
International Journal of Hybrid Information Technology

Vol.8, No.9 (2015), pp.25-32

http://dx.doi.org/10.14257/ijhit.2015.8.9.03

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2015 SERSC

Design and Implementation of Embedded Serial

Communication Based on Finite State Machine

Jian Feng and Yuanyuan Ding

College of Computer Science & Technology, Xi’an University of Science and

Technology, Xi’an 710054, China

fengjian@xust.edu.cn

Abstract

In order to solve problems of poor real-time capability, poor reliability and low

fault tolerance for data transmission in embedded serial communication, a serial

communication protocol based on finite state machine (FSM) was designed and

implemented, and was applied in communications of network management. The packet

format and the communication control mechanism of the serial communication

protocol are described, and complete framework for the application is given. Process

of receiving and transmitting FSM models in serial communication are abstracted,

combined with the interrupt service routine. In practical application, the serial

communication program can meet the functional and performance requirements of

serial communication between embedded devices and network management system

(NMS).

Keywords: FSM, Serial Communication, Protocol, Real-Time, NMS

1. Introduction

Serial communication is a very important and widely used means for

communication among embedded systems, such as MCU and DSP, and embedded

systems and PC.

CPUs of embedded systems not only need to complete the work of main flow, but

also need to deal with interrupts occurred at any time, and their processing power are

lower than CPUs of PC, which makes the program design for embedded systems is

very different from that of PC. The program design of serial communication in

embedded system is seemingly simple, but if not carefully designed, the problems of

poor real-time capability, poor reliability and low fault tolerance will appear.

Finite state machine (FSM) model is a viable solution for embedded software design

and is used frequently [1]. In this paper, a software system based on FSM is designed

for serial communication between embedded devices and network management system

(NMS). It aims to ensure the accuracy of data transmission by setting a reasonable

packet format, while to simplify the protocol implementation and improve the

reliability of communication, and to make the communication process has strong fault

tolerant property by introducing state machine approaches.

2. The Overall Design

2.1. Serial Communication Protocol

The smallest information unit in serial communication is data frame. A data frame

typically is made up of start bits, data bits and end bits, also used to have parity bits for

detecting transmission errors. Each data frame can have 5, 7, 8, or 9 data bits [2]. In

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

26 Copyright ⓒ 2015 SERSC

actual communication, the data transmission is performed frame by frame according to

communication protocol.

The communication protocol is an agreement reached by the two sides needing to

communicate; it gives the definitions of data format, synchronous mode, transfer

procedure, correction, and control characters and so on. The two sides must abide the

communication protocol in communication [3].

The packet format of serial communication protocol defined in designed software

system is shown in Table 1.

Table 1. Packet Format of Serial Communication Protocol

Message

Type

Bit7-4 Bit3-0 B

yte

packet

header

0xFF 0

packet

header

0xFF 1

control word S_NO R_NO 2

control word packet type packet subtype 3

length length/256 4

length length%256 5

message uncertain 6

…

n

-3

check word checksum of control word, length and message n

-2

packet tail 0xFF n

-1

packet tail 0xFE n

Where:

 Packet header is used for synchronization, indicates start of receiving a

new data packet;

 Control word contains the type of the packet, the number of current

received packet (S_NO) and the number of which packet sender wishes to

receive (R_NO);

 The length indicates length of message;

 Message is the actual data sent or received;

 Check word uses single-byte XOR to check control field, length field

and message field;

 Packet tail indicates the end of data package.

The main communication control mechanisms in the protocol include:

 Scans serial port every 50ms. If the serial port is idle and there has

current buffered data needed to be transmitted, then send the data packet;

 After sending data packets, the sender needs to wait for the response;

 Resends the packet if its response has not been received after 2000ms;

if the continuous retransmission reaches to 10 times and without response, then

serial communication is considered to be lost;

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

Copyright ⓒ 2015 SERSC 27

 If packet number of received packet is inconsistent with the desired

packet number, carries on synchronization according to current packet number

of received packet. If it happens more than 10 times that packet number of

received packet is inconsistent with the desired packet number, sends a

management packet to make the number of the transmitted packet and that of

the receipted packet synchronization.

2.2. System Design

According to real-time needs and reliability needs for communication between

embedded systems and NMS, the task of serial receiver in the embedded device is

defined as a strong real-time task, achieved by interrupt routine; the task of serial

transmitter is defined as a weak real-time task, achieved by ways of polling, and every

10ms to send a byte.

When designing receiving interrupt in the serial port, in order to avoid consuming a

large number of machine cycles to deal with protocol data resulting in that processing

time of interrupt routine is too long to make other real-time tasks on the embedded

device be delayed, copies the data received in the serial cache directly into the default

data buffer, instead of processes the data directly and waits for next data arrived. Later

a task invoked by the main program outside the interrupt routine will process the data

in the default data buffer according to the serial protocol. In order to receive and

identify a complete packet, as well as tolerant faults, FSMs and message mechanism

are used in communication program design. System control process is shown in Figure

1, and the key technologies are described in detail in Part 3.

Figure 1. System Control Process between NMS and the Embedded
Device

3. Key Technologies

3.1. Interrupt Routine Design

To make embedded systems more robust, one of the basic principles of program

design should be taken is to make interrupt handler simple. In the serial interrupt

Packing NMS

instruction

Receiving data

NMS

Sending data

Showing status

Receiving interrupt

Returning error

instruction

The embedded

device

Returning correct

instruction

Entering main process

N

Y

Sending polling

Receiving

char

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

28 Copyright ⓒ 2015 SERSC

service routine, after one byte of data is received, copies it into the specified circulating

public buffer. The data location in the buffer is pointed by read pointer and write

pointer, and the buffer is set appropriate flags to indicate its contents. The main

program reads the contents of the buffer in accordance with flags, and analyses and

processes according to serial communication protocol.

Circulating public buffer is set to 8192 bytes. If communication rate is set to

9600bps and each byte occupies 10 bits, the buffer can store continuous serial data for

about 8.53s.

3.2. Fsms of Protocol Processing

As the reaction system, a communication system is highly dependent on the states

occurred in communication processing, so using FSM to model dynamic behavior in a

communication system is a generally used programming method.

A FSM is used to describe systems with a finite number of states; at any given time

it can operate on input to either make transitions from one state to another or cause an

output or action to take place. A FSM can only be in one state at any moment. As a

basic formal method, FSM has been widely applied in computer related field, such as

definition of formal languages and description of network protocols. In serial

communication, each processing procedure has several states transition driven by

external events, so FSM can be used to describe these transition procedures.

A model of FSM can be defined as a five-tuple array M =(Q,∑ ,δ ,q0,F)[4],

including:

 Q={q0, q1,…,qn} consists of a set of states (including the initial state).

At a determined time, FSM will be in a determined state qi. In serial

communication protocol, there are 6 states, shown in Table 2.

Table 2. States of Serial Communication Protocol

State Type Definition

IDLE Idle state The initial/ terminal state

FIRSTFF Receive state Receive the first 0xff

SECON

DFF

Receive state Receive the second 0xff

THIRDF

F

Receive state Receive the third 0xff

WAITA

CK

Send state Send data and wait for

ack

NOACK Send state Timeout and no ack

 Σ={σ1,σ2,…,σm} is a set of input events. At a determined time, FSM

can only receive one determined event σj. In serial communication protocol,

there are events including receive 0xff/0xfe, timer timeout, and so on, shown in

Table 3.

Table 3. Input Events of Serial Communication Protocol

Ev

ent

Type Definition

rff Receiving

FSM

Receive 0xff

rfe Receiving

FSM

Receive 0xfe

rot

h

Receiving

FSM

Receive other char

em Receiving Packet error

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

Copyright ⓒ 2015 SERSC 29

sg FSM

en

o

Sending FSM Seqno error for 10 times

tto

h

Sending FSM Heartbeat timer timeout

ttoa Sending FSM Ack timer timeout

ttoat Sending FSM Ack timer timeout for 10

times

ack Sending FSM Ack packet needs to be sent

data Sending FSM Data packet needs to be sent

rack Sending FSM Receive ack packet

rmn Sending FSM Receive management packet

rhb Send FSM Receive heartbeat packet

 δ :Q ×Σ →Q is a transition function that maps input events and

current states to a next state. The function takes the current state qi∈Q and an

input event σ j∈Σ and introduces a set of actions and the next state q' =δ (qi,

σ j)∈Q. Table 4 shows the actions caused by an input event.

Table 4. Actions of Serial Communication Protocol

Acti

on

Type Definition

rnx Receiving

FSM

Receive next char

dem Receiving

FSM

Deal with data packet

smn Receiving

FSM

Send management

packet

shb Sending

FSM

Send heartbeat packet

sack Sending

FSM

Send ack packet

sda Sending

FSM

Send data packet

 q0∈Q is the initial state, computation begins in the start state with an

input event. In serial communication, it is state IDLE.

 FQ is the terminal state, computation ends in this state. In serial

communication, it is state IDLE too.

The state machine can be viewed as a function which maps an ordered sequence of

input events into a corresponding sequence of (sets of) output events.

Figure 2 shows receiving event/state transitions in serial communication protocol.

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

30 Copyright ⓒ 2015 SERSC

Figure 2. Receiving FSM

In receiving FSM, each stage of receiving process is defined to different state, the

new received character or the results of the data processing are used as external trigger

conditions to achieve the purpose of the state changes, and finally to complete

receiving and checking of a data packet. In the FSM, after a valid data packet received,

its processing needs to be completed with other task module on embedded devices, this

is beyond the scope of this paper, so do not go into details here. This process may lead

to generate some data packets, such as acknowledgement packet, new data packet,

management packet, and so on. These created packets are sent into the transmit buffer

and waiting to be transmitted, as while become events to impact sending FSM, as

shown below.

Figure 3. Sending FSM

The receiving FSM mainly concerns about receiving and checking of received

packets, but the sending FSM focuses on dealing with events including sending data,

monitoring timer expiration and checking sequence number of received packets to

realize communication control of serial communication protocol.

3.3. Timers

In order to ensure the reliability of message transmission, serial communication

process uses message retransmission mechanism. State machine designed above uses

multiple timers, these timers and their meanings are summarized in Table 5.

ttoa/sdaack/sac

kttoh/shbrhb

eno/smn

ack/sack

ttoh/shb

rhb
eno/smn

rack

rmn

ttoat

data/sda
ttoh/shb

IDLE

NOACK WAITACK

roth/smn

rfe/dem
m roth/smn

IDLE

roth/rnx

FIRSTFF

SECONDFF

THIRDFF

rff/rnx

rff/rnx rff/rnx

emsg/smn

roth/smn

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

Copyright ⓒ 2015 SERSC 31

Table 5. Timers

Timer Meaning Event by

timeout

Timer A ACK retransmission interval ttoa

Timer

AT

10 times of ACK retransmission

interval

ttoat

Timer H Heartbeat retransmission interval ttoh

4. Testing

Serial program is tested by serial debugging software installed on the PC. Table 6

shows the basic parameters of the software. Connects the PC with the tool to the

embedded device, and then sets the serial port parameters of the embedded device.

Table 7. Parameters of Serial Communication

Items Description Exam

ple

communication

rate

Communication rate between PC

and the embedded device

9600b

ps

data frame length Maximum length of data frame

received from serial port

200by

tes

wait time Expiration time span of serial port 50ms

parity bit Number of parity bits 0bit

After extensive testing, the serial communication program can resolve protocol

packets by 100%, it never shows any lost. The dispatching cycle of main program is

10ms, and the serial port interrupt needs 60μs by average, task which runs serial

protocol needs 1.5ms by average and it does not affect the execution of other tasks.

In actual use, the embedded device which realized the serial program hosts a large

number of sending and receiving job for network management, and can work properly

and keep stable performance.

5. Conclusions

The serial communication protocol designed in the paper is semantically rich

and signaling integrity. Its implementation uses two FSMs - receiving FSM and

sending FSM. It has been applied to a NMS, running in good condition. As a

result of using FSMs and message mechanism, the design of interrupt service

routine is simple and quick, program structure is clear and easy to be maintained

and transplanted, while the stability and reliability of the program is increased.

The designed method has some practical value, and can be widely used in the

field of industrial control and data communication.

Acknowledgements

This work was supported in part by Shaanxi Provincial Natural Science Foundation

Project (No. 2012JQ8030).

References

[1] ZH. H. Sheng, J. Y. Hong, L. Jie and G. J. Ning. Design of satellite management software based on

FSM and event-driven, Computer Engineering. 35(21),280-282 (2009).

[2] X. C. Sheng, S. T. Lu and SH. Cheng. The methods of formulating serial port communication

protocol. Heilongjiang Science and Technology Information. 33, 83 (2009).

[3] Ying, J. Bin. Design and implementation of serial port communication protocol based on state

machine, Electronic Design Engineering. 20(7), 100-103 (2012).

International Journal of Hybrid Information Technology

Vol.8, No.9 (2015)

32 Copyright ⓒ 2015 SERSC

[4] ZH. W. Bo, ZH Hai, W. X. Ying, G. Mo and R. G. Chun. Study of the CFSM in an embedded device

access server, Computer Engineering. 31(11), 103-104 (2005).

Author

Jian Feng’s date of birth: August, 1973. She received her

doctoral degree in Computer Software and Theory from

Northwest University, Xi’an, China, in 2008. And research

interests on computer network and communication, network

security, distributed computing.
She is currently an Associate Professor in College of Computer

Science & Technology, Xi’an University of Science and Technology,

Xi’an, China.

