shown and discussed for very low training sample analysis using marker selection by 

skeletonization technique. 
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1. Introduction 

From the last two decades a lot of work has been done in hyperspectral remote sensing 

technology [1]. Detailed physical analysis of object structures is possible by using the 

advanced hyperspectral imaging sensors that are able to capture hundreds of narrow 

spectral channels [2].  

It is now commonly accepted that using the spatial and spectral information 

simultaneously provides significant advantages in terms of improving the performance of 

classification techniques [3]. In addition, small structures are now better identified due to 

recent advances in spatial resolution of sensors [2]. It is well known that contextual 

information, i.e., the inter pixel dependency is also useful for the classification of 

hyperspectral images (HSIs) [4]. 

Apart from many other problems, one of the problems that many scientists faced in 

remote sensing is the limited number of training samples. A lot of work and methods have 

been presented to improve the classification accuracy with limited number of training 

samples. 

In this paper very low training sample analysis (VLTSA) is performed using spatial-

spectral classification scheme shown in Figure 1. Apart from the spectral information, the 

spatial information is extracted using Extended Morphological Profiles (EMP) with 

duality property (EMPD), which improves the classification accuracy better than the 

conventional EMP because it reduces the shape noise [5]. The original HSI is first 

normalized and then it is used for principal component analysis (PCA) and feature 

extraction (FE) analysis, this also helps to improve the classification accuracy. For FE, 
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two nonparametric supervised FE techniques are used, named Decision Boundary Feature 

Extraction (DBFE) and  

 

Normalized HSI

PCA

FE

EMPD

Data Fusion

SVM

FE

 

Figure 1. The Main Flow Diagram on which we have Implemented our 
Marker Selection Using Skeletonization Approach 

Non-parametric Weighted Feature Extraction (NWFE). Support Vector Machine 

(SVM) for classification is used because it can handle both spatial and spectral 

information very efficiently. Figure 1, summaries the main flow of our work. 

In supervised classification, data set is labelled based upon the available ground truth 

data (GTD). The training and testing samples are picked randomly. If the training samples 

to be picked are very limited for example only one or two, then it is very important that 

the picked training samples should be reliable and must represent the class for which they 

have been labelled for. Training samples are picked randomly, so there is a chance that 

they will be picked at the boundary of the class, where there is likelihood that they may 

not belong to the class for which they are labelled of. They may represent the 

neighbouring class as the classes are usually very close to each other in HSIs. So, the 

probability of reliability of limited training samples that have been chosen for the analysis 

must be increased. 

One idea that comes to the mind is that the pixels at the center are more accurate to 

represent the class than the pixels at the boundary. Many algorithms have been proposed 

to choose more reliable pixels as region marker. In [6], Tarabalka et al. choose markers 

by analyzing probabilistic SVM classification results. In [7] Multiple Classification 

technique has been presented for marker selection in such a way that the complementary 

benefits of each classifier are exploited, while their weaknesses are avoided. In [8] 

Multiple Spectral-Spatial Classifier is presented for marker selection, which is further 

used for marker-controlled region growth, based on a minimum spanning forest algorithm 

[6]. All the above mentioned techniques for marker selections are quite complex and time 

consuming as well. We propose a new marker selection technique called marker selection 

using skeletonization. The best thing about this technique is that it does not depend on any 

classifier. The technique of marker selection using skeletonization is described as follows: 

 

2. Marker Selection Using Skeletonization 

It has been shown in [9] that the skeleton of a figure A can be expressed in terms of 

erosions and openings; that is, 

   
0

K

k
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S A S A



   (1) 
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with 

     k
S A A kB A kB B      (2) 

where B is the structuring element, and  A kB  indicates k successive erosions of A. 

K is the last iterative step before A erodes to an empty set; that is, 

m a x [ | ( ) ]K k A k B      (3) 

Skeletonization with pruning of each class of the GTD of HSI is performed one by one 

and based on it, the very low training samples are randomly selected from the HSI data 

set. The skeleton of a class lies at the very core of it and the pixels (randomly selected for 

training samples from the skeleton) are more reliable to represent a class. In other words, 

the skeleton of a class represents the marker of that class. Figure 2(a) shows the class 

named Soil-vineyard-develop of Salinas data set and (b) shows its skeleton. The skeleton 

lies at the very core of the class, quite away from the boundary. On the skeleton, there is 

more chance that the training samples belong to a class it is representing or it has been 

labeled for; as the classes are very close to each other in most of the HSI data sets. 

 

        
         (a)                                                                  (b) 

Figure 2. (A) GTD of Class Named Soil-Vineyard-Develop of Salinas and (B) 
Its Skeleton in Black and White Image 
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Figure 3. Proposed Marker Selection Using Skeletonization Approach; 
Implemented on the Figure 1 

Figure 3 shows how our proposed technique is implemented on our main flow of the 

HSI spatial and spectral information extraction method mentioned in Figure 1. We feed in 

the output of our proposed technique into the FE, as non-parametric supervised feature 

extraction methods are used in order to remove the redundant and irrelevant information 

in spatial and spectral domains. The block of VLTSA Skeletonization is explained in 

Figure 4. Figure 4 explains our proposed approach in depth. In it each class is chosen 

from GTD and skeletonization is performed on it and from that skeleton training samples 

are selected from the HSI. The pixels in the class other than it skeleton are selected as 

testing samples. n training sample are then selected randomly from training samples 

selected from skeletonization technique. The process is repeated until all the classes in the 

GTD are finished. In the end the net n training samples from each class and the net testing 

samples from each class are send out as an output from the block of VLTSA 

Skeletonization. For FE our proposed approach is repeated only once. The spatial and 

spectral information are combined using the concatenate vector, mentioned as data fusion 

block in Figure 3. Our proposed  
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Figure 4. The VLTSA Skeletonization Block in Figure 3 

Technique of marker selection using skeletonization is implemented on the fused data. 

This will be fed into the classifier (SVM). At this stage the VLTSA Skeletonization 

technique with the SVM is repeated 500 times for the reliability of the classification 

results because VLTSA is performed, where the numbers of training samples are very 

low. 

 

3. Non-Parametric Supervised Feature Extraction 

Two supervised nonparametric FE techniques named Decision Boundary Feature 

Extraction (DBFE) and Nonparametric Weighted Feature Extraction (NWFE) are used to 

extract the spatial features in our work. Nonparametric FE is based on a nonparametric 
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extension of the scatter matrices. There are at least two advantages of using the 

nonparametric scatter matrices. First, they are generally of full rank. This provides the 

ability to specify the number of extracted features desired and to reduce the effect of the 

singularity problem. It is in contrast to parametric discriminant analysis, which usually 

can only extract 1L   features [10], where L is the number of classes. Second, the 

nonparametric nature of scatter matrices reduces the effects of outliers and works well 

even for non-normal data sets and most of the hyperspectral data sets are non-normal [10]. 

In DBFE all features useful for discriminating the classes can be extracted from the 

decision boundary [11]. The decision boundary feature matrix (DBFM) [12] is formed by 

using the vector norm at the decision boundary. The vector norm is the normal vector to 

the line connecting the two pair of training samples belonging to different classes. DBFE 

is very much dependent of the number of training samples and can be computationally 

intensive. 

Kuo and Landgrebe [13] proposed NWFE using the advantage of Discriminant 

Analysis Feature Extraction (DAFE) and DBFE and eliminating their disadvantages. The 

main ideas of NWFE are putting different weights on every sample to compute the 

weighted means and defining new nonparametric between class and within-class scatter 

matrices in order to obtain more than 1L   features [10]. 

 

        
           (a)           (b) 

Figure 5. (A) Three Channel Colour Composite of Salinas Data Set and (B) 
its Ground Truth Map 

4. Experimental Results 

AVIRIS Salinas data set is used for our experimentation. Salinas data set has 512 

by 217 pixels with 204 bands in spectral dimension. Three channel colour (RGB) 

composite of its data set is shown in Figure 5(a) and it’s GTD in (b) with 16 
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mutually exclusive classes. This data set is chosen because it is a challenging 

classification problem as most of the classes have the similar spectral. 

The criteria used to compare classification results involve Overall Accuracy (OA), 

Average Accuracy (AA) and the kappa coefficient (k). Time analysis is not done as it is 

obvious that lesser the feature, faster will be the processing time. MATLAB is used 

for morphological operations while MultiSpec software is used for feature extraction. The 

SVM classification is done using LIBSVM [14]. In our study, one-against-one strategy is 

used for SVM using radial basis kernel. Throughout the experiments, the normalized HSI 

data set is used, which is feed into MultiSpec software for FE, as shown in Figure. 3. The 

concatenate vector is used for data fusion; to combine spatial and spectral information. 

For PCA, DBFE and NWFE the number of features are selected based on cumulative 

percentage of 99%. For VLTSA, every step is performed once up-till data fusion. See 

Figure 3. After that, training samples are randomly selected 500 times and then averaged 

for the reliability of the results. Every 500 times SVM parameters C (4, 8, 16, 32, 64) and 

  (1, 2, 4) are determined using five-fold cross-validation. 

For DBFE leave one out covariance (LOOC) is used to estimate the covariance 

matrix [15], because when training samples are small the covariance matrix cannot 

be inverted. NWFE does not suffer from this. Note that, when NWFE is performed 

with only one training sample, Multispec software fails, as it expects matrix. So for 

this particular case, the FE results of NWFE when only two training samples are  

picked per class is used up-till data fusion. After that only one training sample is 

chosen per class randomly for 500 times. 

Table 1 summarizes the VLTSA of Salinas data set. Comparing the first three columns 

of the Table 1, it can be seen that the classification accuracy increases when both spatial 

and spectral information is used, rather than individually. There is a clear difference in 

accuracies when NWFE is used as FE. Even when only one training sample is used, an 

OA of 75% is obtained with NWFE features, which increases to 80% when only three 

training samples per class are used, which is not bad. The second best result is obtained 

when DBFE is used as FE. Seeing the results of Table 1, it is concluded that FE is an 

essential step for better classification accuracy, as a lot of data in HSIs is redundant. 

Table 2 shows the number of features used for classification results when DBFE and 

NWFE techniques are used for FE. The first digit in the bracket represents the spectral 

feature and the second digit represents the spatial feature and the digit outside the bracket 

represents the sum of spectral and spatial features. It can be seen in Table 2 that with only 

19 features, when NWFE is used as FE, we get an accuracy of 75% when only one 

training sample per class is used. 

Figure 6 shows the classification maps when only one and ten training samples per 

class are used by implementing VLTSA (marker selection using skeletonization). It can 

be seen from the classification maps that even with just one training pixel per class; still 

reasonable classification maps can be obtained, when NWFE is used as FE. Using our 

proposed technique of marker selection using skeletonization, the reliability of pixel 

belongs to the class for which it has been labelled for is increased. This helps us to choose 

more reliable pixels for VLTSA and hence results in better classification maps even with 

very low training samples. 

The proposed technique of marker selection using skeletonization can be used as a seed 

for building minimum spanning forest algorithm [6]. 
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Table 1. Overall (OA) and Average (AA) Classification Accuracy in 
Percentage. TS Stands For Training Sample/S And Mps Stands for 

Measuring Parameters 

T

S 
MPs Spectral EMPD 

Spectral + 

EMPD 

DBFE 

99% 

NWFE 

99% 

1 OA 69.409 74.633 74.259 74.771 75.222 

 AA 74.591 79.936 79.655 80.088 81.189 

 kappa 0.6614 0.7187 0.7147 0.7205 0.7254 

2 OA 73.885 75.640 74.989 75.831 79.525 

 AA 80.114 81.519 80.800 81.968 85.854 

 kappa 0.7107 0.7305 0.7234 0.7326 0.7732 

3 OA 76.309 79.538 79.120 79.100 80.277 

 AA 82.741 85.504 85.300 85.150 86.830 

 kappa 0.7374 0.7734 0.7688 0.7685 0.7816 

4 OA 77.984 80.755 80.438 80.886 81.595 

 AA 84.566 86.837 86.652 86.988 88.017 

 kappa 0.7559 0.7868 0.7833 0.7883 0.7961 

5 OA 79.081 81.837 81.608 81.499 82.418 

 AA 85.714 87.933 87.791 87.735 89.012 

 kappa 0.7680 0.7988 0.7963 0.7951 0.8052 

6 OA 80.196 82.561 82.242 82.557 83.977 

 AA 86.777 88.597 88.488 88.674 90.095 

 kappa 0.7802 0.8068 0.8033 0.8068 0.8223 

7 OA 81.051 83.140 82.848 82.890 83.263 

 AA 87.515 89.191 89.018 89.078 89.415 

 kappa 0.7896 0.8132 0.8100 0.8105 0.8146 

8 OA 81.395 83.454 83.395 83.839 85.038 

 AA 88.095 89.535 89.489 89.909 90.953 

 kappa 0.7936 0.8167 0.8160 0.8208 0.8341 

9 OA 82.100 84.039 83.964 84.063 85.719 

 AA 88.641 89.995 89.984 89.969 91.335 

 kappa 0.8013 0.8232 0.8223 0.8234 0.8416 

10 OA 82.563 84.430 84.294 84.504 85.591 

 AA 89.020 90.326 90.247 90.358 91.343 

 kappa 0.8064 0.8275 0.8259 0.8282 0.8402 

Table 2. Total Number of Features Selected During VLTSA for Salinas 

No. of 

Training 

Samples 

Salinas 

DBFE 

99% 

NWFE 

99% 

1 9(4, 5) 19(13, 6) 

2 12(7, 5) 19(13, 6) 

3 41(20, 21) 24(16, 8) 

4 38(18, 20) 24(18, 6) 

5 58(34, 24) 29(21, 8) 

6 61(38, 23) 27(20, 7) 

7 60(36, 24) 31(23, 8) 

8 59(35, 24) 34(27, 7) 

9 59(32, 27) 32(25, 7) 

10 60(36, 24) 33(26, 7) 
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(a)                                                 (b) 

Figure 6 Salinas Classification Maps Obtained From VLTSA (A) Using NWFE 
As FE When Only One And (B) Ten TS Per Class Are Used. TS Stand For 

Training Sample/S 

5. Conclusion 

In this paper a new marker selection technique is proposed using skeletonization. The 

technique is implemented when both spatial and spectral information are extracted for 

hyperspectral image classification. Spatial information is extracted using Extended 

Morphological Profile with duality. Nonparametric feature extraction techniques are used 

to reduce the redundant and irrelevant information from the spatial and spectral 

information. VLTSA is further studied using skeletonization technique on hyperspectral 

image. Only one to ten training samples per class are examined and it is concluded that 

when NWFE is selected for FE, the better classification accuracy is obtained. It is also 

investigated that reasonably fine classification maps can also be obtained using VLTSA 

with skeletonization method. 
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